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Abstract

In this paper, a real-time 3D head motion tracking technique
is presenied. Two issues are addressed: feature tracking, and 3D
head motion estimation. In feature tracking, three facial features,
two eyes and one nostril, are tracked in a live video sequence
under regular office lighting condition. In 3D head motion
estimation, knowledge about human head motion is involved in
developing a cost function that is then minimized iterarively to
Jind a set of 3D movion parameters. The involvement of head
motion knowledge is important, since most optimization
techniques are prone to be trapped into incorrect local opiimal
solutions, if only three points correspondence is given, The
recovered 3D motion includes rotations about and iranslations
along three axes. A model-based visual communication systemn
that applies the proposed real-time 3D head motion tracking
technique is also illustrated, where a remote 3D head model
moves according to a real person's head movement in 3D space.
The system performance is above 25 frames/sec on a regular PC
with a Pentium-II 400 MHz CPU, with 3D head motion tracking
and texture-mapped head model rendering involved.

Keywords
3D head motion estimation, feature tracking, model-based
coding.

1. Imtroduction

The goal of 3D head motion iracking is to recover one’s head
transformation in 3D space. The transformation includes rotations
about and iranslations along the three axes. In general, there are
two different types of approaches: optical flow based tracking and
feature based tracking. In this paper, since our focus is on
developing real-time systems, we adopt the approach of feature
based tracking that has lower computation complexity. Two
typical issues are involved: feature tracking and 3D motion
estimation.

The real-time constraint is a great challenge for face oriented
researches. A good feature iracking method ofien requires
reconstruction or understanding about the 3D geometry behind the

scene. For example, epipolar geometry provides a good mean to
refine tracking accuracy. However, optical flow based 3D
reconstruction processes usually involve expensive computation,
and are thus improper for our purposes.

For feature tracking, or image matching equivalently, cross-
correlation is often introduced as a measure of similarity between
two patterns. A positive and higher cormrelation indicates that the
two patterns are similar in 3D space. However, just one single
metric for maiching is insufficient for practical applications, and
cross-correlation is kmown to be sensitive to intensity changes [1].
In recent tesearches, multiple cues from faces are usually
combined together to form a set of maiching constraints. Useful
cues from faces include the geometry relationships of eyes and
mouth [2-4], head shape [5-10], face color [11-16), and so on.

When features are associated in a pair, 3D motion can be
inferred using either analytical methods or optimization tools. A
good review has been presented in [17].

Among different researches, an impressing approach is io
include a high-level 3D head model into motion tracking process
[5.8,10). The demonstrations show that a rough 3D head model is
very helpful in providing stable and accurate tracking resulis.
Nevertheless, how to produce and calibrate the 3D. head model for
general public, and how to speed up the large amount of
computations are two major issues encouniered. ‘

As a result, we propose a real-time motion estimation method
that infers one’s 3D head motion with only three facial features.

‘The three facial features are two eyes and one nostril. Feature

correspondence between iwo consecutive video frames is
automatically established through the proposed feature tracking
method, except that the initial locations of the three features are
given manually.

This paper is organized as the following. In Section 2, the
proposed feature tracking method is first introduced, and an
iterative 3D motion estimation method based on human motion
Imowledge is illustrated in Section 3. A model-based visual
communication system adopting the two proposed methods is
presented in Section 4. Results and performances are provided in
Section 5, and we conclude the paper in Section 6.

! Executable programs are available at http://www.cmlab.csie.ntu.edu.tw/~tjyang/research/face. himl.
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Z. Mulii-modal Feature Traclking

As mentioned in [18], image maiching is an ill-posed
problem where no guarantee is given that a solution exists or is
unique. In addition, faces appear highly deformable, which make
feature tracking even harder. Optical flow may provide good
motion information because large amount of flow is generated to
suppress noise and incorrect estimations. However, it's difficult to
achieve the real-time goal, even only part of selected pixels are
calculated [10]. We therefore settle to feature based approaches.

In general, feature tracking also involves facial feature
extraction. In this paper, however, we do not address this issue,
and initial feature identification is accomplished with user's
assistance. Three facial features are selected for their rigidity.
These three features are two eyes and one nostril. The
initialization is quite simple, where a subject only has to face to
the camera and pick the three features manually using a mouse.
The identified features ate antomatically adjusted to nearby pixels
with high gradient values.

