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Abstract

In this paper, a new concept called "K -Q lock" for ensuring
the security of information is proposed. The nomenclature
K(kaleidoscope)-Q(queer) lock is itself a combination of a
lock and key, which filters the entry of information so that

the authorization for information can be performed strictly.

There are three parts in the K-Q lock (<GM(1), }'{’( 1)>a

S«(1) ). The GM(1) is an inside lock; the J.(( 1), an outside
lock; and S(1), a secret key which is expressedasa
function. The structures of the inside and outside lock s
constitute two layers for distinguishing the passing objects.
Therefore, the designer can transfer the threshold of
entrance according to different demands such as objects or
authorization to set up a lock and key in the K-Q lock. In
other words, the range in the application of the security
area becomes wider. The  K-Q lock can produce an
encryption ladder for a plaintext document automatically.
By protecting the encr yption information from being
attacked, the order of the encryption ladder accomplishes
the necessary requirements for securit . In addition four
new concepts are introduced:(1) a bearing-reproduction
theorem, (2) a resolution and dispersion theorem, (3) a
ladder encryption theorem , and (4) a ladder-climbi
algorithm. These fouroffer the K -Q lock a more
trustworthy support.

Keywords: K-Q lock, inside lock, outside lock, ladder
encryption algorithm

1. Introduction

In computer communication systems, both computer
cryptography and information security have become quite
important requirements. An unauthorized user will not be
able to access secret data which is well protected. In
consideration of the advancement of computer networks
and computer technologies in multi-user systems, sharing
resources becomes urgent. Thus, the necessity for resource
administration is becoming  important in multi-user
computer environments. In other words, onl through
authorization can objects be accessed.

Thus, the K-Q Lock, which can be applied in information
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security, is presented in this paper. Before discussing the
central topic (K-Q Lock) of this paper, it is necessary to
introduce the grey system theory.

The grey system theory was proposed by Deng[1] in 1982,
and further research [2] was done in 1989. This theory
discusses data analysis mainly. Some might wonder if the
above-mentioned theory can be applied to information
security because it seems to be independent of security and
belong to a different field of research. Howe ver, the fact is
that the use of grey theory can induce a new encryption and
decryption method for securing information in computers.

The focal points concerning the K-Q Lock in this paper are
listed below

1. First, grey theory 1is applied to
communi-cation and information secunty.

2. Secondly, the structures and characteristics of the K -Q
Lock are introduced. )

3. Finally, several methods for unlocking the K-Q Lock
and decrypting the information.

Briefly speaking, the K -Q Lock is provided with the
followin characteristics: Bearing-reproduction,
indepen-dent encryption and decryption, and high security.
So far, no one has attempted to apply the grey system
theory to information security.

computer

In the next section, several preparatory concepts about grey

system research are presented. The K-Q lock (<GM(1), X
(1))>, and S,(1)) will be introduced in Section 3. The
encryption ladder and its structure are described in Section
4. Section 5 describes the encryption criterion for the ladder
and ladder encryption algorithm. Section 6 describes the
opening of the K -Q Lock. A discussion of the K-Q lock
appears in Section 7. Section 8 presents the conclusions.

2. Several Preparatory Concepis

In this section, the relative concepts of the grey system
theory are first introduced.

Definition 2.1

A finite nonnegative real number set
XO=x%0), %), ..., ¥%m)) (2.1)



is the basic set of the GM(1,1) model of the grey system,
@ ye RY ke (1,2,--,n).

Definition 2.2

A finite nonnegatlve real number set

XV=(0), 2%, ..., V) (2.2)

is the set which can be taken to generate GM(1,1) while xv
conforms to 1-AGO ( Accumulated generating operation)

k
Ve kye XD, xP k) =Y x@ @) (23)
P
Note: Therefore, X is called thel-AGO of X' in the grey

system theory. From definition 2.1 and 2.2, one obtains the
following characteristics:

1. Through 1-AGO in the sequence X< {1(0)( 1), x(o’(’))

‘0)(11)} that is eregularly distributed, one can

obtam a data sequence xt= “’(1), x(“(2), oo x“’(n) }.
However, the new sequence mcreases regularly.

t2

X® and X *!? have the same cardinal number; that is

X0 =1 x" (24)

3. Suppose that X is defined as a broken line< X">,
<XP > obtains a closed value correspondmg to the
exponential regular under the solution ¢* of one-order
differential equation.

