
 1

A TREE-BLOCK SCHEDULING ARCHITECTURE FOR
SEPARABLE 2-D INVERSE DISCRETE WAVELET TRANSFORM

Yeu-Horng Shiau and Jer Min Jou

Department of Electrical Engineering,
National Cheng Kung University, Tainan, Taiwan, R. O. C.

Email:huh@j92a21.ee.ncku.edu.tw

ABSTRACT

In this paper, an efficient VLSI architecture for the 2-D in-
verse discrete wavelet transform is proposed. We adopt a
tree-block pipeline-scheduling scheme in it for increasing
computation performance and reducing temporary buffer.
The scheme divides the input data into several wavelet
blocks and processes these blocks one by one, so that the
size of buffer for storing temporal data is greatly reduced to
only the size of one block. The scheduling also makes the
data flow tight and regular to meet high speed and low
complexity. In addition, the architecture is pipelined effi-
ciently to reach higher throughput rate. Each filter is de-
signed regularly and modularly, so it is easily scalable for
different filter lengths and different levels by adding some
extra modules and some control signals. We also show that
hardware utilization of the two filters is 100%. Due to its
low hardware cost, small storage, regularity, and high per-
formance, the architecture can be applied to real-time ap-
plications, such as MPEG-4 and JPEG-2000.

1. INTRODUCTION

Recently, there has been a great amount of interest in the
field of Forward and Inverse Discrete Wavelet Transform
(FDWT/IDWT) for image and video processing. The
FDWT decomposes a nonstationary signal into a set of
multiscaled wavelets, which are relatively more stationary
and easier to be coded, and then these transformed compo-
nents can be exactly recovered by IDWT. The advantage of
DWT is favored over other transforms mainly from the fact
that the DWT performs a mutiresolution analysis of a sig-
nal with localization in both time and frequency. This mu-
tiresolution analysis is very similar to the way in which the
human visual system interprets images, and such is a natu-
ral and efficient way to code and store the two-dimensional
image data. However, software computation of the DWT
requires a relatively long computation time. Therefore, de-
signing a special integrated circuit for DWT is necessary
and urgent to achieve higher computation speed, especially
for real-time high-resolution video processing.

Up to now, a number of VLSI architectures for DWT have
been designed and implemented to meet the requirement
for real-time applications. Lewis and Knowles [1] first
presented multipilerless 2-D forward and inverse architec-
ture based on the four-tap Daubechies wavelet transform.
As a result, their architecture doesn’t work efficiently for

other wavelets. In [2]-[6], the architectures for FDWT have
been developed and have worked efficiently in some ap-
plications. In [7]-[9], efficient VLSI architectures for both
FDWT and IDWT was proposed and implemented. Most
of the above architectures were aimed at the optimal design
for the FDWT, which was modified to fit the manner in
IDWT. Such design, on the one hand, is well done for
combining the architecture of the FDWT and IDWT in a
single chip, but on the other hand, these architectures were
not the optimal solutions for the design of IDWT. Conse-
quently, they might not work efficiently in the inverse
manner. Kim and Lee [10] developed a scalable VLSI ar-
chitecture employing a two-channel quadrature mirror fil-
ter (QMF) lattice for the one-dimensional (1-D) DWT.
Acharya and Chen [11] presented a systolic architecture for
1-D DWT and it is suitable for both decomposition and
reconstruction of signals. The above architectures could
work efficiently for 1-D DWT, but it needs a large storage
module for rearranging the data between the row and col-
umn computations when the architectures were extended to
the separable 2-D DWT. It is impractical to implement in a
single chip when the image size becomes too large. In [12],
a low-cost VLSI architecture based on 2-D IDWT was
presented but was not easily to scale up for different filter
lengths. Chakrabarti and Mumford [14] proposed several
architectures and scheduling algorithms for encoders and
decoders based on 2-D DWT. Their motivation was to aid
the designer in choosing one that is best suited for a spe-
cific application. While some applications require the la-
tency or the computation time to be low others require the
memory size or the area to be low. However, the filters
used in their architectures were not active all the time. That
means the computation time can be sped up.

It can be seen that there are a few architectures for 2-D
IDWT and most of them are just modified from the archi-
tectures for FDWT as mention before. Actually, the be-
haviors of FDWT and IDWT are similar but not really all
the same. The most difference is that in the FDWT the re-
quired computation for the next level is reduced while the
required computation for the next level is increased in the
IDWT. If we treated the behavior in the IDWT like the one
in the FDWT, such design might not work efficiently in the
inverse manner. In this paper, we consider the difference
between FDWT and IDWT, so we concentrate on the
manner in IDWT and propose a tree-block pipe-
line-scheduling scheme for the VLSI design. The rest of
this paper is organized as follows. In Section II, we briefly
described the subband structure of the IDWT. In Section III,
we introduce the tree-block scheduling scheme. In Section

 2

IV, we describe the proposed VLSI architecture. Then in
Section V, we show the proposed architecture can be easily
scalable for different filter lengths and different octave lev-
els. In Section VI, we present some results. Finally, some
conclusions are presented in Section VII.