During feature iracking, three metrics are evaluated in order.
The three metrics are point gradient difference, region color
intensity difference, and normalized cross-correlation. In the point
gradient difference meiric, a candidate is considered to have
higher probability to be a correct matching if its gradient is similar
to that of a feature to be matched. In the region color intensity
difference metric, pixel-by-pixel color differences are accumulaied,
with smaller candidates given higher probability. The last step is
to perform normalized cross-correlation over every pairs of
maiching, and the one with a larger correlation coefficient is
considered as a correct maiching. In each of the three steps,
candidates are sorted according to their corresponding
probabilities.

As mentioned in [16), its the author considers the face
tracling problem as a search reduction problem. In the above
procedure, we are actually performing a search space reduction
process, where in each step, possible candidates are re-evaluated
and sorted, and only those ones with acceptable high probabilities
enter the next cycle.

An aliernative meiric replacing the normalized cross-
correlation is the pixel-by-pixel difference for two binary patierns,
where each binary pattern is generated by thresholding gradient
values. Gradient computation provides a more stable tracking
resuli, when compared with gray-level cross-correlation that is
more sensitive o illumination changes [1]. At this moment, these
two metrics are both applied in our system.

3. Iterative 3D Head Motion Estimation with Three
Points

In the analysis of [17), in the case of 2D-to-2D
correspondences, at least five pairs of points have to be offered to
resolve 3D motion. However, as it is also known that a face is less
textured in most area, and is deformable. These properties make it
difficult to select more than five rigid points on a face. Foriunately,
if we have a head model in the 3D space, this problem is reduced
to the case of 2D-10-3D correspondence, where the minimal
requirement to obtain at least one solution is three points
correspondence.

To obtain a 3D head model for motion estimation, we use a
simple 3D triangle formed by the three selected features [21], and
exiend the work with marker-free feature tracking, ervor handling,
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and more efficient iteration steps. In this work, a simple 3D head
motion iracking method is developed that applies a gradient
decent like method to find a set of iransformation parameters with
six degrees of freedom. Four criteria are developed to guide an
objective method toward a solution with minimal errors. Domain
knowledge about human head is exploited to develop these four
criterions.

This method does not intend to obtain precise rotation angles
and translation offsets, but o obtain approximate ones but with
smooth trajectory to avoid jittering effects. This is reasonable,
since in visnal communication, one needs not to know exactly
how many degrees that another person rotates, but to see a natural
head movement.

In short, three issues are included in the proposed head
motion estimation method, and each issue is described in the
following sections:

1. 3D model initialization;
2. 3D head motion estimation;
3. Error Handling.-

3.1 3D Model Initialization

The uniqueness of a feature triangle’s 3D position and
orientation cannot be guaranteed even when additional
information, the triangle’s side lengths, is given. In our
approach, we assume that the subject’s head is parallel to
the camera’s 2D projection plane, and therefore we can
uniquely determine the 3D position of the feature triangle
by restricting the three vertices of the 3D feature triangle
owning the same depth value z. In Figure 1, assuming that
the depth z of the 3D feature triangle is of the same for
different sitnations, and the side length ! of the 3D feature
triangle are also the same for different persons, the camera

constant f is thus determined by fz_ll‘. 7 » where L is the

measured side length on the 2D projection plane. From our
experiments, these assumptions doesn’t cause problems for
motion estimation. Once the camera constant f'is determined,
positions of the three vertices of the 3D feature iriangle are
thus determined according using inverse perspective
projection: , _ , X y:zf_, where (X,Y) is a 2D known
f 5

point, and (x, y,7) is its corresponding point in 3D space.
In this way, we can obtain a 3D feature triangle easily.

3.2 3D Head Motion Estimation

Human’s head motion has certain characteristics:

1. Positions of eyes and the nose are fixed relative to the
whole head, so these three features can be considered
to satisfy the rigidity constraint.

Hhead motions are roiation dominated.

3. Rotation pivot of a head is near to the center of the
neck.

Characteristic 1 determines the three facial features for
motion estimation, as mentioned above. Characteristic 2 suggests
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Figure 1. Initialization of the 3D feature triangle by adjusting
the distance of the 2D image plane, or .the
camera constani f.

us to give rotation parameters higher weighting factors, and
Characteristic 3 is useful in guiding the iteration process along a
correct minimization path. A rotation ambiguity problem can be
resolved with a correct. rotation pivot. The rotation ambiguity
problem can occur because an incostect rotation pivot is given.
For example, two rotations about x-axis with rotation angles +0
and -0 will generate the same perspectively projected triangle on a
plane. To resolve the problem, the head’s rotation pivot is set to be
at the center of the neck, and thus a rotation about x-axds will
produce an offset along y-axis, which provides a cue in
distinguishing the rotation ambiguities.