Definition 2.3 One calls

+ax® =y (2.5)

the shadow equation of the grey differential equation. The
solution of (2.5)

A
XOk+1) = (x(o) (1)—i}""k +2 (2.6)
. a a
is regular for the broken line <x\Vs,
In the above, ( a): (87B)'B7Y, @7
u
__;_(x(l) (1)+_¥(1)(2)) 11
1{.a 1
B= -5(— “<2>+ ) : 2.8)
—;—(xm(n D+ x(l)(n))

¥, =(®@,x@ @), x ) (2.9)

Definition 2.4

Suppose thatk=1, 2,..., p. One can then obtain the
following sequence from (2.6):
=02, 1Y), e}, VabeR,
(2.10)

in which X" is a set generated by (2.6) .
In order to maintain consistency in symbols throughout the

entire paper, the symbols of function are unified.
Henceforth, equation (2.6) means GM(1), which is a model

of X, and XV represents X(1). For example, in (2.9),

xm(p+1)}can be rewritten as

=(00), 593), ...,
).((l)z{x(l), x(2), -++, x(p)}. These new symbols appear in
the following sections repeatedly.

From Fig.1, One observes that f((l) is obtained through
GM(1) under an extrapolation method at pointk, k=1,2,...,p.

JRLB N 7

Fig1. X9=(x01), 292, -, 295)), va%heR*; X1V is
the 1-AGO generating set of X0 xW=(x01), xM), -,

A
25}, Va(k)eR*. In the exponential curve, X @ is the
solution to the first-order differential equation.

3. K-Q lock( <GM(1), X (1)>, and 5:(1))
Definition 3.1
For information security,an ordin al 3-element group

(<GM(1), 5((1) >, and S(1) ) is a 1-phase K-Q lock; GM(1)

is a model formed b X, and X (1) is a set generated b
GM(1) at point k=1,2, -+, p. In addition, Sy(1) is a function

of X (1). In brief, a 1-phase K-Q lock is expressed as K-Q
lock, and X is the 1-AGO by the given X , and 1XV1
>4,

Definition 3.2

The term GM(1) is the inside lock and )'(( 1) the outside lock
in the K-Q Lock (<GM(1), }.((1)>, and S,(1)). The term S,(1)
is the key to the K-Q Lock (< GM(1), X(1)>, and S(D).

Definition 3.3

The term K-Q lock (<GM ¥ (1), X'’ (1)>, and S, (1) ) is
called the "bearing -reproduction lock" of the K -Q Lock
( <GM (1), 5{(1)>, and S(1)) > GM "’ (1) is a
bearin -reproduction inside lock of GM ( 1) and XY (1) is
a bearin -reproduction outside lock of f((l). The term j here
is a series of bearing-reproduction steps; j=1, 2, ---, q.
Theorem 3.1 (inside-lock unique existence theorem)

Suppose that X' is a finite nonnegative real number set, X'
can be generated after 1-AGO of X', and 1X1>4, then the
unique GM(1) will exist on X".The term GM(1) here is the

inside lock of the K-Q lock.

Theorem 3.2 (outside-lock unique existence theorem)
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Suppose that GM(1) is the inside lock of the K -Q lock, and
N is anatural number set; then, N={1, 2, ..., p}. In the

process, one can obtain a unique set 5{(1) through GM(1)
and N. The term 5((1) is the outside lock of the K-Q lock.

