hERE/ N FREREREE

An Effective Scheduling Policy in Large-Scale Video Servers

Yu-Zhan Hou

Abstract

Due to the advances in computer and multimedia
techniques, the applications of video -on-demand are visibl
and influence people’s life worldwide. However, with th
growth of service demand, the single-server architecture is
limited by its scalability and server -level fault -tolerance.
Recently, several multi-server architectures are proposed to
alleviate such problems.

In this paper, we will propose a scalable architecture .
for video server management system. Our architecture
employs not only distributed storage servers but also
distributed subscriber management. Wide striping
technique is a cost-effective data placement in multi-server
architecture. However, the unpredictable access skew fro
users results in performance degradation. Therefore we
design a new scheduling policy to fully utilize the potential
bandwidth of wide striping by controlling the startup time
of each request. With different modes of our policy, we can
benefit from minimum dlay or load balance. According to
our simulation results, our policy efficiently alleviates load
imbalance and thus improves system performance. The
detailed information about design principles and
performance evaluations will be described in the literatu re.

Keyword: large-scale video server, job scheduling, request
delaying, load balancing, wide striping
1. Introduction

Recently, advances in computing and communication
technologies make it possible to provide a wide range of
interactive multimedia services in a variety of commercial
and entertainment domain [1, 12-13]. One of the most
visible applications of multimedia systems is on -demand
playback of video in a distributed environment. In the
distributed system, video server plays an important role that
provides storage for video content and interactive service
for users. Thus, designing a hig performance video server
for VOD or Near-VOD applications becomes an interest in
recently years [1-7]. Basically, a video server contains two
main parts. One is so called SMU (Subscriber Management
Unit) and the other is VSE (Video Server Engine). SMU is
responsible for admission control, resource management,
and job scheduling. On the other hand, VSE handles
storage management, buffer management, and data retrieval
and delivery [12 -14]. However, single-server architecture
has limitations on scalability and server fault-tolerance {1,
10-13]. For large-scale service demand, these limitations
cause performance degradation and serious impact on
service quality. In recentl years, several scalable
architectures are proposed to solve the problem[1 -8].
Multi-server architecture is common in these approaches.
Clustered video server in [2] offers a generalized model of
multi-server architecture. Such clustered architecture
consists of multiple nodes interconnected by a switch. The
nodes of a cluster can be categorized into delivery nodes

C-345

Yu-Jiin Wang Cheng Chen
Department of Computer Science
and Information Engineering,
National Chiao Tung University,
Hsinchu, Taiwan, R.O.C.
TEL: (03) 5712121 ext 31834
Email:cchen @eicpcas.csie.nciu.edu.t

and storage nodes. Other similar multi -server architectures
such as MARS (3], Tiger Fileserver [4], Tiger Shark [5],
Server Amay [6-7] have be en proposed to enhance the
scalability of video server system. We will adopta
multi-server architecture, which consists of multiple SMU
and VSE nodes, to develop a scalable video server system.
Our architecture is similar to original clustered server [2
except video data will be directly routed to client from VS
nodes. A specific component named Master Server controls
all components in the system and admits incoming
requests.

In our system, we also design a new scheduling policy,
named delayed-startup policy, to utilize the full capabilit
of wide striping [2, 8-10). This policy explores the potential
capability by controlling the startup time of each request.
With different delaying mechanisms, we can obtain
different performance gains. One of them yield s minimum
delay time and seems preferable for real-time applications.
However, this way still results in lower throughput for. load
imbalance. Therefore, we may employ another delaying
mechanism that always postpones the request to the node
with the lightest load. This load balancing technique
enhances the throughput but causes significant delay. We
also analyze the trade-off between system throughput and
delay time, and then give a generalized mode benefits from
the two factors. We can show that our policy indeed
improves the system throughput, leads to more load
balance across multiple servers, enhances node utilization,
and reduce the cost compared with previous work [8-9].

The remainder of the paper is organized as follows. In
Section 2, the design issues of our distributed video server
system will be described. I Section 3, we will present the
concept and principle of proposed scheduling policy.
Related performance gains will be evaluated and analyzed
in detail in Sectio 4. Finall , Concluding remarks will be
given in Section 5.

