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Abstract

In this paper, we propose a provably secure group-
oriented blind (t,n) threshold signature scheme
which is the first scheme, such that, its security s
proved as equivalent as the discrete logarithm prob-
lem in the random oracle model. By the scheme,
any t out of n signers in a group cen represent the
group to sign blind threshold signatures, which can
be used in anonymous digital e-cash systems or se-
cure voting systems. By our proposed scheme, the
issue of e-coins is controlled by several authorities.
In our scheme, the size of a blind threshold sig-
nature is the same as that of an individual blind
signature and the signature verification process is
equivalent to that of an individual signature.

Keywords: Provably Secure Blind Signatures,
Threshold Signatures, Discrete Logarithm, Secure
E-cash Systems, Secure Voting Systems.

1 Introduction

The concept of blind signature was introduced by
Chaum [4]. A blind signature scheme is an inter-
active protocol which involves two kinds of partic-
ipants, the signer and a requester. A distinguish-
ing property required by a typical blind signature
scheme [2, 4, 12, 25, 26] is so-called the "unlinkabil-
ity”, which ensures that requesters can prevent the
signer from deriving the exact correspondence be-
tween the actual signing process performed by the
signer and the signature which later made public.
The blind signatures can realize the secure elec-
tronic payment schemes [4, 5, 7] protecting cus-
tomers’ anonymity, and the secure voting schemes
[14, 15, 29] preserving voters’ privacy. In a dis-
tributed environment, every signed blind message
can be thought as a fixed amount of electronic
money in secure electronic payment schemes, or
as a ticket in applications such as secret voting
schemes. In [25], two provably secure blind signa-
ture schemes are proposed. One has been proved
to be equivalent to the discrete logarithm prob-
lem in a subgroup. The other has been proved
to be equivalent to the RSA problem. In [26], a
blind signature scheme is proposed and proved to
be equivalent to factorization.
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Threshold signatures [8, 11] are motivated by
the need that arises in organizations to have a
group of employees who agree on a message before
signing and by the need to protect the group pri-
vate key from the attack of internal and external
adversaries. The later becomes more important
with the actual deployment of public key schemes
in practice. The signing power of some authorities
inevitably invites attackers to try and steal this
power. The goal of a threshold signature scheme
is to increase the availability of the signing author-
ity and to increase the protection against forgery
by making it harder for the adversary to learn the
group secret key.

To the date, the on-line e-cash schemes proposed
in [4, 5] are more efficient and practical. The aim
of these schemes was to produce an electronic ver-
sion of money which retains the same properties
as paper cash. In real world environments, if the
issue of e-coins is controlled by a single person. He
can generate extra e-coins as he wishes. To cope
with this dilemma, instead of a unique administra-
tor, every customer needs to request blind thresh-
old signatures [16, 17] as e-coins from ¢ arbitrary
administrators, so that, ¢ arbitrary administrators
can represent the bank to issue e-coins.

All meta-blind threshold signature schemes [16,
17] have not been proven to be secure as some
hard problems, e.g., the discrete logarithm prob-
lem. In this paper, we propose a provably se-
cure blind threshold signature scheme which is the
first scheme, such that, its security is proved to be
equivalent to the discrete logarithm problem. Our
proposed scheme can be directly applied to secure
e-cash schemes for distributing the power of a sin-
gle authority. The modified e-cash schemes can
meet the real world environments without a single
trusted authority or with some absent/dishonest
authorities. In our scheme, the size of a blind
threshold signature is the same as that of an indi-
vidual blind signature and the verification process
of a blind threshold signature is equivalent to that
of an individual blind signature. Thus, our pro-
posed scheme is optimal with respect to the blind
threshold signature size and the verification pro-
cess.

The paper is organized as follows. In Section 2,
we present the definition of blindness of a thresh-
old signature scheme and that of unforgeability
of blind threshold signatures. In Section 3, we
present a provably secure blind threshold signature



scheme. Then we discuss its correctness, security
and performance in Section 4. Finally, a conclud-
ing remark is given in Section 5.

2 Preliminary

In this section, we present the definition of blind-
ness of a threshold signature scheme and that of
unforgeability of blind threshold signatures. There
are two methods for verifying the validity of a sig-
nature: the comparison method and the restora-
tion (message recovery) method [23]. In the com-
parison method, for verifying a signature, the cor-
responding message must be sent to a verifier along
with the signature. To save the length. of the sig-
nature, instead of signing the whole message, one
can make a signature on the digest of the mes-
sage which is the hashed value of a secure one-way
hash function [20] with the message as input. In
the restoration method, only the signature is sent
to a verifier. The signed message which is em-.
bedded in the signature can be recovered after the
verification process. Many signature schemes with
message recovery have been proposed [22, 27].