Proof: In general, suppose that a finite nonnegative real
number set X(o)z{,r(o)(l), x(o)(Z), ey x(o)(n)} is given. Then
one canobtain XV={x®(1), xP(2), ..., ¥"(n)} through
1-AGO. Suppose that n24. One obtains GM(1) through
(2.1)~(2.6). Suppose that N=1, 2, ..., p, through GM(1).
One obtains:

X(D={x(2), x(3), ..., x(p+1)} (3.1)
Let x(i)=x(i+1). Equation (3.1) can be rewritten as follows
X(D={x(1), x(2), ..., Xp)} (3.2)

According to definition 3.2, it is clear that ).((l) is the
outside lock of the K-Q Lock.

Theorem 3.3 (inside-lock generation theorem)

Suppose that X is a finite nonnegative real number set,

and X can be generated after 1-AGO of X?. In the
process, shadow equation of the grey differential equation
will generate the inside lock GM(1) of the K -Q Lock.

Theorem 3.4 (outside lock generation theorem)

Suppose that GM(1) is the inside lock of the K-Q Lock, Z
is a natural number set, Z#{z} and {z} is a set of simple
points. Then GM(1) and Z will generate the outside lock

X().
Theorem 3.5 (K-Q lock unique existence theorem)

Suppose that X is a finite nonnegative real number set and

1X124, then The K -Q Lock (<GM(1), X (1) >, and S,(1)) is
the unique existence.

Theorem3.6 (finite bearing -reproduction theorem of th
K-Q Lock)
Suppose that 7= {( <GM (1), X" (1)>, and 5, (1)) | i =
1,2,-++, g} is a bearing-reproduction set of (<GM(1), }‘((1) >,
S«(1) ) and conforms to the following equation.
(<GM P (1), X' (1) >, 5,9 (1) ) =

BR (<GM(), X(1) >, 51)) (3.3)
j=lyl“'¢]

In the above equation, j is the bearing-reproduction step,

and pp is the abbreviation for bearing-reproduction.
j=12:q

Proof: Vie(l, 2, -+, g),

(<GM (1), X" (1>, and 8,7 (1) ) is the K-Q Lock. The

steps to obiain the K-Q Lock are as follows Z={1,2,---,p},

and if one lets X*P= X'*(1). However, X'®(1) is obtained b
GM(1) and Z. GM ' (1) will exist on these points X, and

GM 'V (1) and Z generate X"(1). From definition 3.1, one
knows that the K-Q Lock (<GM '''(1), X" (1)>, and

5. (1) ) is obtained through GM V(1) and X' '(1). S,
“U(1) is the key of the K-Q Lock.

According to definition 3.3,

In a manner similar tothe above -mentioned process,
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suppose that X?= X" (1). One will obtain the K-Q Lock
(<GM (1), X2 (1)>, and 8,2(1)). Thus, 5.°¥(1) is the key
of the K-Q Lock (<GM'®(1), X'¥'(1)> , and 52
(1)), -, etc.. Suppose that X=X ‘91 (1), one obtains the
K-Q Lock (< GM'P(1), X9 (1)>, and 5,'“(1) ). Then, 8,
(1) is the key of the K-Q Lock (<GM‘¥(1), X*¥(1)>, and S,
@ ).

Theorem 3.6 introduces the K-Q Lock (<GM(1), 5((1)>, and

S{1))has the characteristic of an organism'
bearin -reproduction instinct. Equation (3.3) shows that all

(<GM P (1), X9 (1)>, and 5, (1)) is born-reproduced b

(<GM(1), X(1)>, and S(1)). Such a characteristic as
bearin -reproduction is quite important in encryption
application. A series of relative keys thus can be produced
in the same way.

From theorem 3.6, one concludes with the following
propositions

Proposition 3.1 : Every element in P ={ GM (1)l j =
1,2,---,p} is the B-R inside the lock of GM(1).

Proposition 3.2: Every element in F={ XY (1)l j=1,2,+,p
is the B-R outside the lock of GM(1) and Z .

4, Encryption Ladder and Its Siructure

Definition 4.1:

Suppose that X; and X; are finite nonnegative real-number
simply ordered sets, 1 X)I=IX,l, and both X, and X;conform
to the following equations:

L. x2(DeXs; x1(i), x1(i+1)eX;, and these two relationships

conform to: xy(i) < x5(j) < x1(i-+1) 4.1)
p p
2. max (y@))< max (x2() 4.2)
1= J=
x(eX, kX,

Then, X is called the "equal dimension ladder set" of X, or
the "ladder set".