To estimation one’s 3D head motion, we developed an
objective function that measures the distance between the
projected 2D positions of the vertices of the 3D feature triangle
and the measured positions of the tracked facial features.

Positions of the three triangle vertices le[ at time instant k,
1<i<3, can be compuied by applying a transformation on the
same three triangle vertices p; at the beginning:

p/ =Rp +T

@

The translation vector T is a 3x1 vecior defined by
(tx,ty,t,_) . The rotation matrix R is represented in terms of Euler
angles, where a general rotation is described as a sequence of
rotations about three mutually orthogonal coordinate axes that are
x-, -, and z-axes. Let 6 represents the angle of rotation around the
x-axis, Y represents the angle of rotation around the y-axds, and ¢

represenis the angle of rotation around the z-axis. We have the
rotation mairix given by

R(gi’Wi’¢i)= R(¢i )R('/,i )R(gi)’
)

WNotice that in equation (1), all rotations are performed on the very
first 3D feature triangle, i.e., the one without any transformation.
In this way, the recovered rotfation parameters represent the
amount of rotation angles from the original position.

Four meirics are developed to measure the distance between
ph=(ph piopy)  amd PL=(PLRL.PY) . where

Pt =(X,.Y,),and P{=(X,,Y,). Note that P} is the 2D
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projection of the three 3D vertices p;, ps, ps on the 3D feature

triangle, and Py, Pf,, P, are the three tracked feature points on
the 2D projection plane. In addition, we represent the recovered
3D rotation angles as z° =(@,,¢) at time instant k, and the

recovered 3D iranslation offsets as §* = (,.t,,t.). The meirics

can therefore be defined in terms of p*, z*, 5%, and P{. In

the following, the superscript k on the right hand side is omitied
for simplicity:

3
eu(Pk-l,kaﬁk,P: )= ((XM,l "XA.i)z +(Ym.i —YA,i)z)

i=t

3
3
ez(PH:ﬂ'k’P:)z - («Xu,i —XH.C)—(XA.I -XA.C))2 “'((Yw,z - u.c)" (YAJ 'Y.a.c»z‘
where Xye _1 P Ky , X, =_1_ LD ¥
YH < 3 =1 YN.i YA,C 3 i=l YA,I
)

ea(}’k_lv”k’P:)= (r(Pu,uPu.pPu.k)- r(PA,uRA,pPA.k»z ’

Lk

where j=(imod3)+1, k=(imod3)+2, 1<i
(Xz —Xj)z +(Yl "'Yj)z

AR e
(5)
ea(Pk-l’ﬂ'k»P:)= y (S(PMJ’PM,i)-S(PA,i’PA.j))z’
ivherej:(imod?;)#-l, 1i<3
Y,-¥,
S(R:Pj)=m
©)

Two error functions for rotation and translation are thus defined
respectively:

E (pt, 7" P )=we,(p*, 7" 0, P )+ wye, +wye, +wie,
M

E(p, 5" Pl)=c(p"".0.5" P})
®

where Ejp evaluates the error for rotation parameters £*, and Ep
evaluates the error for translation parameiers & & | Coefficients
wy's are weighting factors, 1<i <4,

It's obvious that E; only depends on ¢;, since the amount of
translational offset is the distance beiween Py, and P,. The
definition of Ejp is more complicated, and is better to be described
in terms of four metrics.

From perspective projection, translations won’t change the
triangle’s shape on the 2D image plane, but rotations will. Hence,
it’s important to have some metrics to measure shape differences
between two triangles before and afier rotations. In other words,
mefrics to measure shape similarity are necessary.



Metric ¢; measures the vertex distances between Py, and P,,
thus returns the translation offsets required to adjust Py, to
approach P,. The other three metrics e;, e;, and ¢, are then
designed to measure the shape similarity of Py, and P,. Meiric ¢,
also measures veriex distances, but Py, and P, are translated first
so that their gravity centers are aligned together. In metric ¢, if Py
and P, have the same shape (which means that only iranslations
are necessary) bui with different gravity centers , the value of ¢;
will be dominated by the distance between their gravity centers.
However if we only kmow ¢;, we won’t be able to decide whether
more rotations or more translations should be applied in the next
iteration, since e¢; only tells us that P, and P, are not close enough.
Rewrite equation (3), we obtain

ex(Pk-l’”k’akvP:)

8, 4 )0+ 2, 410G+, ))
)

Al) Yuc 'Ya‘c))l)

is defined in equation (4)

=1

; (((iw-ﬁu)"'(xu.c_xac 2'*'((
Xl XC
Y, .