Given a secret &, we say that the secret shadows
(9:,1 < i < n) construct a (t,n) threshold secret
sharing of 0 if t — 1 (or less) of these values reveal
no information about 6 and there exists a poly-
time algorithm that outputs é having any subset
of ¢ values as inputs.

Let there be n > 1 players in a distributed sys-
tem and player ¢ has his own secret s;. A secure
computing protocol for this system is a procedure
for evaluating the function value f (51,52, ey Sn)
jointly by the n players such that the output be-
comes commonly known while s; remains secret.
A secure computing protocol can be used to de-
fine blind threshold signature schemes. We define
the blindness of a (¢, n) threshold signature scheme
with the comparison method as follows:

Definition 1 A blind (¢,n) threshold signature
scheme with the comparison method is a 12-tuple
Pr = (M7'57A7K:yA7‘I’)R7 QT76T)TT7 QTyFL
where

e M is a message space that is a set of strings
(plaintexts),

e S is a signature space that is a set of strings
(signatures),

@

A is a random message space that is a set of
strings,

o K =K. xKq is a key space, such that K. is
the public key space and K4 is the private key
space,

@

A is a shadow key space,

U = {U;]1 <i<n} is a set of n signers,

@

R is a set of requesters,

@

Qr 1 A" = K, is a poly-time distributed key
generation protocol (secure computing proto-
col) used by all the signers . The private wn-
put of U, is a random string x; € A. The
output of the protocol is the group public key
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K. = Q7(x1,X2, - Xn) € Ke. At the end
of the protocol, the private output of signer
U; € ¥ is a secret shadow 0; € A, such that
the shadows 0;,1 < i < n, form a (t,n) thresh-
old secret sharing of Ky € K4, where K is the
corresponding private key of K. ’

e Or : Mx A XK, x A'— M is a poly-time
blinding algorithm that on input @ message
m € M, a random blinding string A €
A, a public key K. € K. and h(ép,) €
/1 < i<l < PL,P <noand P, <
FPiy1, where b is a one-way hash function and
0p, € A, constructs the blinded message m' =
aT(m7)\7 Ke,h(apl),h(apz), 7h(6pc)) €M,

e Tr : MxKex AP x At - 8§ is a poly-
time distributed signing protocol (secure com-
puting protocol) used by any subset of ¢ sign-
ers {Up]l < i < t,1 < P,P, < n
and P; < P}, The private input of
Up, is the secret shadow 6p, € A and
the randomizing factor ép, € A. The pub-
lic inputs consist of a blind message m' =
aT(m7A7K€7h(6P1)7h(6P2)7"'7h(5pt>) € M
and the public key K, € K.. The oulput
of the protocol is the blind signature s =
'SI:T(m’,Ke,epl,gpz?...,Gﬂ,dpl,apz,...,th) €

e &7 : SX A= S is a poly-time unblinding
algorithm that on input a blind signature s' =
TT(@T(TTZ, A, K, h(épl ); h(6P2)1 ey h(JPt))a K.,
9p1,9p2,...,9p“5p1,5p2,..., p)) € and the
random blinding siring M\, estracts the
signature s = ®7(s',\) on m,

eI : MxSxK, — {true, false} is a poly-
time verification algorithm that on input a
message-signature pair (m, s) and a public key
K, € K., determines if s is a valid signature
for message m,

such that, we have the following:

1. Before a requester R € R can request o blind
threshold signature from any subset of t sign-
ers W, ={Up |1 <: < t,1 < P,P, < n and
P; < Py}, all the signers in U have to apply
Qo to construct a group public key K, € K.,
where the corresponding group private key of
K. is K4 € Kq. At the end of Qr, each signer
U; € ¥ gets a secret shadow 6; € A.