2. INVERSE DISCRETE WAVELET TRANSFORM

 2

G

H

G

H

G

H

 2

 2

 2

 2

 2

 2

G

H

G

H

G

H

 2

 2

 2

 2

 2

 2

G

H

G

H

G

H

 2

 2

 2

 2

 2
H1

original
signal

first level

second level

third level

G

 2

H

Up Sampling

High-Pass Filter

Low-Pass Filter

Row-wise
operations

Column-wise
operations

L1

HH1

HL1

LL1

LH1

HH2

HL2

LL2

LH2

H2

L2

HH3

HL3

LL3

LH3

H3

L3

 Fig. 1. The synthesis of 2-D separable IDWT for three-level.

The IDWT processes the input signal subbands from the
coarsest resolution level to the finest one. Generally, the
2-D IDWT computation can be classified into separable
and non-separable types according to its operating manner.
Here we only consider the separable type. Fig. 1 shows the
computation of a three-level 2-D separable IDWT synthe-
sis process, in which each level is composed of two types
of processing, the column-wise processing and the
row-wise processing. Each processing consists of the
high-pass filtering (G), the low-pass filtering (H), and up
sampling. We denote the four inputs at dth-level computa-
tion along the column by HHd, HLd, LHd, and LLd, and de-
note the two inputs at dth-level computation along the row
by Hd and L d. Suppose that the length of filter (or filter tap)
is of size K, the transfer functions of filters H and G are
represented as follows:

H(z)=
1

0

K
k

k
k

h z
−

−

=
∑ , G(z)=

1

0

K
k

k
k

g z
−

−

=
∑

In the following section we first present our proposed ar-
chitecture with four filter taps for both H(z) and G(z) and
with three-level reconstruction for example, and then we
will show it can be easily scalable for different filter
lengths and different octave levels.

LL1 HL1

LH1

HL2

LH2 HH2

HL3

LH3 HH3

HH1

HL2

LH2 HH2

HL3

LH3 HH3

LL2

HL3

LH3 HH3

LL3

Original image

N

2
N

4
N

8
N

first level
synthesis

second level
synthesis

third level
synthesis

(a) (b)

(c) (d)
Fig. 2. An example for the processing of 2-D 3-level IDWT.

Now, we look close to the procedure of the reconstruction.
Let us consider a three level 2-D IDWT for image synthe-

sis. An N×N sequence of input data can be represented as
Fig. 2(a). At the beginning of processing, the
finer-coefficient subband labeled LL2 in Fig. 2(b) is first
reconstructed from the four coarsest subbands LL1 , LH1,
HL1 , and HH1 in Fig. 2(a), and then the four subband LL2,
LH2, HL2, and HH2 is used further to obtain the next finer
scaled wavelet coefficients. This processing continues until
the original image of size N × N is reconstructed (see Fig.
1(a)→(b)→(c)→(d)). Note that, because of the up sam-
pling required for both column-wise and row-wise proc-
essing, the size of the synthesized subband is four times
larger than the original after one level processing. Then,
the required computation in the next level is relatively in-
creased.

3. TREE-BLOCK SCHEDULE

We propose a new scheme for the 2-D IDWT called
tree-block pipelining schedule. In this scheme, the schedule
of the input subband coefficients is based on the depth-first
(block-first) traverse, while the previous methods are based
on the breadth-first (level-first) traverse [2]-[4]. Specifi-
cally, the breadth-first traverse just like Fig.1 first inputs
the four coarsest subbands to reconstruct the finer subband
that is further used with three other subbands in the next
level; the processing is repeated level by level until the
original image is reconstructed. In such method, at each
level, the processing cannot be started until the four wave-
let subbands are obtained, so this breadth-first traverse will
need a great amount buffers to store temporal low-low
subbands. For example, an N×N input sequence for the
computation of three-level IDWT at least requires 2 / 4N
temporary buffers to store the finest subband coefficients;
it is impractical for high-resolution image frame. Besides,
waiting the produced coefficients makes the hardware idle
some time, as a result, such design increases the overall
computation time.

LH1

LL1 HL1

HH1

LH2 HH2

HL2

LH3 HH3

HL3

B(1,0)

B(0,0)

(a) (b)

B(0,1)

Fig. 3. Reorganizing of a wavelet tree into a wavelet block.

However, the tree-block scheduling, at the beginning, di-
vides all the input subband coefficients into several wavelet
trees [13]. Each tree contains a tree root, which is one co-
efficient in the coarsest subband, and its descendants,
which are the coefficients relative to the tree root in all the
finer scale subbands (see Fig. 3(a)). Then, the coefficients
of each wavelet tree are reorganized to form a wavelet
block as shown in Fig. 3(b) where B(i,j) represents the
wavelet block at location (i,j). The concept of the wavelet
block provides an association between wavelet coefficients
and what they represent spatially in the image frame.
Therefore, this scheduling scheme processes the frame

 3

block by block for all levels not level by level until the
whole frame is reconstructed. The advantages of the
block-based processing are that (1): The next level compu-
tations within the same block can be started as early as
possible and are easily pipelined to get a higher perform-
ance, and (2): the size of a wavelet block is invariant and is
less than the image size, so the size of buffer for storing
temporal data is greatly reduced from the whole frame size
to the size of a wavelet block. For a D-level IDWT, we
need only 14D− temporary buffers and the value of D is
always small.