2. Design of OQur Distributed Video Server System

2.1. Overview

We have designed and implemented an effective
single-server management system for VOD applications
[13]. As shown in Fig.1, SMU contains five modules:
Admission Control, Job Schedule, Disk Schedule, Data
Placement, and CD/HD Swapping. Admission control
module guarantees that the service quality will not be
degraded or be coniravened by newly incoming request. I
order to keep accepted streams for continuous playback,
job schedule module is used to control VSE to retrieve
video data from disks and then buffer them in a cycle
fashion. Meanwhile, disk schedule module is used t
optimize the performance of data reading from disks by

" rearranging the order of retrieval commands from job

schedule module. In VSE, there may be multiple disks

equipped as storage device to store hundreds of contents.
Data placement. module will control how to place the
contents into storage space. And the CD/HD swapping
module response to update the contens from CD-ROM into
disks.

Resource Admission
Management Control [& Request
Table Module
Data Job Stream
Placement Schedule Management
Module > Module- Table
COMD Disk
i Schedul
Swapping Mod ‘,’e Subseriber
Module odule
Management System
!
! __ Device Controller & Driver]
SCS! Ports Network Ports
"——% 2= T
To Clients
Video Server Engine |
Figure 1. Basic Configuration of Our Single Video
The original design of VSE aims at small -scale

video-on-demand service.. However, as the requirement of
service grows up, the performance of single video server is
limited. So were -design the original video server
configuration, and a distributed architecture of video server
cluster is proposed to meet the requirement of scalability.

The new architecture of our distributed system is
shown in Fig.2. Each SMU communicates with other SM
and VSE through Ethernet. All VSE nodes are
interconnected with a high-speed network for exchangin
video data, and the high-speed network is in tumn connected
to outward service network. There are three primary
entities in our design. The Master Server is used for
admittin and dispatching user requests to slave SM
nodes. Slave SMU handles the service requests of admitted
users, and VSE performs storage management, buffer
management, and data retrieval.

Because, SMU node performs the data retrieval schedulin
of admitted streams, it will have a copy of data allocation
and schedule information in its local resource table. The
retrieval commands are sent to interconnected VSE nodes,
and then the ready video data are transmitted to client end
through service network. VSE can be viewed as a storage
node which controls the data storage and retrieval. It may
equip muliiple storage devices and a large volume of buffer
for storing video data. Because the performance of VSE
node is determined by the 1/O bandwidih of storage device,
a good disk scheduling algorithm is necessary to optimize
reading data from disks. In our distributed model, the
access requestes may come from multiple SMU nodes, so it
is better to put disk scheduling module into VSE node for
effective management. Before performing the data access,
buffer management should allocate sufficient buffer and
arrange the allocation efficiently.

2.2. Design Issues

The bottleriecks of server scalability in our distribu ted
system may come from Master Server, interconnection
networks, and load imbalance caused by access skew of
requests. If the request queue of Master Server is not
controlled well, the performance will drop down
proportional to the system load To overcome such
problems, we apply different priorities for request
processing. The admitted and scheduled streams, which are
sensitive to delay, have higher priority to process. And the
new and non-scheduled streams are with lower priority. If
the queue is too long to service in time, request delaying is
necessary to guarantee quality of service. The clustered
architecture is inherently constrained by interconnected
network and ATM switch is the common solution in lots of
related work [2-4]. The performance of distributed vide
server will be limited due to unbalanced load distribution or
unbalanced inherent capability of nodes. Against the
problem of load imbalance, we have to design effective
data-placement methods and job-scheduling techniques to
help load balancing at static and dynamic time.

VSE 0 VSE 1 VSE 2
— p—
BO B3 B6 B4 ﬁ7—\ BI10 B2 BS5 B8 BN
B12 BIS B18§ Bl6 BI19 B22 Bl14 BI17 B20 B23
B24 B27 B30 B28 B3t B34 B26 B2Y B32 B35
B36 B39 B42 B40 B43 B46 B38 B4l B44 B47
s s (R | S p s ftoc

disk 0 disk 3 disk 6 disk 9 disk 1 disk4 disk 7 disk 10

(a) Interleaved Placement

VSEO VSE 1 VSE 2

e = e e e

. B0 || B1 || B2 || B3 B4 |[Bs | Bs || B7 B8 || B9 || Bro || B11

Interconnection High-Speed Network B12 || 313 || B14 || B1S 816 |[B17 || B8 || BIS B2 || B2t || B22 || B23

| : |] B2¢ || B2s || B26 || B27 828 [| B2 || B30 || B31 B32 || B33 |[B34 || B35

Service Network B36 || B37 || B3s || B39 B20 || B4y || Baz || B43 B4 || Bas || Bas || B4y

. A - . - - - P B - 2 .