2. In a blind threshold signature genera-
tion, a requester R € chooses a
random string A € A and computes
m' = aT(m,/\,Ke,h(5P1),h(5P2),.-',h(éPt)),
where K. is W’s group public key and Op,
is the randomizing factor chosen by Up,,
for blinding o message m and submits m/'
to ‘I’t = {UP,']- S ¢ S t71 S Plv'Pt S n
and P; < Py} Uy then apply the
distributed signing protocol Yt to m'
and send R the signing result s’ =
Yr(m',K.,0p,,0p,,...,0p,,0p,,0p,, ..., 0p,)),
where Op, is the secret shadow of Up,.
After receiving s', R extracts the signature
s =®7(s',A) on the message m.



3. Anyone can verify if o message-signature pair
(m, 8) is valid for the group public key K. €
Ke by the function T

4. In o blind threshold signature generation, the
signers’ views v and the message-signature
pair (m, s) which is later made public are sta-
tistically independent. 0

The digital signature scheme with the restora-
tion method can be defined similarly except the
verification function T' must be replaced by a
restoration function . To verify a signature s € S,
one simply computes m = (s, K.) and checks if
m has some redundancy information.

The notion of security for blind signature
schemes was formally defined in [25] under the ran-
dom oracle model.

Definition 2 (The “one-more forgery”). For
any fixed [, if an attacker 4 can compute, after {
interactions with the signer, [ + 1 signatures with
non-negligible probability, we say that it has per-
formed an (1,1 + 1)-forgery. A ”one-more forgery”
is an (I,1 + 1)-forgery for some integer {. O

Definition 3 (Attacks). Two different attacks
can be considered:

1. the sequential attack where the attacker can
sequential interacts with the signer.

2. the parallel attack where the attacker can in-
teract [ times with the signer and send the
challenges whenever he wants. O

Definition 4 A blind signature scheme P
(M,S5,AK, %, R,Q,0,T,®,T) is unforgeable if
no malicious adversary can do the oune-more
forgery with non-negligible probability in the ran-
dom oracle model under the sequential or parallel
attack. |

The notion of security for blind (¢, n) threshold
signature scheme Pr can be formally defined as
follows.

Definition 5 A blind (¢,n) threshold signature
scheme is unforgeable, if no malicious adversary
who corrupts at most ¢ — 1 signers can do one-
more forgery with a honest signer in the random
oracle model with non-negligible probability under
the sequential or parallel attack. 0

In order to prove unforgeability we use the con-
cept of the simulatable adversary view [8, 10}. This
means the adversary who sees all the information
of the corrupted signers and the signature of m,
could generate by itself all the other information
produced by the protocol, except the secret infor-
mation generated by the honest signer. In other
words, the run of the protocol provides no use-
ful information to the adversary other than the
final signature on m. Indeed one can prove that if
the underlying signature scheme P of a simulat-
able threshold signature scheme Pz is unforgeable
then Py is unforgeable [8, 10].

Definition 6 A blind (t, n) threshold signature
scheme is simulatable if there exists a simulator
SIM that on input the public key y, the public

input m, thepartial secret shadows provided by
the t — 1 corrupted signers and the signature sof
m, can simulate the view of the adversary on an
execution of the scheme that generate s as an oui-
put. a

3 The proposed scheme

In this section, we propose a blind threshold signa-
ture scheme based on the Okamoto-Schnorr blind
signature scheme [25]. In a typical signing pro-
cess of a blind threshold signature scheme, there
are two kinds of participants, the signers and a
requester. Before the requester can obtain a blind
threshold signature from the signers, all the signers
have to cooperate to distribute their secret shad-
ows to other signers in advance. Then the re-
quester requests a blind threshold signature from
the signers. The proposed scheme consists of three
phases: (1) the shadow distribution phase, (2) the
signature generation phase and (3) the signature
verification phase. The shadow distribution phase
is performed only once among the signers and then
they can use their secret shadows to sign messages.
In the signature generation phase, a requester re-
quests a blind threshold signature from the sign-
ers and the signers cooperate to issue the blind
threshold signature to the requester. In the signa~
ture verification phase, anyone can use the group
public key to verify if a blind threshold signature
is valid.

Let U; be the identification of signer i, n be the
number of signers, ¢ be the threshold value of the
blind threshold signature scheme, m be the blind
message to be signed, h be a secure one-way hash-
ing function [20], p, ¢ be two large prime numbers
such that ¢ divides (p — 1), and &, & be two gen-
erators of Z7. Let z =, y denote z = y mod p.