- 3(4)
(3)
"""""""""" w2 14
{4 32(1 )
(3)
Al R 63
(1)

Fig. 2 Both X, and X, are nonnegative integer sets, Xi=
{ x1(1), 11(2), 21(3), x2(4) }={4, 7, 10, 14},and Xo={ xx(1),
22(2), x2(3), xao(4) }={11, 21, 35,54}, and x1(3) < xx(1) <
x1(4). X5 is a ladder set of X;.



Example: For the sake of convenience in calculation, X
and X, are selected to be nonnegative integer sets. Suppose
that Xi= { x1(1), :1(2), x1(3), xa(4) }={4, 7,10, 14} and Xo=
{ x1), 12(2), 22(3), x2(4) }={11, 21, 35, 54}; therefore,

both X, and X; are simply ordered sets. Suppose that X;(3)
and X1(4) € X, and Xx(1) € Xp; the two such relationships
will conform to X(3)<X5(1)<X;(4) and m“;x (x1(D) = x1(d)

=1

< ix (xo(D))= x2(4). Therefore, X; is the ladder set of X).

i=l

Definition 4.2

Suppose that Xj, Xo, ..., X, are finiie real-number
simply-ordered sets, Vi, byl = 77, and 7 is a nonnegative
integer. Incidentally, one calls X;, X2, ..., X; an equal
dimensional g-th-order ladder X"(1) which is named
g-order ladder for short. It is expressed as follows

X=X #Xo#.. #X) (4.3)
Suppose that X, is the ladder set of X, 1=2, 3, ..., ¢; then X;
is the i-th-order of ladder X*(1); i=1,2, ....q.

Definition 4.3

Suppose that both x* (1) and xt (1) are g-order ladders,
XP)=(X, # Xy # ... #X,), and X(D)=(,# X, # ... # X,).
Then, #(1) is a g-order ladder generated by the combination
of X*(1) and Xt (1). The expressional model is as follows,

#)={y(1) # Y12 # . # w(1),) 4.4
Suppose that XJ is the ladder set of X;; then y(1);=(X; ° }ofj) is
the j-th-order of ladder #(1). The mark " - " is the
combination of X; and Xj; j=1,2, ..., .

Definition 4.4
Suppose that y(1);is the i-th-order of ladder #(1), and

W)= = X); (4.5)

Then, X; is -called the behind or der and X, the future order
iny(1);.
Theorem 4.1 (ladder order theorem of K -Q lock)

In the K-Q Lock (<GMY(1), X? (1) >, and §”(1)), both
inside lock GM%(1) and outside lock X¥ (1) constitute the
J-th-order w(1); of ladder #(1) .

Proof: Suppose that X 2=x¥"(1) = (1), »¥12), -,
2(p) } Vj (1,2, ---,q); then one can obtain X; = { x(1),
x(2), -, x(g) } through 1-AGO. From (2.5)~(2.9), one
obtains GMY(1), which is an inside lock of the K-Q Lock

(<GMP(1), X?(1)>, and $?(1)). Thus, X¥(1) is generated
by GMY(1) and the natural number set Z; {Z=1, 2, ...., p}.
According to definition 4.1, X(1) is a ladder set of X;.
According to definition 3.2, ).(("’(1) is an outside lock of the
K-Q Lock (<GM?(1), X(1)>, and §9(1)). From definition
4.3, one knows that the combination of X(1); and }'((l)j will
constitute the j-th-order y(1); of ladder #(1) and conform to:

Y1), = (X(1); - }.((l)j). In order to avoid confusion, y(1); =
(X;e )?Zj) in definition 4.3 is rewritten as y(1)=(X(1); n)‘{(l)j),

Theorem 4.2 (g-order ladder bearing-reproduction
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theorem)

Suppose that (<GMP(1), X(1)>, and $P«1)) is a
bearin -reproduction lock of the K -Q Lock (<GM(1),
X(1)>, and S¢(1)) and j = 1, 2, ---, ¢; both inside lock
GMY(1) and outside lock X(i’(l) will generate a q-order
ladder #(1) = {y(1)# w(1)2 # ... # y(1),}, and

w(l);= BR (#1) (4.6)
j=h2,q

in the above , behind order X(”(j) in y(1); is a set that

generates GM (’7(1), and future order X (1);is a set generated

by GMY(1); j=1,2, ..., q.