: H : H H H : H 2 : H :

H H : H H H : : H : : :
Figure 2. Architecture of Our Distributed Video Server Syste — LA S UL
1gure <. Arcin ¢ orOur Dis ystem disk O disk 1 disk 2 disk 3 disk4 disk5 disk6 disk7 disk8 disk9 disk 10 disk 11

Master Server’s primary task is to admit user request.
And then dispaiches them to the slave SMU according t
some scheduling rule with load balancing principle. Master
Server also plays a global resource manager that keeps
status of all nodes and system timer. The global resource
table contains node information, data allocation, etc. If
some node crashes, then Master Server must handle the
recovery of serviceby fault tolerance mechanism. The
slave SMU nodes accept the user requests from Master
Server and then schedule the requests immediately.

C-346

(b) Sequential Placement

Figure 3. Different Data Placement Schemes of Wide Striping

We take advantage of data striping technique to
allocate video clips on disks. If we adopt wide striping rule
2, 8-10] which distributes siriped video blocks over all
storage nodes, then higher bandwidth and load balancin
will be achieved. Tn our storage subsysiem, there ‘may be
multiple storage nodes (VSE). Each VSE may possess

multiple disks. We briefly introduce two placement
schemes now. The first is interleaved placement and the
other is sequential placement, which are shown in Fig.3 (a)
and (b) respectively [10,15]. Interleaved placement
allocates data blocks across VSE nodes in interleaved
fashion while sequential placement puts the next block on
the contiguous logical disk. While the number of disks is
large, similar effect of access skew in large stripe factor
arises among VSE nodes. Interleaved placement ma
reduce: this skew. However, communicative overhead ma
be reduced with sequential placement.

Based on our data allocation model, the data retrieval
process works periodically to keep up with playback of
servicing streams. In our design, there exists a global
schedule in Master Server. We can observe that the load
pattern is not uniformly distributed among disks and the
overloaded disks may cause QOS decay. If requestis
tolerant for some waiting time, we can avoid the
overloaded condition by delaying request [9, 15]. However,
previous work only notices to avoid overloaded condition
but ignores the effect of load balance. In fact, load balance
in such case also makes sense in terms of syste
performance or fault-tolerance.

3. Delayed-Startup Scheduling Policy
With a good scheduling policy, we can balance the

load of data retrieval at run -time, therefore to guarantee
high performance, enhance quality of service, reduce buffer
size, and strengthen fault-tolerance of system. Now we start
to introduce the basic concept of a new scheduling policy in
our system environment, and then present the principle of
the proposed policy in some detail.

3.1. Job Scheduling Model

Our job scheduling adopts round scheduling, where
time is divided as equivalent service rounds (7) and each
storage node can service many requests during a service
round. Therefore, each service round can be further divided
into several equivalent time slots, and each time slotis
allocated toonly one stream for avoiding resource
contention. If we have N disks in our system and each one
equips the service capacity of M requests in a service round,
then a global schedule table with two-dimension array (N x
M) is needed to record the allocation of time slots. The
maximum capacity of system is therefore NM sireams. For
the sake of random access of request, the load distribution
is not uniform. Some nodes may carry load more than M,
and some nodes are underflow (i.e. load < M). The
schedule model must satisfy two characteristics of general
scheduling problem [3-4, 8-9): (1) real-time requirement:
every request should be scheduled before deadline so as to
satisfy real-time data retrieval; (2) conflici-free schedule: in
each time slot, no two or more streams request the same
storage node. If each node is protected from overloading,
then all the scheduled requests will be serviced in time.
Meanwhile, the schedule is conflict-free since each row of
schedule table belongs to unique storage node. Therefore,
our schedule model meets the two requirements mentioned
above.