Let g =, ¢P~V/9 and h =, €(P~V/4. Let d; be
the secret key chosen by U;. In a distributed envi-
ronment, U/; can publish the corresponding public
key e;. Anyone can get e; via some authentication
service (e.g. the X.509 directory authentication
service [30]). Using a secure public key signature
scheme [6, 27], U; can produce signatures of mes-
sages by his own secret key d;. Anyone can verify
these signatures by the corresponding public key
e;. Let C(m,v) denote a commitment to m € Z

using the random string v and Certy, (h(c)) denote
the signature on h(c) signed by U;.

3.1 The shadow distribution phase

Before a requester can request a blind threshold
signature from the signers, all signers must coop-
erate to distribute their secret shadows to other
signers. In the shadow distribution phase, each
U;, 1 €1 < n, carries out the following steps:

1. U; chooses two secret keys r;,s; € Z, and
two secret polynomials fi(z) = Ef;%) a; pz*
and fi(z) = Z;%) a) pz¥ such that a;p = r;

abo =s;and a;j,a;; € Z,1 < j<t-1,

computes ¥, =, g%+, U, Rk 0

< k < t—1 and the signatures Certy, (h(®; 1))

»

on ¥, ;, Certy, (h(¥} ) on ¥} ;1 <k < i1,

=p



the commitments C; = C(¥;p,v:),C! the following steps-during the signature generation
= C(¥,y,7)) and the signatures  phase.
Certy, (h(C; )) on C; and Certy, (R(C})) on Cf

Y 1) 1. Each U; randomly chooses two random num-
al}d sends SCertUi (r(C3)), C;, Certy, (R(C! :) bers t;,u; € Zy, computes a; =, g*‘h* and
Ci (Wi, Wi, Certy, (h(.1,)), Certu, (R(¥] 1)), sends a; to the requester.

1<k<t-1)toU;,1<j<n, j#i.
2. After receiving all a;,1 < i < t, the re-

2. Upon receiving (Certu; (h(Cj)), Cj, Certy,( quester chooses three random numbers v,
RCH)), O (5, T, Certy, (R(¥51)), and 6 € Z,, computes a =, H_l ai, 0 =
Certgj(h(‘ll;-’k))),l <jis<n j#¢1<k< Priyda,e =, H(m, a) and e =4 £ — 6 and

t — 1) from all other signers, U; verifies if all sends ¢ to all U;, 1 < i <t
Certu; (h(Cy)), Certy, (R(C})), Certu, (M(¥;x)), 3, Upon receiving e, each U; computes R; =,

Certy,(h(¥} ,)) are valid. If valid, he opens ol Tn
i ik A T,
Ci,Ci sends &;; =, filz;),0; =q fi(z;), ( AL (m'—mk)»

n
where z; is a unique public number for +t_";§i ,"‘1 e(si + ZJ:t-H fy(fﬂz) Hk:l,k;éi
U;, and a signature Certy,(h(d;;)) on (=27))) +u; and sends 5; and R; back to
bi,5, Certy, (R(5] ;)) on & ; secretly to every the requester.
U;, 1 <j<n,j#1i. Otherwise, he publishes - . )
the invalid signatures and stops. 4. ‘Ai]fter, receiving all 5; and Ry, the requester
checks if
3. When U; receives all 85,05 . —e

7 FEl . X _ ( . ;__:iL
Certy; (h(8;:)),Certu, (h(8; ), 1 < j < n, 9fh%y® =5 ai([T7y01 (250) [lics s G e
J # 4, from other signers, he verifies n ¢ Wy e (52 e .
if the shares &;;,8;; received from Uj (TTjmg (B]5)) Lt F)S1<i st

If any of the S; and R; is not valid, he has

to ask the corresponding signer to send it again.

Otherwise, he computes p =, §+ S_, Ri,0 =

. 50 — q i=1 140 =g

mg whether g I (250 v+ 3%, S;. The blind threshold signature of m is
RYi =, ,_ ( )‘”'. If it fails, U; bro.zd- (a, p, 7).

casts that an error has been found, pubhshes

84, Certy, (h(d;,)) or & ;, Certy, (h( :;))and . . .
the identification of if;, and then’ stops. 9.3 The signature verification phase

Otherwise, U; computes the signature To verify the blind threshold signat ,p, ) on
Certy;(h(y)) on the group public key tl?e rii:sgagzerg, g?letsiriplgr cfizlfé%ks ilflf '(30;3 gp"h‘)’ ;E
v = [Law = 1L %l ¥ 1,0

and  the  signatures  Certy, (h(®;,;)) . .

on ®; =, g% and Certy,(n(®),)) 4 Discussion

' — 8, .
on &, =, h%, 1 < j < n He We discuss the correctness, security, performance
then sends  (Certu;(h(y)), (‘I’y,u@gu and extensions of our bhnd threshold signature
Certy, (h(®;,), Certy, (M@ ;)),1 < j < n)) scheme in this section.

to all other signers.