Proof: Suppose that XM(1)={ x(1), V), ..., x"(p) }
and Z=(1, 2, ..., p}; then GM™(1) will be obtained while
xP(1) is 1-AGO of XO()={ xO1), x¥92), ..., xVp)}
according to (2.2)~(2.9). From GM (1) and Z, one obtains

X™(1). According to definition 4.4, both X (1) and X""(1)
constitute the 1-th-order y(1); in ladder #(1). Thus, XY

is the behind order of y(1),, and x (1) is the future order

of y(1),. Suppose that X‘Z)(l)z }'{(1)(1); then one can obtain
GMQ)(I) according to (2.2) ~(2.9). Thus, one can obtain

X®(1) according to GM®(1) and Z. In the same way, both
X®(1) and X?(1) constitute the 2-th-order (1), in ladder
#(1), and X?(1) is 1-AGO of X (1), which can be seen
from the above. Suppose that X(1)= X9"(1); then one can
obtain GM“(1) and ).((")(1). As for the g-th-order y(1), in
ladder #(1), it is constitued b X@(1) and X'9(1).
Therefore, #(1)={y(l)# wH# ..# wl),}, Vi (1,2,
), and Y(1);= (X(1);  X(1)y).

Take the 4ih-order for example; x91) is a nonnegative
integer set; thus XV(1)= {x(1), ¥22), ¥93), ¥} = {1,

2,3, 4}, XV(1) is the 1-AGO of X(1), and X(1) = {1, 3,
6, 103.

Here the process of calculation is skipped. Bel ow is the
result of the calculation @ #(1)={ w(1)# w(1), # w(1)3 #

w(Da}, w(D=(XV(1)-XV(1)=((1, 3,6,10) (3, 6, 10, 15))
W(D=(XP(1) « X2(1)=((3, 9, 19, 34) = (9, 19, 33, 56)),
w(D=(XP(1) » X2(1))=((9, 28, 61, 117) = (28, 59, 112,

202)), w(1)=(x(1)- X*(1))=((28, 87, 199, 401)- (86, 191,
379, 718)) .

From the above-mentioned example, one can obtain:
Theorem 4.3 (simply-ordered structure theorem iny(1);)

Suppose that y(1); is the j-th-order of ladder #(1); then both
the behind order X(1); and the future order }.{( 1); of y(1);are
simply-ordered sets.

Theorem 4.4 (Y1), resolution and dispersion theorem in
ladder #(1))

Suppose that #(1) is a g-order ladder and y(1); is the
Jj-th-order of #(1); then both #(1) and y(1); will conform to

#1)= gp (W(1)) .7

=l 2g



In the above-mentioned example, pp is the resolution

=200
and dispersion of #(1) in g-orderyA1);.
Proposition 4.1 All j-order w(1); in ladder #(1) are
independent.
Suppose that y(1);and y(1); are selected at random and i+
J» then one obtains (1), 7 y(1);, which is an inevitable
outcome.

Fig3  4™order of ladder #(1) constituted by w(l);, Vj e
(1,2,3,4

5. Encryption Criterion of Ladder and Ladder
Encryption Algorithm

According to the above-mentioned context concerning the
basic theorem and analysis of the K-Q Lock, one can
induce the encryption ladder criterion of the K -Q Lock
which is aimed at document (my, ma, -+, m,) .

Suppose that document M=, n, -+, m, ) is constituted
by g plaintexts; then X = { X@(1), ¥%2), -+, x%(g)} will

be selected and will be a nonnegative real number set ( g=4).