We assume that the synthesized level is D, and that the size
of synthesized image is N×N. Thus, the input sequence is
divided into 2 / 4DN wavelet blocks each of which is of
size 2 2D D× . Each wavelet block B(i,j) contains 4 coeffi-
cients at the first level, which are LL1(i,j), LH1(i,j), HL1(i,j)
and HH1(i,j), 12 coefficients at the second level, which are
LH2(2i+r,2j+s), HL2(2i+r,2j+s), and HH2(2i+r,2j+s) for
0 , 1r s≤ ≤ , 48 coefficients at the third level, which are
LH3(4i+r,4j+s), HL3(4i+r,4j+s), and HH3(4i+r,4j+s) for
0 , 3r s≤ ≤ , and 13 2d +⋅ coefficients at the dth level,

which are LHd(
12l− i+r, 12l− j+s), HLd(

12l− i+r, 12l− j+s),
and HHd(

12l− i+r, 12l− j+s) for 10 , 2 1lr s −≤ ≤ − . Here
LLd(x,y), LHd(x,y), HLd(x,y), and HHd(x,y) represent the
wavelet coefficients at the coordinate (x,y) in the subband
LLd, LHd, HLd, and HHd, and Ld(x,y) and Hd(x,y) repre-
sent the wavelet coefficients at the coordinate (x,y) in sub-
band Ld and HHd, respectively. The scheduling procedure
for a wavelet block B(i,j) is described below.

At Level d:

(1) For 10 , 2 1dr s −≤ ≤ − , schedule HHd(2
d-1i+r, 2d-1j+s)

and HLd(2
d-1i+r, 2d-1j+s) at time T + (2/3)(4d-1-1) +

2(2d-1r+s). Compute the outputs Hd(2
di+2r, 12d − j+s) and

Hd(2
di+2r+1, 2d-1j+s). Schedule LLd(2

di+r,2dj+s) and
LHd(2

di+r,2dj+s) at time T + (2/3)(4d-1-1) + 2(2dr+s) + 1.
Compute the outputs Ld(2

di+2r, 2d-1 j+s) and Ld(2
d i+2r+1,

2d-1 j+s).

(2) For 10 , 2 1dr s −≤ ≤ − , schedule Hd(2
di+2r, 2d-1j+s) and

Hd(2
di+2r+1, 2d-1j+s) at time T + (2/3)(4d-1-1) + 2(2d r+s)+1,

and schedule Ld(2
di+2r, 2d-1j+s) and Ld(2

di+2r+1, 2d-1j+s) at
time T+(2/3)(4d-1-1)+2(2dr+s)+2. Compute LLd(2

di+2r,
2dj+2s), LLd(2

di+2r, 2dj+2s+1), LLd(2
di+2r+1, 2dj+2s), and

LLd(2
di+2r+1, 2dj+2s+1).

It can be seen that the procedure is executed block by block
in the row major order. Thus, the beginning time T in each
wavelet block B(i,j) can be calculated as
2

(4 1)
3

D − × ()
2D

N
i j+ × .

4. PROPOSED ARCHITECTURE

Based on the tree-block scheduling described in Section III,
the computations of a wavelet block B(i,j) is shown in Fig.
4. According to the equations in Fig. 4, the data flow of the
tree-block architecture is drawn in Fig. 5. To minimize the
hardware cost, the data flow can be folded along

x-direction and y-direction onto one processor. Then, an ef-
ficient architecture for 2-D IDWT computation is derived.
Fig. 6 presents the block diagram of this high performance
and low cost VLSI architecture, which is composed of one
column filter, one row filter, two storage units, and a tem-
porary buffer unit. From Fig. 4, the proposed inverse ar-
chitecture first performs the column filtering and then the
row filtering to process the decomposed subbands. Note
that the two efficient filter structures are used to process
the computation of each wavelet block in the row major
order for all levels. The column filtering computes along
the columns and produces the outputs in the row major or-
der. The row filtering read the data from the column filter-
ing and computes along the rows and produces the outputs
in the row major order. The two storage units store the par-
tial results for the column and row filtering, which will be
used within current block or in other blocks. The tempo-
rary buffer unit stores the subband LLd(for d >1) of a
wavelet block. The details of each component are de-
scribed in the following discussions. We first present our
proposed architecture with four filter taps for both H(z) and
G(z) and with three-level reconstruction for example, and
then we will show it can be easily scalable for different fil-
ter lengths and different octave levels.