4. Upon receiving all ((Certy, (h(y)), 1 < j < 4.1 Correctness

n, § # i), (@ n@ﬂ,cm’ tu; (M(@;,:), Certy, To prevent a signer from sending an invalid partial
(@), 1 <1 <n, 1 <j<m,j#1), signature to the requester, the partial signature

is consistent with the certified values

9%, 0 < 1 < ¢t -1, by check-

U, verifies if all ((Certy. (h < i< must be checked in step 4 of the signature gen-
;Avez) eC'Se;ta (h ((( 67') UC'EgT,(gy))( h(® 3 J) 1 n< eration phase. The following lemma ensures the
J o; ({25, Us = correctness of partial signatures.

I<n, 1<j<n,j#1)) are valid. Ifyes, the
shadow keys correspondmg to the group secret Lemma 1. The partial signature (R;, S;) s valid
keys 5 £¢ 351 8j .7 =q 5y Tj have been  if U; is honest.

securely and correctly distributed. The group

public key ¥ =, [Ir, Tm@lo’ all signers’ Proof. By our scheme, we have

public keys ¥,0,%],,1 <1< n, and all pub- gTihSiys

lic shadows &1; =, g™, @], =, g%, 1 <1, = 4 e(n+2;“ . fJ-m)(H,i s D)

J < n, can then be published by each signer. i+ ; (2w,

OtherW1se, U; publishes the invalid signatures (s Z =t 13080 Hk i T ui Y

and stops. =, g g° ?=t+1 (i) szl'k#i e ))gt.; hesi

2 Th . " . h hez?—b}d f',(m”\(H:i =1,ksi Z:—%T))hul (g—ri h—s{)e

3. © sngna ure genera‘tlon p ase = gez =t41 fJ( )(HL 1 b;.e\('i—'.-j:k )) 1‘1
Without loss of generality, we assume that ¢ out of e ([T ( ))
n signers are U;, 1 < i < t. The ¢ signers perform RS 2useisnt N B
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=, 0Ty (05,0) i S5
(T () T 75y i

After the signature generation phase, the blind
threshold signatures can be verified by the group
public key in the signature verification phase. Let
v denote the signers’ complete views of an execu-
tion in the signature generation phase and let (m,
(e, p,0)) denote the message-signature pair gen-
erated in that execution. Theorem 2 ensures the
correctness of the scheme.

Theorem 2. The 3-tuple (o, p,0) is e valid blind
threshold signature on the message m.

Proof. The validity of the blind threshold signa-
ture (a, p,o) on the message m can easily be es-
tablished as follows.
oy
=p g6+2i=1 R h7+2.’=1 S
= gﬁ+Z:=1 R; h’)’-I-E: S e+6
=, gﬁh"ygzz L Lite Z: 17 hzx L uite Z;—l 84
ge Z::l
BE i
= agﬁh’Yg (Z i=1 r,+2 i=t4l 7i) Z;
ye+5
=p ag’hTy eyt
=, agPhy’
=, a. o

-

_._’L
'—t+1 Filz:)( Hk =1, ki t.—zk))

]—t+1'f (-’8 )(Hk =1 L;éz :,—zk )) e+6

5 +Z;—z+1 i)

4.2 Security analysis

In the shadow distribution phase, since ¥, and
W, are committed using v; and v} and after U;
receiving all other commitments C; = C(¥;0,7;)
and C} = C(¥}4,7;), 1 <j <n, ) #1, he opens
the commitments, if U; chooses his secret keys r;
and s; at random then the distributions of the
group secret keys s =4 Y0, s; and r =, 37 7
are both polynomially indistinguishable from the
uniform distribution. Given the secret informa-
tion of a group of | < t members, Lemma 3 en-
sures that the threshold cryptosystem constructed
in the shadow distribution phase will not disclose
any extra information about the group secret keys

S=q Xjmsiandr = 37

Lemma 3. Given a group of ¢ < t members
G = {pilps € [1,n),1 < i < o} and the set of
shares {0;,:,07;]1 < j <n, i€ G}. For any fixed

7, 1 € j < m, it takes polynomial time on |p| to
generate two random sets {g%*|1 < k < ¢t — 1}

and {hag‘~k|1 <k <Lt-1} satisfyin%\g‘si" =

[Ty (9" and K% =, [ (r%#)"" for
1 € é .