Moreover, the j-th-order y(1); in ladder #1(1) encrypts
my—M into ciphertext ¢;cC.

c=y(l); ®my (5.1)

The algorithm of the ladder is aimed at the encrypiion of
documents, two characteristics of which are stated in the
below:

1. Sequential and nonsequential characteristic
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m;can be encrypted by y(1); in sequence or not in sequence
j: 1, 2, g

2. Independent and undisturbed characteristic

Only if i}, both kinds of encryptions, w(1); encrypting m;
and y(1); encrypting m;, can be keptindependent and
undisturbed when y(1);is i-order and y(1); j-order in ladder
#(1). According to the ladder encryption cri terion, one can
obtain two types of encryption algorithms.

I. Sequential full encryption and ladder emcryption
algorithm

Stepl Given a nonnegative real number set x9= { x‘o’(l),
22, -, x(o)(p) } and a natural number set , both sets
X and Z conform to 1X% =122,

Step2 Through (2.3), one obtains X“’(l). Through
(2.5)~(2.9), one obtains X*(1), in which X(1) is the
previous behind order and 5(“)(1) a future order in

y(1),, and
(=X (1) - XV(1)) (5.2)
y(1), is the I*-order in ladder #(1).
Step3. If 7< >g, then T=T+1 and go to step 2 .
Step4. Generate ladder # (1) = (W(1)# YW(1)# --- # w(l),).

Step5 Through the calculation below, both (1), and
plaintext m; generate ciphertext ¢;, Vj=1,2, ...q, so that the
following can be conformed

¢ = lff(l) j@ m; (5‘3)
under the condition that ;7% m; and i 7.

Step6. End.

Figure 4 shows a ciear explanation of the sequential
full-encryption and ladder encryption algorithm. However,
not all plaintext documents M'= (m'y, m'y, -+, n'y) need t

be encrypted. Only the specific parts m} (j=1,2, -+, r < ¢g)
of M' need to be encrypted.

For example, in commercial applications, some plaintext
requires full encryption so that an opponent will not access
it. In contrast, some plaintext is not so important that it
needs to be encrypted. Aimed at the above requirement s,
the algorithm below is design.

I . Sequential Half-Emcryption Algorithm and
En-cryption Algorithm Ladder

Under document M = (M, Ma, B3, My, Ds, D, ..., My,
@,) . suppose that M; is a item needing o be éncrypted,

and J; notneeding to be. The methodical process is
explained below. Figu re 5 illustrates the sequential
half-encryption and the ladder encryption algorithm.

Stepl Given a nonnegative real number set XO= { X9,
¥2), ..., x%p) } and a natural number set Z, both sets X
and Z conform to 1X% =121,

StepZ Through (2.3), one obtains X'"(1); through (2.5~2.9)
one obtains X'"(1). Then,

xM() X1y

©

(2O =
(5.4)



Y1), is the I*-order of #(1).

Step3. If T<> g; then T=T+1 and go to step 2.

Step4. Generate ladder #(1) =( y(1)# y(1)# - # y(1),).
StepS. If m;<>J;; then ¢; is generated b

=yl @ m;
(5.5)

Step6. Gotostep 5.
Step7. End.
6. Opening the K-Q Lock

In section 2-6, the encryption and locking of plaintext m;
€M into ciphertext c;e Cis discussed. In encryption ladder
#(1), w(1); is the j-order andthere exists- a kind of
re-lationship between plaintext m;€ M and ciphertext ¢;e C
as

=Wl ® m 6.1)
The mark “@” means module 2 operation in a binary
system.

For example, the binary code of j-order ¥(1); in plaintext
ny €M is expressed as the following: m=(10101011) and
w(1)= (01010101). According to (6.1), one obtains
cipher-text ¢; corresponding to plaintext m; €M as the
following:

¢;= w(1);® my=(10101011) @ ( 01010101) = (11111110)

Next, the opening of the K -Q Lock and the decryption of
plaintext m; are introduced.