3.2. Principle of Delayed-Startup Scheduling

Now, we want to take advantage of the deterministic
feature of data siriping to exploit the potentia 1 capability.
The migration of load distribution is periodical during daia
retrieval process. If we allow requests to delay several
rounds, the unused time slots would be allocated to excess
requests. Without losing generality, we identif 7; as the
request which attempts to access node i, and s; represents

C-347

Load

Load

one available slot of node i similarly. Whenever, there
exists a request without correspondin §;, we name it as
excess request. For example, assumed N =4, M = 3, and the
incoming 10 requests attempting to access stotage nodes is
{0,0,3,2,3,2,3,0, 3, 0}, we get two excess requests, 7o
and r;. During the load migration, the two excess requests
can be held and allocated at round (i+7) and round (i-+3)
respectively as shown in Fig.4. By this way, no request
needs rejection until all available slots are allocated. Hence,
the full capability of storage subsystem can be utilized.

Load
excess load Eﬂb—_‘ “ excess load @

=

— casl=ln
0 1 2 3 Nodeld o 1 2

T5

(a) Load distribution at round (i+1)

Figure 4. Excess Load Allocation

Load Load
“ excess load [Q] El “ excess load /@
= f— '/ 3 o - — f—1
AHH - AR HH
0 1 2 3 Nodeld 0 1 2 3 Nodeld

(a) Load distribution at round (i+2)

Figure 5. Alternative Excess Load Allocation

In general, there will be many candidates of available
slots for choice, so the scheduling problem canbe
considered as a problem of how to allocate available slots
efficiently. Different time slot allocation yields different
delay time. Fig.5 shows another allocation different from
Fig.4. The excess requests, r;and 1y, are delayed to round
(i+2) and round (i+3) respectively, and the total delay time
is 5 rounds. The first allocation has smaller delay time
while the second one reflects a balanced load distribution.
To guarantee the service quality, request delaying is onl
applied to startup time of streams. We name such policy as

delayed-startup scheduling, and its main principle is to

fully utilize the potential capability of data striping by
delaying requests. For exploring the delayed -startup
scheduling policy, there are some assumptions and
notations have to make clear first. We assume the video
data is encoded by unique bit rate (rp4,) and the striping
block size (B) is also unique. These two values determine
the length of service round (T = B/r,,). And the lengih of
each video is long enough to cover all storage nodes. Based
on this concept and principle, we can develop further three
kinds of scheduling modes in the following sections.

Load

excess ICEd/ 0187 excess load E

— i

& 7
=~ ™ 1 — = < /

. I i
M
0 1 2 3 Nodeld 0 1 2 3 Nodeld

(a) Schedule request 0 at round (i+2) (b) Schedule request 3 at round (i+2)

Figure 6. Allocation in Minimum Delay Mode

3 Nodeld

(b) Load distribution at round (i+3)

(b) Load distribution at round ({+3)

3.3, Minimum Delay Meode

The main goal of this mode is trying to minimize the
total delay of all excess requests. Here, we propose our
algorithm, which finds one allocation pattern with
minimum delay time. The formal algorithm is presented in
Algorithm 1. The worst case of finding available node
consumes O(N) and searching for available slot requires
O(M). Therefore, the complexity ofthis algorithmis
O(RI(N+M)), where Rl meansthe number of excess
requests. For the same example in Fig.4, we can directl
apply the algorithm to schedule all the excess requests at
round (i), and we obtain the result that ry is delayed by
rounds and r; is delayed by 2 rounds as shown in Fig.6. The
total delay time is 4 rounds. Theorem 1 will address the
correctness of this algorithm.

Algorithm 1: Minimum Delay Time Allocation
Input: schedule table: Tam
load table: Ly
excess request set: R
number of nodes: N
capability of node: M
Output: schedule table T’ n:«q With minimum delay time
Program:
for Vre Rdo
/* find nearest available slot in T yaq */
for i =0 to N-1 do
/* find underflow node */
if (L[(r-i) mod N] < M) themn break;
end for
for j =0to M-1 do
if (T[(r-i) mod N}[j] = &) then
/* schedule the excess request in chosen slot #/
T[(r-i) mod N]{jl=1;
/* update load table */
L{(r-i) mod N}++; R =R - {r};
break; :
end for
end for

]

Lemma 1: Given a set of requests, R, and a set of available
slots, S. For any pair of (;, $;), where r;eR, s;€ S, the delay
time, d(r,-, Sj) =(r;- Sj) mod N.