Proof. In step 3 of the shadow distribution phase,
after U; has received all §; ;, he verifies if the share
dj recelved from Uj is con51stent with the certlﬁed

values ¥;;, 1 <1 <t~ 1, by checking if g%+ =,

Hz—o(‘I’J )% . Therefore
t—1 ) t—1 !
g% =, [J (g™ =, g2oime 505 (1)
=0

Since g =, £p=1/9 and ¢ is a generator of VAN
generates a cyclic subgroup 5, of Z; with |Sy| = ¢
From (1), we have

t—1
§ji Zq ) aj0 aif (2)
=0

From (2), we know that given a fixed index j,
the shares d;;, 1 € G, will use the same variables
a5, 0 <k <t-1, as follows:

t—1
— —— k
8j Zq y_ ik x T (3)
k=0

Given a fixed index j, we can get at most ¢ linear
equations with ¢ variables as follows:

t—1
8 =q p_airxzf(i € G). (4)
k=0

Since the linear equations have at least one so-
lution a;; = aj%, 0 < k <t~ 1, we can solve
the linear equations ( ) and get a random solu-
tion ajx, 1 < k < t—1, by assigning random
values to all free vanables From (4), it is clear

that g%+ = ng—o aj ket = Ht -1 o9 k)“‘k.
Similar to to the above proof, we can get a random

solution aJA, 1<k < t-—l such that, RO =p

th o Garai” =p H (ha k)z‘ . 0
Let v denote the s1gners complete views of an
execution in the signature generation phase and
let (m, (a, p, o)) denote the message-signature pair
generated in that execution. Theorem 4 ensures
the blindness of our proposed scheme.
Theorem 4. The threshold signature scheme pro-
posed in Section 4 is blind.

Proof. For proving the blindness of the scheme,
we show that given any view v and any valid
message-signature pair (m, (a, p, o)), there exists
a unique triple of blinding factors 3, v and ¢. Since
the requester chooses the blinding factors 38,v and
0 randomly, the blindness of the signature scheme
follows.

Given a valid message-signature pair (m,
(a,p,0)) and a view v, the following equations
must hold for 8,7 and 6. Without loss of gen-
erality, assume that the blind signature (a, p,o o)
has been generated by ¢ signers U;, 1 < i <
t, with the view v consisting of R; =, “e(r; +

Yime fil® D([Tie ik (522))) +t, S =

e(s; + zjzt—i-l fgl( 1)(Hk:1,k¢z z_f;k ) Fuit;
andy; 1 <i<tande.

p=¢ B+Tin R (5)
o= T+ Zle S; (6)
€ =4 e+9o (7
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By equations (5), (6) and (7), the unique solu-
tion for @, and ¢ is

B=; p—Tim Ri (8)
Y=, 0T S 9)
6=, gE—o (10)

0

Our proposed blind signature scheme is based
on a provably secure blind signature scheme under
the random oracle model [25].

Theorem 5. Consider the Okamato-Schnorr
blind signature scheme in the random oracle
model. A ”one-more forgery”, even under a par-
allel attack, is equivalent to the discrete logarithm
problem in a subgroup. [25] B

Since the Okamato-Schnorr blind signature
scheme is unforgeable in the random oracle model,
if our proposed blind threshold signature scheme is
simulatable, our proposed scheme is unforgeable.

Let Threshold_gen denote the protocol in the
signature generation phase. Without loss of gener-
ality, we assume that the adversary has corrupted
t — 1 signers U;, 1 < i <t —1, and the requester
With the view consisting of m,y, (r;,5:,1 < i <

1),(d:,5,0; 5,1 <i<t—~1,1< 5 <nj. To prove
the unforgeability of our proposed scheme, we now
construct a simulator SIM as follows. The sim-
ulator SITM is described as a two phase protocol.
The first phase computes all the necessary infor-
mation, and in the second phase it carries out the
communication with the adversary in accordance
with Threshold_gen.