Theorem 6.1 (first decryption theorem of the K-Q Lock)

For the receivers, assumethat C={c|, ¢ ..., ¢}is a
ciphertext set. After encrypting for odd time, ciphertext c¢;
can be changed into plaintext m; € M as follows

m; = ( 1) i > C;
! e(l,3,--+,2n-1) '/’( J) !
(6.2)

The mark * @ ” is anodd -time encryption

i€(1,3,,2n-1)

andy(1); is the j-order in ladder #(1).

Theorem 6.1 can be obtained directly through a binar
module 2 operation. The following statement explains
theorem 6.1:

Ciphertext ¢=(11111110)and j-order y{1); in ladder
#(1)=(10101011), which after encrypting once time t c¢;, m;
can be deduced.

Thus, m; = (WH)HD ¢; = (10101011) & (11111110)=
(01010101)

in the same way, after encrypting three times to ¢j, 1, can
be deduced.

Then, m; = (Y(1),):® ¢; = (10101011) & (10101011) @
(10101011) ® (11111110) = (01010101)

Similarly, after encrypting for 2n-1 times to ¢; and m;, can
be deduced.

Thus, m; = (Y1), ¢; = (10101011) @ (10101011) &
(1010101 H® ... @ (11111110) = (01010101)
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Theorem 6.2 (second decryption theorem of the K-Q
Lock) :

Suppose that M={my, my, ..., m,}is a plaintext set; then
after encrypting for even time, plaintext m; will keep the
same plaintext as m; € M previously in what follows

m= @ (), Om; (6.3)
i€(2,4,--,2n)
The mark * @ ” is an even-time encryption,
i€(2,4,-,2n)
andy1); is the j-order in ladder #(1).
Theorem 6.3
Suppose that C={cy, ¢z, ..., ¢,}is a ciphertext set and

M={ my, my, ..., m, }is a plaintext set; then, there exists a
mapping relationship between the above two

@, : Co>M (6.4)
i€ (1,3,+-,2n-1)

¢; = m= ¢ (DW)D: ier3,...2n-1)

Theorem 6.3 is a straightforward term. According to the
above-mentioned theorem, the K -Q Lock can be untied.
According to theorems 6.1~6.3, one returns to the former
question — how to open a K-Q Lock.

Method 1: Pass the key and untie the K-Q Lock directly.

While sending ciphertext c¢; to the receiver, the sender

passes X(1), f((l)j secretly to the receiver, According t
theorem 6.2, the receiver can obtain plaintext m; by the
following equation:

mj= ![f(l)j@(’j (6'5)
Methed 2: Copy the key and untie the K-Q Lock.

While sending ciphertext ¢; to the other, the sender must
send the blank of the key X' and number peN to the
receiver secretly at the same time. Then, the receiver
reproduces the key of the K-Q Lock (copy key
immediately to decrypt ¢; into ny. In the above, p is a
cardinal number of 5(( 1);. An instance of the key-copying
process is cited below. )

Suppose that the receiver obtains the blank of key X©

={ X201), ¥92), ¥93), ¥%@) }=(1,2,2, 1 } and | X(1);

|=3 from the sender. On the basis of 1 -AGO, the receiver
obtains X(1) ={ x(1), x"(2), ¥3), xV(4) }={ 1,3,5,6 }.
Since | X(1); 1=3 the receiver gets X(1);={ x"(1), x*(2),
x™(3)} according to the model-key. Therefore, the receiver
obtains w(1)=(X(1);° }‘L’(l)j). Thus, y(1);is a copy key to the
K-Q Lock. By this method, the receiver can unlock
plaintext nz;. ’

Furthermore, if the receiver wants to revise or replenish the
plaintext m; encryption, one must operate ¢; according to
theorem 6.2 as follows

C; is decrypted into m; and my; can be modified. If my; is
modifed as m;, the sender must compute ci=y(l); ® m;.
Therefore, anew c; can be unlocked and the other keys
need not be changed.