Proof: It is trivial. (W]
Theorem 1: Given a set of requests, R, and a set of
available slots, S, and IRl < [SIl. The total delay time,

R

=) min{d(r,$)|8€ S} | is minimum. In
other words, if each request selects its nearest available slot
we will get the minimum total delay.

Proof: The set of requests, R, and the set of available slots,
S, can construct a complete bipartite graph, whose edge
are given with delay timeby Lemma 1. We set an extra
vertex as the root and then links to each re R with weight 0.
Assumed that IRl = m, then apply the Prim’s algorithm [16]
to find the minimum-spanning-tree in the graph, then we
obtain the m edges with the minimum total delay. This
completes the proof. m]

The problem of minimum delay mode is that access
skew still exists among storage nodes. This may cause
performance degradation whether in normal or failure cases
Load balance mode will solve this problem in the
following.

C-348

Load pending load Load

pending load

obl

SRR NN WU

Y

AU

0 1 2 3 Nodeld 0 1 2 3 Nodeld
(a) First iteration (b) Second iteration
Load pending load Load
- p
0 I 2 3 Nodeld 0 1 2 3 Nodeld

{c) Third iteration (d) Complete allocation

Figure 7. Allocation in Load Balance Mode

3.4. Load Balance Mode

With load balance mode, the incoming requestis
always allocated to the available slot of storage node ~with
the lightest load. We define one iteration is to allocate ever
N available slots. With the same example in Fig.4, Fig.7
shows the three iterations of allocation. In the first iteration,
the first three requests without delay r, r, and rj are
scheduled, and the remaining available slot, s, is allocated
to the r» for minimum delay. In the second iteration, the r,
and r; are allocated without delay and the s5; and s, are
assigned to the two r3‘s respectively. The third iteration
allocates the r, and delays the final rp to s3. The total delay
time is 5(=1+1+2+1) rounds.

The formal description of this method is presented in
Algorithm 2 and the complexity of this algorithm is O(IR).
The proof of Algorithm 2 is trivial. Since load is balanced
during the process of assigning slots, the ouicome isa
balanced condition.

Algorithm 2: Load Balance Allocation
Imput; schedule table: Ty
pending request set: R
number of nodes: N
capability of node: M
Output: schedule table T’y with load balance
Program:
iteration = [RI/N;
for k = 0 to iteration-1 do
/* allocate N available slots */
for i =0to N-1do
if (T[i][k] = D) then
/* find minimum-delay request */
P = Daim { (r-<i)) mod N | Vre R});
/* schedule selected request */
ThK] = Tmin; R=R ~ {Fumin};
end for
end for
if (R#) then /* handle final iteration */
for vre Rdo
fori=0toN-1do
/* find nearest available slot */
if (T[(r-i) mod N][iteration] = &) then
/* schedule selected request ¥/
T[r-i)[iteration] =1r; R =R - {r};
break;
end for
end for
}

1t is intuitive that load balance mode suffers longer
delay time by forcing requests to delay for load balance
consideration. In later section, we will evaluate the dela
time of this mode, and the result is so significant that we
can not ignore its effect.

3.5. Generalized Mode

Here, we give a generalized mode to benefit from
these two modes. The idea is inherited from load balance
mode except limiting the distance for requests to look for
available slots. We first introduce the concept of
round-constrain (RC).

While we perform delayed-startup policy with load
balance mode, we may find the available slot with the
lightest load. Therefore, the distance for each request t
explore the available slot ranges from 0 to (SF-1), where
SF means striping factor. However, when SF is large, the
delay time may be significant. So we define
round-constrain (RC) to limit the distance for Algorithm 2
to explore the proper slot. For each incoming request, we
always find the available slot for load balance within RC
rounds. If all the available slots within RC run out, the
distance of exploring available slot will be extended t
2XRC and so on. When the distance is extended to &, it will
degenerate to load balance mode. Now, we give an example
to explain the procedure concretely.