Simulator STM
SIM Computation(m,y, (r:,s;,1 < i £ ¢ —
1) (57115;_‘,71 < i <t- 171 S.] < n),(a,p,o))

1. Randomly choose #; and 4; € Zg,1<i<t-1.

2. Randomly choose ¥, fand§ e Z4 and com-
pute €=, — 4.

3. Compute R; =, e(r;  +
E?:t-]—l f](ml)(nizlk#z(ﬁ))) + t,1 <
i<t-1.

4. Compute 572 =, e(s; +
E —t+1 £3(@)(Mhmy pi(52E)) + Uil £

<t-—-1.

—~—

5. Compute Ry =, p — f ~ SR
6. Compute S; =, 0 — 5~ 3021 S,
end of SIM _Computation.

SIM _Conversation

Comment: In each of the following steps, we de-
scribe the information which STM gives to the ad-
versary. Bach of these steps relates to the same
numbered step in protocol T hreshold_gen.
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1. The 2(t — 1) random numbers ¢; and @; €
Zyp1<i<t -1,

2. The three blinding factors ¥, 6 and B and the
blind message €.

3. The 2¢ blind partial signatures B; = =, e(r: +
Z;—t-{—l fi(zs) Hk_l ki z?.m;k M+, 1<i <
't—l Ri=,p-f- SR, S =, (s +
t+1 f’(%)(ﬂk =1, ki z,-zk))) + ;1 <
z<t—1and.5’t_qcf -8

4. Do nothing.

end of SIM _Conversation.
end of SIM.

Let Vz’ewA(Threshold_gen(m Y, (rs,8,1 <1<
t—1),(6: 5,0, ,1<i<t~1,1<j < n),(a,p,0)))
be all the mformatlon of the corrupted signers and
the requester in the signature generation phase and
SIIV{(m7y7 (Tiysiwl S { S t— 1)7(6‘i,j7 1371 <
i <t-1,1 <3 < n)(ap0o)) be the infor-
mation constructed by the simulator SIM with
(m’y,(riwshl _<._ i S [ 1):(6i,j7 zg:l < ? <
t—-1,1<j<n)(ap0o)) as input. Theorem 6
ensures that Threshold_gen in Section 3.2 is sim-
ulatable.

Theorem 6. View,(Threshold_gen(m, y, (i, 5,
1<igt-1), (5”,5”,1 <:<t-1,1<j5<
n), (a, p,a))) is computationally 1nd15t1ngulshable
from SIM(m,y, (ri,s:,1 < i <t-1), (85,6 ;,1 <
i<t—-1,1<j<n),(a,p0).

Proof. We shall analyze the information generated
by Threshold_gen and SIM in each step.

1. Both Threshold_gen and SIM choose 2(¢—1)
random numbers. Thus generate the same
probability distribution for the sets of size

2(t - 1).

2.  Threshold.gen randomly chooses three
blinding factors v, 8 and é € Z; and STM also

randomly chooses three blinding factors 7, 5

and & € Z,. These three probability distribu-
tions are t 11e same. Threshold_gen computes
the blind message e =, € — 6 and SIM com-

putes the blind message € =, £ — 5. These two
blind messages are both blinded with random
blind factors § or §. So these two probability
distributions are the same.

3. Threshold_gen generates t blind partial sig-
— i

natures R; =, e(r; + Z?:H—l fj(zi)(nkzl,k¢i

(m:f;k 1)) +t;,1 < ¢ < t, which consist of

the blind mess&ge e, the partial secrets 7; +

£
z:’;-t—f—l Fi(zi)([Ti= =1 ksti (zl-zk)) 1 <1<t

and the random numbers #,1 < i < t
SIM also generates ¢ blind partlal signa-

tures R,, =, e(r; + Zj::t—H Filzs)( szl,k;ﬁ
o)) + 6,1 £ i <t — 1, which consist
of the blind message €, the partial secrets




Table 1: Cost of the signature generation phase in
the blind threshold signature scheme and that in
the underlying blind signature scheme.