For d = 1 to D {
For q = (id ⋅−12) to (122 11 −+⋅ −− dd i) {

For p = (id ⋅−12) to (122 11 −+⋅ −− dd i) {
Column-wise processing:
Hd(2p,q)=HLd(p,q)h0+HHd(p,q)g0+HLd(p-1,q)h2+HHd(p-1,q)g2
Hd(2p+1,q)=HLd(p,q)h1+HHd(p,q)g1+HLd(p-1,q)h3+HHd(p-1,q)g3

Ld(2p,q)=LLd(p,q)h0+LHd(p,q)g0+LLd(p-1,q)h2+LHd(p-1,q)g2

Ld(2p+1,q)=LLd(p,q)h1+LHd(p,q)g1+LLd(p-1,q)h3+LHd(p-1,q)g3
Row-wise processing:
LLd+1(2p,2q)=Ld(2p,q)h0+Hd(2p,q)g0+Ld(2p,q-1)h2+Hd(2p,q-1)g2

LLd+1(2p,2q+1)=Ld(2p,q)h1+Hd(2p,q)g1+Ld(2p,q-1)h3+Hd(2p,q-1)g3

LLd+1(2p+1,2q)=Ld(2p+1,q)h0+Hd(2p+1,q)g0+Ld(2p+1,q-1)h2+Hd(2p+1,q-1)g2

LLd+1(2p+1,2q+1)=Ld(2p+1,q)h1+Hd(2p+1,q)g1+Ld(2p+1,q-1)h3+Hd(2p+1,q-1)g3

}
}

}

Fig. 4. The computations of a wave block B(i,j).

LL1,LH1,HL1,HH1(i,j)

LL2,LH2,HL2,HH2(2i,2j) LL2,LH2,HL2,HH2(2i+1,2j+1)

LL3,LH3,HL3,HH3(4i,4j) LL3,LH3,HL3,HH3(4i+1,4j+1) LL3,LH3,HL3,HH3(4i+2,4j+2) LL3,LH3,HL3,HH3(4i+3,4j+3)

LL4(8i,8j) LL4(8i+2,8j+2) LL4(8i+4,8j+4) LL4(8i+6,8j+6)

x

ycolumn-wise
processing

row-wise
processing

column-wise
processing

row-wise
processing

column-wise
processing

row-wise
processing

column-wise
processing

row-wise
processing

column-wise
processing

row-wise
processing

column-wise
processing

row-wise
processing

column-wise
processing

row-wise
processing

... ...

... ...

...

Fig. 5. The data flow for one wavelet block (D=3).

We now list the equations for column filtering in the dth
level. Here we only show the equations for computing the
outputs Hd(i,j) because the equations for computing Ld(i,j)
is similar to the ones for Hd(i,j). The equations are shown

 4

as follows.

Hd(m,n)=HLd(m,n)h0+HHd(m,n)g0+HLd(m-1,n)h2+HHd(m-1,n)g2. (1)

Hd(m+1,n)=HLd(m,n)h1+HHd(m,n)g1+HLd(m-1,n)h3+HHd(m-1,n)g3. (2)

Hd(m+2,n)=HLd(m+1,n)h0+HHd(m+1,n)g0+HLd(m,n)h2+HHd(m,n)g2. (3)

Hd(m+3,n)=HLd(m+1,n)h1+HHd(m+1,n)g1+HLd(m,n)h3+HHd(m,n)g3. (4)

Hd(m+4,n)=HLd(m+2,n)h1+HHd(m+2,n)g1+HLd(m+1,n)h3+HHd(m+1,n)g3.

...

From the above computations, it can be seen that the coef-
ficient HHd(m,n) appears in all the four equations (equa-
tion (1)-(4)) and so does the coefficient HLd(m,n). If we
can process the four equations in parallel, the storage ac-
cess times of HHd(m,n) and HLd(m,n) will be reduced and
the computation time will speed up. According to this idea,
the column filter is designed with four modules, Mu, where
1 4u≤ ≤ . Each of them has the same structure and calcu-
lates one of the four equations. Fig. 7(a) and Fig. 7(b) show
the structure of module Mu and the block diagram of the
column filter, respectively. The module Mu consists of two
multipliers and one adder. The 2n-to-n reduced width mul-
tipliers we developed [15] are used here to reduce the area.
When n is large enough, the 2n-to-n multiplier needs only
half area of a standard parallel multiplier. To reach higher
performance, two registers are inserted into the output for
pipelining with the row filter.

Column Filter Row Filter

Storage Unit 1 Storage Unit 2

Temporary Buffer

wavelet
cofficients

original
image

registers

LLd(d>1)

Fig. 6. The block diagram of the tree-block architecture.