C-349

Load pending load

B

(a) First iteration

Load pending load

RC =5
A Yy "
o OO0

[0 O O

0 1 2 3 4 5 6 7 Nodeld

(b) Second iteration

Figure 8. Example of Allocation in Generalized Mode

Assumed that N = 8§, M = 3, RC = 5 and pending
request setis {1,2, 2,3,3,3,4,4,4,4,5,5,5,5,5}.Fig.8
shows the iterations of allocation. In the first iteration, one
of r; should be allocated to ss if load balance mode is
applied. However, the delay time will be 5 rounds which
exceeds the maximum delay constrain of 4 rounds (=RC-1).
Thus we find the lightest loaded node within the
round-constrain. The chosen one is s3 so no delay is
required for this pending request. Similarly, in the second
iteration, one of rs should be allocated to s, with load
balance consideration. But the delay time also exceeds
(RC-1). We allocate the request to ss that yields no delay
similarly. The total delay time in the example is 14 rounds,
which is half of the one caused by load balance mode (=29
rounds) and close to 10 rounds of minimum delay. The
whole algorithm is presented formally in Algorithm 3 and
the complexity of worst case in the algorithm is O'(IRI2).

Algorithm 3: Generalized Allocation
Imput: schedule table: Ty
load table: Ly
pending request set: R
round-constrain: RC
number of nodes: N
capability of node: M
Output: schedule table T’y with load balance
Program:
iteration = IRI/N;
group = (N-1)/RC + 1;
for k = 0 to iteration do
I* allocate non-delayed request */
for i = 0 to N-1 do /* for each available slot */
for Vre Rdo
/* find request without delay */
if (r=1 and T[i](k] =) then
/* schedule selected request */
Thlk]=r; R=R - {r};
break;
end for
end for
/* allocate delayed request */
for Vre Rdo
for j =0 to group-1 do
/* find lightest node within round-constrain */
Smin = min {(L[i+j*RC] 10 <i <RC and
Li+*RC1<M)};
if (smin = &) then
for i =0to M-1 do
if (T[sminl[i) = ©) then
/* schedule selected request */
TlSmnllil = 1;
/* update load table */
Lismin] ++ R=R - {r};
end for
end for
end for
end for

4. Simulation and Performance Evaluation

4.1. Overview of Our Simulation Environment

We have designed and implemented a discrete -event
simulation package to evaluate the performance of the
architecture used in our system as well as the proposed
scheduling policy. Our simulation parameters are
summarized in Table 1. The video data is encoded by
MPEG-2 with bit rate of 3Mbps and block size is defauli t
94KB, thus the service round is about 250ms [14]. The
number of video is default to 100. Average content length is
8192 blocks, which implies the number of maximal
concurrent accesses is 8192. Request generation is modeled
as Poisson arrival process with Zipf-like distribution of
video selection [12-13). The process of simulation will be
executed for at least Vj, rounds to achieve a stead
condition. We adjust the request arrival rate to model
different system load, and collect related statistics in the
steady condition.

C-350

Simulation Parameter Symbol " Default
Stream Number e 1000
Load Factor o 50% ~ 100%
Disk Number N 8~128
Disk Capability M 10
Average Content Length Ve 8192
Parameter of Zipf Distributed ¢} 0.271
Video Number Vi 100
SMU Capability Cim 100 (req/round)
VSE Capability C.. 60 (reg/round)
High-Speed Network Capability C et 500 (req/round)

Table 1. Simulation Parameters

To model different scales of our system, the disk
number varies from 8 to 128. Each node should have an
upper bound on computability. We assume VSE node is
able to handle 60 requests per round, and each SMU works
well within the moderate request arrival rate of 100
requests per round. Since the load of Mas ter Server will be
dispaiched to slave SMU nodes evenly, Master Server will
not be a bottleneck unless a burst of incoming requests.
However, we still constrain the upper bound of capability
in Master Server. Another capability limitation comes from
interconnection networks. During the process of simulation,
the traffic of data that flows through the network should not
exceed the bound. If it indeed happens, then we choose to
delay the excess requests or reject them. Similar criterion is
applied to previous capability limitations.