¢

where ' =

»

Sy P

XC
YC

(9

()2 1?)' is defined relative to the gravity center. From
equation (9), we see that the distance between two gravity centers
will dominate the value of ¢,, if (ﬁw —-)EM) and (f’w —}9“
are small, which means Py, and P, are similar in shape. To remove
the effect of gravity centers, metric ¢; is defined. If the value of e,
is small, but the value of ¢, is large, we tend to apply translations
in the next iteration, since the shape is quite similar.

Metrics ¢; and ¢, add more constraints on shape similarity by
requiring two triangles to have the same edge ratios and edge
slopes. These two metrics are theoretically equivalent, but in
practice, because of numerical errors and noise, they reinforce
each other.

E(p*,x*; 8%, Pt )=E,(p*, 2", Pt )+ E, (p*, 6" P*)
(10)
The objective function is finally defined as below:

Our task is to minimize E(p*",fr*,&"‘,PA" ), the accumulated
sum of errors of the two error functions, with a proposed iterative
method.

To minimize the objective function E(p"“,ﬁ",é"‘,PA“)

with unknown parameters 7° and §*, we borrow the concept
from gradient descent algorithms. It's obviously that our objective
function is non-differentiable, and; hence gradient descent
algorithms cannot be applied.

Given a real valued function f: K" — R, the gradient

descent algorithm finds the minimal value of f{x) by iteratively
updating x at iteration k+1,
L —aka(xk)

o, >0
(1n
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The coefficient ¢, is a positive scalar called the step size.
The step size ¢, is a free variable that should be carefully chosen.

If the step size is too small, minimization progress would be slow.
Therefore we employ a bold-driver method to adaptively adjust

the value of ¢, . Hence equation (11) is rewritten as below:

L —aka(x")
pat  p=1, it fa)< £ ()

oot 0<o<i, if F(x*)= f(x*)

ak+1 -

Gy >0
(12)

Because our objective function E(p"‘l,ﬂ," ,65, Pf ) is non-

+1 -1 0 0 0 0
0 0 +1 -1 0 0
0 0 0 0 +1 -1

v, = ,V,= Vo=, 9, = ,V , V.=

Yoo T oo 7o ‘T o0 L B
0 0 0 0 0 0
0 0 0 0 0 0

differentiable, we cannot obtain the gradient VE , so we approach
the gradient descent algorithm by evaluating the objective function
(10) on iwelve possible directions, and choosing the set of

parameters n‘," and 6"‘ that cause the minimal value of

E(PHJQ ’5

) at iteration J. For simplicity, we represent

E(Pk—laﬂ’; 95f ? ) with E (”I ’5 ) or more COITlPaCtlya E(a )
0 0 0 0 0 °
0 0 0 0 0 0
0 0 0 0 0 0
Vim0 T e g Ve g Ve g0 Ves
0 0 +1 -1 0 o
(13)

t)'. tz. )! ‘

The twelve directions to evaluate E(a') is defined by

where a’:(ﬂf 5,")':(6’ v ¢ i,

At (14 I)th iteration, all these twelve directions are evaluated
by using

M=a -qV,, 1<i<6

=g -Bv 7<i<12

o o PO P21, it E(a"')< Eld’)
1+

oo, 0<o<1, if E(e")2 Elo')

B, p=21, if Ele™)<E()
Bin= . " !

of, 0<o<l, 1fE(a )zE(a)
&y, 5, >0

(14



We now need to find the locally optimal parameter set &'
that best minimizes the objective function E(a""):

-

Gt = arg(rnjin E@a’))
(15)

The value of &' is chosen to be the one with the smallest
E(a"”1 ) The iteration stops when either the maximum number N
of iterations is reached or the value of E(&'*‘) is smaller than a
given error threshold &.

At this moment, we can successfully recover rotation

parameters 7* , and translation parameters & k, at time instant k.
However the termination criteria of the iteration can be either
when the error is small enough, or when the allowed maximum
number of iterations is achieved. In the later case, the obiained
resulis are most likely to be incorrect. To recover from incorrect
estimations, a prediction algorithm, the Grey predictor {19, is
thus employed. The Grey predictor applies Grey system theory to
predict next parameters from previous historical data. It has been
shown that the Grey predictor has a behavior similar to the
Kalman-filter based prediction {19].