- 7. Discussion of the K-Q Lock

The aim of sections 2-6 is as follows



1. One canobtain a complete key to the encryption
cryptosystem of encryption by applying (2.1), (2.2), (2.5),
(2.6), and (2.10). Thekeyis generated fromthe
above-mentioned model called the model-key. Under such
an environment, the designer can transfer the threshold of
entrance according to different demands to set up the lock
and key in the K-Q Lock, such as objects or authorization.
In other words, the range in application in the area of
security becomes wider

2. In section 5, the encryption of plaintext m; is completed
by ¥(1);, ¥(1);=(X(1);°X(1)));. Only the sender of ciphertext

c; knows (1), Of course, the sender of ciphertext ¢; can
freely design and choose y{1); which is a private key.
From the structure of y(1);, one sees that y(1); is formed b
X(1); and X(1);. While taking ¥(1); to encrypt plaintext ny,
X(1); and X(1); will exist at the same time, and both X(1);
and X(1); conform to:

Vi), X(Q1); e X(1); 7.1

(7.1) explains that the private key is a secret function with
two layers.

3. The following example states the "security of private ke
w(1);" in brief. First, the encrypters of plaintext m; choose a
sequence XV={x(1), ¥¥(2), ¥9(3), ¥Ud)}={1, 2, 3, 4}at
random, and then obtain X(1)={x""(1), x®(2), x®(3), x"(4)}
={1, 3, 6, 10}. Only the e ncrypter knows X(1), and one can
select the integer numbers or nonnegative real numbers to
X(1)~X(4), for example, X(1)={1, 3, 6, 10}, X(1)2={10,
30, 59, 98}, X(1)3=(10, 30, 59, 98, 154}, and X(1)={10,
30, 59, 98, 154, 231}. Obviously, the method gives the user
a highly flexible range for choosing a private key (1)
The user can select nonnegative real numbers such as the
following for the original data. X(1) 1={10.0, 30.5,59.1,

98.9}, X(1) 2={100.0, 305.5 ,591.3 , 989.1, 1542.5}, -,
and so on. Below are the details of private ke  y(1);,

Y =X(1) » X(Day), Y1)z =(X(1) = X(1)gz),
Y(D)j3=(X(1) » X(Dy), Yja=(X(1) » X(1)@),
W(1)jis=(X(1) » X(1) ), W(D)jie) =(X(1) © X(1) ).

In the example, the element () €X(1) is taken as a
nonnegative integer for the sake of conveniance of

calculation. In general, the element x(i) € )'((l) is a
nonnegative real number. The user can choose Y(1); as
his/her private key freely because the nonnegative real
number x(i) is taken as the element in X(1). Furthermore,
since ¥(1); is chosen at random, the securit  of documents
can be insured certainly by the user's private key.
Consequently, it is very difficult for attackers to decrypt
ciphertext.

8. Conclusion

The basic concept of the K-Q Lock has been presented in
this paper. Below is further explanation to emph asize that
the K-Q Lock can be applied in many ways.

1. Because decryption ke S(1) for the receiver isa
function in extension set X, these questions do not
need to be discussed in this paper. Research into
extension sets issuggested as a topic for future
research.
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2. The encryptioninthe Identit -Password table, the
definition of the encryption-decryption transformation
in the table, and the settlement of a key distribution
center can be discussed in future research.

3. Under the condition that 1<g and geN, one takes the
K-Q Lock to encrypt plaintext from m; to m,. Such a
process of encryption is similar to climbing a ladder
therefore, the process of encryption has been named
the encryption algorithm ladder.
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Fig. 4 Flowchart of sequential fullencryption algorithm and encryption algorithm ladder.

w(1); is the i-th-order in ladder #(1) , M= {mj,ma,--,m, ) is a plaintext, and C= {¢),c2, *+-,¢,) is a ciphertext.

Given a series of data X©
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=
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Fig. 5 Flowchart of sequential half encryption algorithm and encryptionalgorithm ladder.

yA1); is the i-th-order in ladder #(1); M; is a plaintext needing to be encrypted; in contrast,
J; is a plaintext not needing to be encrypted.
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