4.2. Evaluations of Proposed Architecture

First, we show the necessity of partitioning a video
stream into sub clips and then distributing them across
server nodes in the following example. Given 16 VS
nodes where each one equips 8 disks, and we want to store
100 videos on these storage nodes. Assumed P(V,) > P(V;)
>...> P(Vy) without losing generality, where P(V;) stands
for popularity of video, V;. Applying Round & Round
placement in [13], V; is placed on node (i mod 4). Due to
popularity skew, hotter videos are constrainedby the
capability of single node, so we suggest that partitionin
and distributing video clips across all server nodes, i.e.
wide striping. We may have two ways to implement wide
striping scheme. Fig.9 shows the corresponding reject
probability of interleaved and sequential placements
respectively with FCFS scheduling policy. Compared t
Round & Round placement, these two wide stripin
schemes indeed gain higher performance. From the results
of our evaluation for wide striping, sequential placement
performs better than interleaved placement. In the
following discussion, we employ sequential placement as

our default data placement scheme.

[———

[~ ot
i Whie Supkgf| | £
i [~ toiarieave 2

s

o

F]
v

et Prububilhy

| S— £ 0
i 5o}t -
® F

1234567 48910112

5

B

M w0 wo

Load Factos VSE Nomber

Figure 9. Reject Probability of Various Figure 10. Scalability with Different

Data Placement Schemes Number of VSE

Given different request arrival rates, we can evaluat €
the node utilization of VSE and deduce the maximu
throughput. Here, we assume the total capability of SMU
nodes is always sufficient to handle the incoming requests.
Fig.10 shows that the growth of system throughput is
almost linear until it saturates for the bottleneck of network

bandwidth.

According to these aforementioned evaluations, we
can observe that even various data placement schemes are
applied, these static load balance techniques will not
explore the full capability of resource yet and the
performance degrades as system scales up. Some dynamic
load balancing strategy must be considered to guarantee the
performance.

4.3. Evaluations of Delayed-Startup Policy

Now, we apply our delayed -startup policy in our
system and evaluate its performance gains. Fig.11 shows
the throughput of minimum delay mode (MD) and load
balance mode (LB). Compared with FCES policy, The
throughput is enhanced with delayed-startup policy, and the
LB mode performs very close to the ideal case.

550

[

<

S
T

—— Ideal
—¥=—FCFS
i | —=t—MD

450 |

= LB

Max Stream Number

VSE Number

Figure 11. Throughput of Different Scheduling Policies

Fig.12 shows the reject probability with various load
factors, where VSE number is 4 and each one equips 8
disks. Delayed-startup policy indeed reduces the reject
probability especially in the condition of heavy load. With
load balance mode, we obtain the lowest reject probability.
However, the cost of higher throughput is significant dela
time as shown in Fig.13. To reduce the total delay time, we
may apply the generalized mode with proper
round-constrain (RC). For lower average delay time, w
may choose smaller RC. However, if lower reject
probability is on demand, larger RC is preferred. While
system load is heavy, the reject probability goes high. This
implies that we can adjust RC dynamically according to the
system load and thus reduce the request delay time. For a
large striping factor, the variance of request delayis large
as well. We may employ extra buffer to pre-fetch some data
blocks for each stream and amortize the total delay time.
Such buffering technique also reduces request response
latency and enhances the QOS. Fig. 14 shows that exira
buffer helps reducing the request delay in delayed -startup
policy. However, buffer size could not be too large, or the
initial time of pre-fetching blocks will cause longer request

delay.

[P £ P
st} - H =10 P |
2L i pomm== i, L
ién,os i [Z el
£ o x |18 20
i-u,m Hl St g 2t

153 ; <.

o 05 05 07 08 05

Load Pacars

85 06 07 08 09 '
Lssad Factor

Figure 12. Reject Probability with Various
System Load Factors

Figure 13. Average Delay of Different
Delayed-Startup Modes

Compared with other scheduling methods, our
proposed policy offers higher performance if sufficient
delay time is allowed. Fig.15 shows the reject probabilit
of various scheduling policies. Though the method in {9]
solves link conflict problem, but its request-delaying
algorithm (Peg-and-Hole) only avoids overloaded condition
and ignores load balance. Andin [8], the scheduling

C-351

scheme (Greedy) employs FCFS policy and request
delaying is not allowed. Both methods suffer higher reject
probability due to load imbalance.