4. User Assisted Error Recovery
If there exists a point P! that fails to find its

corresponding point on image k, the tracking procedure is stopped,
and an error handling procedure is invoked. Matching failures are
possible when a feature point is located outside of the searching
window W, . The gray and color differences of all the selected

points of interest will be larger than the pre-defined threshold £,

and £, . The matching failures can be detected if no poinis are

returned from the tracking procedure. At this moment, an efror
handling procedure is invoked.

When a matching failure is detected, 4 bounding box with
two circles is overlapped on the image, as shown in Figure 2. The
bounding box gives a rough estimation of the subject’s head size
and position, and the two circles denote the positions of two eyes.
The subject has to move his head so that his two eyes are located
within the two circles. Positions of the bounding box and the two
circles are derived at the beginning. The size of the bounding box

is approximated by the distance Leyes between two eyes. If

positions of the two eye are represented by P, =(X ,,Y‘) and

- (T 1Y ' v . T

Figure 2. A box is prompted when iracking efror occurs. The box
is an approximation to the head, and the two circles represent the
initial positions of eyes.
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Flgure4 A snapshot of the VR-Face system, a model-based
visual communication sysiem

P =(X,.Y,), we would have L__ =J(X' -X,V+(, -y).
The dimension of the bounding box is then approximated by
HxW , where the height H =p, XL and the width

eves 7

W=p,xL,, - The center of the bounding box is at

C= X, +X, Y +Y, + Py
2 72

trying to maich his eyes with the two circles, the error handling

procedure repeats the tracking procedure.

-1xL,, - As the subject is

In short, the objective of the error handling procedure is to
request the subject to return o his original position, and then tries
to re-initialize the three feature points automatically. This method
is simple but effective. A trained subject can easily re-initialize the

three feature points within several seconds,

5. Results

The proposed method has been implemenied on Windows
95/98. Without any visual output, the procedure performs more
than 250 timesfsec on a PC with an Intel Pentdum-II 233MHz
CPU. This procedure has also been applied to live video. The
average overall update rate is over 25 frames/sec with automatic
feature tracking. The head model calibration process only requires
auser to face io the camera for less than one second. In fact, users

“are not aware of this calibration process. From experiments, this

procedure works for different people and different cameras.

Figure 3 shows a video sequence of the 3-D motion
estimation resulted from live video clips. The estimation result is
shown as a 3D texture-mapped head model to the right. During
our simulation of three minutes at 25 fps, the average orientation
ertor between the left and the right images is less than 2.7 degrees
(standard deviation = 2.6), and the average translation error is less
than 0.48 cm (standard deviation = 0.45). Pari of the above
simulation data is plotted in Figure 5.

At this moment, the developed real-time 3D head motion
tracking technique has been applied to a model-based visual
communication system, termed VR-Face, as shown in Figure 4.
For the part of face synthesis, a customized 3D head model has to
be first generated, where we use the method proposed by Lee and
Thalmann in [20]. When a set of motion vectors is received, the
3D head model is transformed and rendered with texture mapping
in real time, as shown in Figure 4. Executable programs are
available at  hitp://www.cmlab.cgie.nty edu tw/~tjyang/research/
facel.himl



&, Conchusions

This paper addresses the problem of 3D head motion tracking
using a camera, and proposes a real-ime motion estimation
method that infers one’s 3D head motion with only three facial
features. The three facial features are two eyes and one nostril.
Feature correspondence between two consecutive video frames is
antoratically established through the proposed feature tracking
method, except that the initial locations of the three features are
given manvally. In addition, a mechanism for error handling is
 also described. Combining the proposed feature tracking, 3D head
motion estimation, and error handling, we propose a framework
for global head motion analysis. A model-based visual
communication sysiem has been developed based on the proposed
3D head motion tracking technique, together with a real-time face
rendering module. The model-based visual communication system
is developed on a regular PC with a low-cost camera mounied. In
this system, a subject can move his head naturally, and the system
will track and estimate the subject’s 3D head motion without any
markers on the face. A photo-realistic 3D head model rendered
with texture-mapping will follow the subject’s head motion to tilt,
pan, or roll. Performance of the model-based visual
communication system can achieve over 25 framesfsec on a PC
with an Intel Pentium-TI 400 MHz CPU. The system has been
demonstrated in several public occasions and the results are
reliable.
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