 M 4g3 h3

 M 3g1 h1

 M 2g2

 M 1g0 h0

(b)

h2

register bank 2

register bank 1

storage unit 1

...
LH2(0,0)
HH2(0,0)
LH1(0,0)
HH1(0,0)

...
LL2(0,0)
HL2(0,0)
LL1(0,0)
HL1(0,0)

...
L2(0,0)
H2(0,0)
L1(0,0)
H1(0,0)

...
L2(1,0)
H2(1,0)
L1(1,0)
H1(1,0)

x y

(a) Mu

Fig. 7. (a) The structure of M(u) and

 (b) The block diagram of the column filter.

In Fig. 7(b), two coefficients, HHd(m,n) and HLd(m,n), are
fed simultaneously into four modules to compute the four
equations in parallel, but the results are only the partial
sums of the product terms of four finer coefficients,
Hd(m,n), Hd(m+1,n), Hd(m+2,n), and Hd(m+3,n). Thus,
equation (1) to (4) should be changed as follows:

Hd(m,n)=HLd(m,n)h0+HHd(m,n)g0+Pd(m,n)

[Pd(m,n)=HLd(m-1,n)h2+HHd(m-1,n)g2].

Hd(m+1,n)=HLd(m,n)h1+HHd(m,n)g1+Pd(m+1,n)
[Pd(m+1,n)=HLd(m-1,n)h3+HHd(m-1,n)g3].

Pd(m+2,n)=HLd(m,n)h2+HHd(m,n)g2.

Pd(m+3,n)=HLd(m,n)h3+HHd(m,n)g3.

where Pd(m,n), Pd(m+1,n), Pd(m+2,n), and Pd(m+3,n) rep-
resent the partial sums of Hd(m,n), Hd(m+1,n), Hd(m+2,n),
and Hd(m+3,n), respectively. To store these partial sums of
the finer coefficients, storage unit 1 is used for column fil-
tering as shown in Fig. 7(b). It can be seen that there are
two register banks in storage unit 1. Based on the concept
of wavelet block, each register bank consists of two types
of register sub-banks, one for intra-block storing and an-
other for inter-block storing, which are implemented with
shift register routing networks shown in Fig. 8. Intra-block
sub-bank with the size of 8 units stores the partial sums
that will be used within the current wavelet block, while
Inter-block sub-banks with the size of 2N units store the
partial sums that will be used in the other wavelet block.
Here we need an inter-block sub-bank in each level be-
cause the lifetimes of inter-block sub-banks in different
levels are overlap. Since the column filtering computes the
outputs in the row major order, we must store the partial
sums of one-row coefficients. Thus, the size of the in-
ter-block sub-bank for dth level is relative to the image size

N and level d and is of size 32 d

N
− . An example for the

scheduling for the column filtering in a wavelet block is
shown in Fig. 9, where Qd represents the partial sum of
Ld(m,n). To understand the difference between the in-
ter-block registers and intra-block registers, for instance,
P1(2,0) and P1(3,0) in Fig. 9 belong to the other block, and
they will be store in inter-block register bank. P2(2,0) and
P2(3,0) are stored in intra-block register bank since they are
within current wavelet block and will be used in the 7th
clock cycle.

Inter-block register sub-bank level 3

Inter-block register sub-bank level 2

Inter-block register sub-bank level 1

Intra-block register sub-bank

Pd(m,n)
 or

Qd(m,n)

Pd(m+2,n)
or

 Qd(m+2,n)
N/4 units

N units

N/2 units

8 units

Fig. 8. The routing networks of the registers in storage unit 1.

Time
unit

Input
Input /

Read from
storage unit 1

Output
Output/
Write to

storage unit 1
1 HH1(0,0), HL1(0,0) P1(0,0), P1(1,0) H1(0,0), H1(1,0) P1(2,0), P1(3,0)
2 LH1(0,0), LL1(0,0) Q1(0,0), Q1(1,0) L1(0,0), L1(1,0) Q1(2,0), Q1(3,0)
3 HH2(0,0), HL2(0,0) P2(0,0), P2(1,0) H2(0,0), H2(1,0) P2(2,0), P2(3,0)
4 LH2(0,0), LL2(0,0) Q2(0,0), Q2(1,0) L2(0,0), L2(1,0) Q2(2,0), Q2(3,0)
5 HH2(0,1), HL2(0,1) P2 (0,1), P2(1,1) H2(0,1), H2(1,1) P2(2,1), P2(3,1)
6 LH2(0,1), LL2(0,1) Q2(0,1), Q2(1,1) L2(0,1), L2(1,1) Q2(2,1), Q2(3,1)
7 HH2(1,0), HL2(1,0) P2(2,0), P2(3,0) H2(2,0), H2(3,0) P2(4,0), P2(5,0)
8

Fig. 9. The schedule for the column filtering.

The equations for the row filtering, which are analogous to
column filtering, are shown as follows.