VU 03

W

—a— VSE=4
4= VSE=$
72 | —— VSE=i2

=
]

Avg, Delay {roud)
o
Reject Prabudilly
°

o
E

U2 4 6 8 W 1T 14 s0% A0% 0% 40% 904 100%
Butfer Size Lasd Fasta

e w &

Figure 14, Average Delay with Pre-fetch
Buffering

Figure 15. Reject Probability of Different
Scheduling Policies

We conclude that load imbalance makes a critical
factor of performance in a large -scale video server
environment. Wide striping is an effective static load
balancing technique, but still suffers load imbalance. So we
proposed adynamic load balancing technique,
delayed-startup scheduling, to explore the full capability of
wide striping.

5. Concluding Remarks

In this paper, we have designed a scalable video server
system with multi-server architecture. The critical iss ues of
data allocation and retrieval are also addressed inthe
contents. In aspect of data allocation, we suggest sequential
placement of wide striping for higher performance. And
wide striping is cost -effective since the concurrent accesses
can be scaled up without replication. On the other hand, the
proposed scheduling policy, named delayed-startup policy,
optimizes the node utilization or the delay time with two
different modes. We also provide a generalized form that
compromises various preferences for performance and
average the system throughput, leads to more load balance
across multiple servers, enhances node utilization, and
reduce the cost of server system by simulation evaluations.

Acknowledgement
The paper was supported by NSC 87-2622-E009-008

References

[1] Y.B. Lee, “Parallel Video Servers:A Tutorial,” IEE
Multimedia, No. 5, Issue 2, pp.20-28, April-June 1998.

[2] R. Tewari, R. Mukherjee, D. Dias and . Vin, " Design
and Performance Tradeoffs in Clustered Video
Servers", Proceedings of the 3rd IEEE International
Conference on Multimedia Computing and Systems,
pp. 144-150, June 1996.

{3] M. Buddhikot and G. Parulkar, “Efficient Data Layout,
Scheduling and Playout Control in MARS,”
Multimedia Systems, Vol.5, No. 3, pp.199-212, 1997.

[4] W. Bolosky et al.“The Tiger Video Fileserver,” Proc.
6th International Workshop on Network and
Operating System Support for Digital Audio and Video,
April 1996.

[51 R. L. Haskin, "Tiger Shark-A Scalable File System for
Multimedia", IBM Journal of Research Development,
Vol. 42, No. 2, pp. 185-198, March 1998.

[6] C. Bernjardt and E. Biersack, “The Server Array: A
Scalable Video Server Architecture,” Hig -Speed
Network for Multimedia Applications, Xluwer Press,
Boston, 1996.

[7]1 Y.B. Lee and P.C. Wong, “A Server Arr ay Approach for
Video-On-Demand Service on Local Area MNetworks,”
IEEE INFOCOM’96, TEEE Computer Society Press,
Los Alamitos, Calif, Vol. 1, pp.27-34, March 1996.

[8] A. Reddy. “Scheduling and Data Distribution in
Multiprocessor Video Server,” Proc. Seco nd IEE
International Conf. On Multimedia Computing and

Systems, pp.256-263, 1995.

{91 M. Wu, W. Shu and K. Samuthiram, “Optimal
Scheduling for Normal and Interactive Operations in
Parallel Video Servers," Proc. of Computer Software
and Applications Conf., pp.290-295, Aug. 1997.

[10] P. Shenoy and H. Vin, “Efficient Striping Techniques
for Multimedia File Servers,” Proc. of the 7th
International Workshop on Network and Operating
System Support for Digital Audio and Video, pp. 2 -36,
May 1997.

[11] M.Y. Hsu, A Simulation Model for Hierarchical
Storage Systems of Video Servers , Master Thesis,
Department of Computer Science and Information
Engineering, NCTU, June 1996.

[12] S.J. Cheng, An Effective Data Placement Scheme for
Supporting VCR Functionality in A Video Server,
Master Thesis, Department of Computer Science and
Information Engineering, NCTU, June 1998,

[13] J.K. Chen, Design and Implementation of An Effectiv
Platform of Video Server Management System, Master
Thesis, Department of Computer Science and
Information Engineering, NCTU, June 1998.

[14] Video Server User Guide, Institute of Mentor Data
System, 1998.

(151 R. Tewari, D. Dias, R. Mukherjee and H Vin,
“Real-time Issues for Clustered Multimedia Servers,”
IBM Research Report, RC20020, April 1995.

[16] H. Cormen, E. Leiserson and L. Rivest, Introduction to
Algorithms, pp.504-510. McGraw-Hill Book Company,
1989.

C-352