The requester

EXP | INV | MUL ADD
Scheme 1 3 0 t+2 2t+1
Scheme 1* 3 0 . 3 3

The signer or U;

EXP | INV | MUL ADD
Scheme 1 2 0 [2rn—-1]|2(n—-t+1)
Scheme 1* 2 0 3 2

where

EXP = the no. of modulo exponentiations,
INV = the no. of modulo inversions (divisions),
MUL = the no. of modulo multiplications,
ADD = the no. of modulo additions.

ri+2;'l:t+]_ fj(wi)(HZ:l,k¢z’ (g;,___zé:))7 1<:i<
t — 1, and the randoni numbers’fi, , 1 <1 <
t—1,and ITB; =, p-0- Zf;; R;. Since the
blind messages € and e are in the same prob-
abilitl distribution, the partial signatures R;

and R;,1 <1 < t¢—1, are in the same probabil-
ity distribution. In step 3, we can know that

R; and R; arein t}le same probability distri-
bution since 3 and 3 are in the same probabil-
ity distribution. Similarly, we can show that
the partial signatures 5; and S;,1 <17 < ¢, are
in the same probability distribution.

This completes the proof of Theorem 6. O

Since the underlying blind signature scheme is
unforgeable and our proposed threshold signature
scheme is simulatable, the security of the proposed
threshold signature scheme is equivalent to the dis-
crete logarithm problem.

4.3 Performance analysis

In this subsection we give an analysis of the com-
putational cost required to compute blind (¢,n)
threshold signatures in our scheme. We use as a
measure the number of modular exponentiations
and that of modular inverses required by a sin-
gle player during the execution of our signature
generation protocol. Table 1 illustrates the com-
parison of blind threshold signature scheme and
its underlying blind signature scheme. In this ta-
ble, Scheme 1 denotes the blind threshold signa-
ture scheme in Section 4 and Scheme 1* denotes its
corresponding underlying blind signature scheme.
For reducing the computational cost needed by
each signer, the value —zp/(z; —z), 1 <k <n
and k& # ¢, in Step 3 of the signature generation
phase can be computed off-line. In this case, each
signer needs to compute only 2 modular exponen-
tiation in our scheme which is the same as the
underlying blind signature schemes. Compared
with the underlying blind signature scheme, the
extra cost for signing a blind threshold signature

. : ¢ —zs,
is to compute Z?:t-!—l Fie)(Mmn i (G2 D)

and 7,4y £5(@0) ([Tim g (G755 )) in Step 3
which contains 2(n — 2) modular multiplications
and 2(n — t) additions. For reduncing the compu-
tational cost needed by the requester, the partial
signature verification in step 4 would not be done
except the final threshold signature can not pass
the verification equation in the signature verifica~
tion phase. In this approach, the requester only
needs to perform 3 modular exponentiations in
Step 2 of the signature generation phase which is
the same as the underlying blind signature scheme.
Since the blind threshold verification function of
our scheme is the same as that of the underlying
blind signature scheme, the verification cost of our
blind threshold signature is the same as that of
the underlying blind signature. Compared with
the underlying blind signature scheme, the extra
cost for requesting a blind threshold signature in
our scheme proposed in Section 4 is to compute
M, a;, Yo, Riand Y0_, S; which contains £ —1
modular multiplications and 2(¢ — 1) modular ad-
ditions. In our scheme, the size of the threshold
signature is the same as that of an individual sig-
nature and the verification process of a threshold
signature is equivalent to that of an individual sig-
nature. Thus, our proposed scheme is optimal with
respect to the threshold signature size and the ver-
ification process.

In [8], three robust threshold signature proto-
cols, namely, DSS-Thresh-Sig-1, DSS-Thresh-Sig-
2 and DSS-Thresh-Sig-3, are proposed. One ap-
proach to generate blind threshold signatures is to
take robust threshold signature schemes [8] and
turn them into blind signature schemes. The ad-
vantage of this approach is that it is quite robust
and can deal with the situation where there are
many cheaters. However, in DSS-Thresh-Sig-1,
2t + 3 modular exponentiations are required for
each signer to generate a threshold signature and
it is even worse for DSS-Thresh-Sig-2 and DSS-
Thresh-Sig-3 which requires O(nt) modular expo-
nentiations. It is clear that this approach is quite
inefficient compared to our proposed scheme.

5 Conclusion

We proposes an efficient and provably secure blind
threshold signature scheme based on discrete loga-
rithm. In our scheme, the size of a blind threshold
signature is the same as that of an individual blind
signature and the signature verification process is
equivalent to that of an individual signature. Our
proposed scheme is the first scheme, such that, its"
security is proved as equivalent as the discrete loga-
rithm problem. Our proposed scheme can be easily
applied to current efficient single-authority e-cash
schemes for distributing the power of a single au-
thority without changing the underlying structure
and degrading the overall performance.
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