LLd+1(m,n)=Ld(m,n)h0+Hd(m,n)g0+Ld(m,n-1)h2+Hd(m,n-1)g2 (5)

LLd+1(m,n+1)=Ld(m,n)h1+Hd(m,n)g1+Ld(m,n-1)h3+Hd(m,n-1)g3 (6)

 5

LLd+1(m,n+2)=Ld(m,n+1)h0+Hd(m,n+1)g0+Ld(m,n)h2+Hd(m,n)g2 (7)

LLd+1(m,n+3)=Ld(m,n+1)h0+Hd(m,n+1)g0+Ld(m,n)h2+Hd(m,n)g2 (8)

LLd+1(m,n+4)=Ld(m,n+2)h0+Hd(m,n+2)g0+Ld(m,n+1)h2+Hd(m,n+1)g2

…

From above, Ld(m,n) and Hd(m,n) are in all of the four
equations, so the idea of parallel processing is also consid-
ered. Besides, without storing the results, our design starts
row filtering as soon as the results of the column filtering
are produced. According to the scheduling in Fig. 9, two
finer coefficients are produced every clock cycle in the
column filtering, such as Ld(m,n) and Ld(m+1,n), so that the
row filter must compute eight equations in parallel. Based
on these concepts, the row filter is designed with eight
modules, Su, where 81 ≤≤ u . All of them have the same
architecture and deal with the partial sum of eight equa-
tions.

 S5

 S4

 S3

 S2

 S1

 S6

 S7

(a)

(b)

x y

reg
Inter-block register bank 4

 S8h3g3

h1g1

Inter-block register bank 3
h2g2

Inter-block register bank 2

Inter-block register bank 1

storage unit 2

0
0

0
0

0
0

0
0

h0g0

h3g3

h1g1

h2g2

h0g0

...
L2(0,0)
H2(0,0)
L1(0,0)
H1(0,0)

...
L2(1,0)
H2(1,0)
L1(1,0)
H1(1,0)

...
LL2(0,1)

LL2(0,1)

...
LL2(0,0)

LL2(0,0)

...
LL2(1,1)

LL2(1,1)

...
LL2(1,0)

LL2(1,0)

 Fig. 10. (a) The structure of S(u).

 (b) The block diagram of the row filter.

Fig. 10(a) and Fig. 10(b) show the structure of module Su
and the block diagram of the row filter, respectively. In
module Su, we also use the 2n-to-n reduced width multipli-
ers to reduce the area. Similar to the column filter, storage
unit 2, which is shown in Fig. 10(b), is used here for stor-
ing the partial results of coefficients. It only consists of in-
ter-block registers with each size of 7 units because the
partial sum of intra-block coefficients will be soon used in
the next clock cycle. The partial sum of intra-block coeffi-
cients are immediately written to and read from the regis-
ters in module Su. Note that the row filtering processes the
wavelet blocks in the row major order, so the lifetime of
inter-block registers in a block is the time to process a
wavelet block. The produced coefficients of subband LLd
(for d >1) are stored in the temporary buffer unit whose

size is 14d − for dth level. These temporal coefficients in
buffer will be soon used in the next level. An example for
the scheduling for the row filtering in a wavelet block is
shown in Fig. 11.

Time unit Input Output
2 H1(0,0),H1(1,0) 
3 L1(0,0),L1(1,0) LL2(0,0),LL2(0,1),LL2(1,0),LL2(1,1)
4 H2(0,0),H2(1,0) 
5 L2(0,0),L2(1,0) LL3(0,0),LL3(0,1),LL3(1,0),LL3(1,1)
6 H2(0,1),H2(1,1) 
7 L2(0,1),L2(1,1) LL3(0,2),LL3(1,3),LL3(1,2),LL3(1,3)
8 H2(2,0),H2(3,0) 
9 L2(2,0),L2(3,0) LL3(2,0),LL3(2,1),LL3(3,0),LL3(3,1)
10 H2(2,1),H2(3,1) 
11 L2(2,1),L2(3,1) LL3(2,2),LL3(2,3),LL3(3,2),LL3(3,3)
… …

Fig. 11. The schedule for the row filtering.

5. SCALABILITY FOR THE IDWT

In this section, we will show the extension for difference
filter tap and different levels of the proposed architecture.
When the high-pass filter tap extends to K1 and the
low-pass filter tap extends to K2 (suppose K1>K2, and K1
and K2 are both even.), the equations for column filtering in
the dth level are changed as follows.

2 1

2 1

1 1
2 2

2 2
0 0

1 1
2 2

2 1 2 1
0 0

(2 ,) (,) (,) .

(2 1,) (,) (,) .

K K

d d p d q
p q

K K

d d p d q
p q

H m k n HL m k p n h HH m k q n g

H m k n HL m k p n h HH m k q n g

− −

= =

− −

+ +
= =

+ = + − + + −

+ + = + − + + −

∑ ∑

∑ ∑

for k = 0, 1, 2, …, (K1-1).
It can be observed that HLd(m,n) appears in the first K2
equations and HHd(m,n) appears in all the K1 equations.
Similarly, to reduce the storage access times, the architec-
ture for column filtering, which is changed to Fig. 12(b),
needs K2 Mu-modules and (K1-K2) M′u-modules to calculate
these K1 equations at the same time. The structure of
M′u-module is presented in Fig. 12(a). These K2
Mu-modules compute the partial sum of the first K2 equa-
tions every time while (K1-K2) M′u-modules compute the
partial sum of the other (K1-K2) equations. To store these
partial sums, the storage unit 1 needs (K1-2) register banks
and each register banks are the same as Fig. 13. The total
size of storage unit 1 is calculated as follows.

Total size = (Intra-block registers + Inter-block registers) ×
number of register banks

 = (1
... 2

2 2
D

D

N N
N −+ + + +)×(K1-2) ≈ 2(K1-2) ×N

units
The equations for the row filtering with K1 high-pass filter
tap and with K2 low-pass filter tap are shown as follows.

.),(),()12,(

.),(),()2,(

1
2

0

1
2

0
12121

1
2

0

1
2

0
221

2 1

2 1

∑ ∑

∑ ∑
−

=

−

=
+++

−

=

−

=
+

−++−+=++

−++−+=+

K

p

K

q
qdpdd

K

p

K

q
qdpdd

gqknmLhpknmLknmLL

gqknmLhpknmLknmLL

for k = 0, 1, 2, …, (K1-1).

From above, Ld(m,n) appears in the first K2 equations and

 6

Hd(m,n) appears in all the K1 equations, so the row filtering
consists of 2K1 Su-modules as shown in Fig. 14. The K1
Su-modules compute the K1 equations for Ld(m,n), and the
other K1 Su-modules compute the K1 equations for
Ld(m+1,n). Similarly, those Su-modules calculate only par-
tial sums of the equations, which must be stored in the
storage unit 2. The storage unit 2 includes 2(K1-2) in-

ter-block register banks, each of which is of size 12 −D .
The total size of storage unit 2 is calculated as follows.

Total size =Inter-block registers × number of register banks

=(2 1D −)×(2K1−4) units

6. RESULTS

It can be seen from the scheduling described in Section III
that it requires two cycles to process the four coefficients in
the first level and requires eight cycles to process the six-
teen coefficients in the second level within a wavelet block.
If the octave level extends to D, the number of cycles to
process one wavelet block is as follows.

Cycles = (1) 2
2 8 32 ... 2 4 (4 1)

3
D D−+ + + + ⋅ = − .

Thus, the total number of cycles for processing an N×N
image is shown below:

Total Cycles = the number of wavelet blocks

× Cycles for one block

 = 2 21 2 2 1
(4 1) (1)

4 3 3 4
D

D D
N N× − = − .

When D is large, it needs at most 2(2 / 3)N cycles to

process an image frame. In addition, the schedule also
shows that both row filter and column filter achieve 100%
hardware utilization and that the data flow is kept regularly.
The total size of two storage units for an N×N image is as
follows.

Total Size = storage unit 1 + storage unit 2
+ temporary buffer

≈ 2(K−2)×N+(2 1D −)×(2K−4)+ 14D− Units.

When N is large enough, such as 512 or 1024, the total
storage size need only 2 (2)N K − units.

Based on the proposed 2-D IDWT architecture, we com-
pare, in Table I, the characteristics of various architectures
with respect to the number of multipliers, the number of
adders, storage size, storage type, and computing time. Let
the filter tap be K and the image size be N×N, it can be
seen that the tree-block architecture we proposed is the best
one in computation time compared with other architectures.
Besides, both column filter and row filter achieve the
100% hardware utilization.

7.RESULTS

In this paper, we proposed a tree-block scheduling scheme
for 2-D separable IDWT. The advantage of this scheme is

that the required buffers stored the temporary subband can
be greatly reduced because wavelet coefficients are proc-
essed block by block and that the scheduling make the data
flow tight and regular to meet high speed and low com-
plexity. Based on this technique, an efficient VLSI archi-
tecture have been designed and implemented. To minimize
the hardware cost, the architecture utilized two efficient
filter structures with reduced width multipliers to accom-
plish the computation of all octave levels. Moreover, each
filter in the architecture is designed regularly and modu-
larly, so it is easily scalable for different filter lengths and
different IDWT octave levels by adding some extra mod-
ules. Additionally, both column and row filters achieve the
100% resource utilization. Due to its small storage size,
regularity, and high performance, the architecture is suited
to time-critical applications, such as MPEG-4 and
JPEG-2000.

Architectures Multipliers Adders Storage Size Storage Type Computing Time Control unit

Direct K K N2 RAM 4N2 Simple

[8] K
2

1
3 4)1

2
(7 +−
K

 NK RAM N
2 Complex

[11] 4K 4K-4 NK/2 RAM N
2 Simple

Tree-Block 4K 4K-2 2N(K-2) Register
2

3
2

N Simple

Table I. The comparison of various IDWT architectures.

8. CONCLUSION

In this paper, we proposed a tree-block scheduling scheme
for 2-D separable IDWT. The advantage of this scheme is
that the required buffers stored the temporary subband can
be greatly reduced because wavelet coefficients are proc-
essed block by block and that the scheduling make the data
flow tight and regular to meet high speed and low com-
plexity. Based on this technique, an efficient VLSI archi-
tecture have been designed and implemented. To minimize
the hardware cost, the architecture utilized two efficient
filter structures with reduced width multipliers to accom-
plish the computation of all octave levels. Moreover, each
filter in the architecture is designed regularly and modu-
larly, so it is easily scalable for different filter lengths and
different IDWT octave levels by adding some extra mod-
ules. Additionally, both column and row filters achieve the
100% resource utilization. Due to its small storage size,
regularity, and high performance, the architecture is suited
to time-critical applications, such as MPEG-4 and
JPEG-2000.

REFERENCE

[1] A. S. Lewis and G. Knowles, “VLSI Architecture for
2-D Daubechies Wavelet Transform Without Multi-
pliers”. Electronics Letters, pp. 171-173, Jan. 1991.

[2] M. Vishwanath, R. M. Owens and M. J. Irwin, “VLSI
architectures for the discrete wavelet transform,”
IEEE Trans. Circuits and Systems, vol. 42, no. 5, pp.
305-316, 1995.

[3] C. Chakrabarti and M. Vishwanath, “Efficient reali-
zations of the discrete and continuous wavelet trans-
forms: From single chip implementations to map-

 7

pings on SIMD array computers,” IEEE Trans. Signal
Processing, vol. 43, no. 5, pp. 759-771, 1995.

[4] H. Y. H. Chuang and L. Chen, “VLSI architecture for
the fast 2-D discrete orthonormal wavelet transform,”
Journal of VLSI Signal Processing, vol. 10,
pp.225-236, 1995.

[5] Jijun Chen and M. A. Bayoumi, “A Scalable Systolic
Array Architecture for 2-D Discrete Wavelet Trans-
form”, IEEE VLSI Signal Processing, pp. 303-312,
1995.

[6] A. Grzeszczak, M. K. Mandal, S. Panchanathan,
“VLSI implementation of discrete wavelet transform”,
IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, pp. 421-433, Dec. 1996.

[7] M. Vishwanath and R. M. Owens, “A Common Ar-
chitecture for the DWT and IDWT”. Proceedings of
International Conference on Application Specific
Systems, Architectures and Processors, pp. 193–198.
1996.

[8] X. Chen, T. Zhou, Z. Qianlin, and M. Hao. “2-D
DWT/IDWT Processor Design for Image Coding”.
2nd International Conference on ASIC, pp. 111–114,
1996.

[9] M. H. Sheu, M. D. Shieh and S. F. Cheng. “A Unified
VLSI Architecture for Decomposition and Synthesis
of Discrete Wavelet Transform”. IEEE 39th Midwest
symposium on Circuits and Systems, pp. 113–116,

1996.
[10] J. T. Kim, Y. H. Lee, T. Isshiki, and H. Kunieda,

“Scalable VLSI Architectures for Lattice Struc-
ture-Based Discrete Wavelet Transform”. IEEE
Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, pp. 1031-1043, Aug. 1998.

[11] T. Acharya and P. Y. Chen. “VLSI Implementation of
a DWT Architecture”. Proceedings of IEEE Interna-
tional Symposium on Circuits and Systems, pp.
272–275, 1998.

[12] Y. Chu and S. J. Chen, “Efficient VLSI Architecture
for 2-D Inverse Discrete Wavelet Transforms”. Pro-
ceedings of the IEEE International Symposium on
Circuits and Systems, pp. 524-527, July 1999.

[13] S. A. Martucci, I. Sodagar, T. Chiang, and Y. Q.
Zhang, “A Zerotree Wavelet Video Coder”. IEEE
Transactions on Circuits and Systems for Video
Technology, pp. 109-118. Feb. 1997.

[14] C. Chakrabarti, and C. Mumford, “Efficient Realiza-
tions of Encoders and Decoders Based on the 2-D
Discrete Wavelet Transform”, IEEE Transactions on
VLSI Systems, pp. 289-298. Sep. 1999.

[15] J. M. Jou and S. R. Kuang, “Low-error Design of a
Fixed-width two’s Complement multiplier for DSP
applications” IEEE Transactions on Circuits & Sys-
tems Part II., pp.836-841. Sept. 1999.

register bank 1
 M2g2

 M1g0 h0

...
LH2(0,0)
HH2(0,0)
LH1(0,0)
HH1(0,0)

...
L2(0,0)
H2(0,0)
L1(0,0)
H1(0,0)

h2

register bank (K2/2-1)

...

2/2KM22 −Kg 22−Kh

12/2' +KM2Kg

2/1'KM21−Kg

...

register bank (K2/2)

register bank (K1/2-1)

g3

g1 h1

h3

register bank (K1/2+K2/2-2)

...

12−Kg 12−Kh

12 +Kg

11−Kg

...

register bank (K1-2)

12/1 +KM

22/1 +KM

2/2/ 21 KKM +

12/2/ 21
' ++KKM

1
'KM

register bank (K1/2)

register bank (K1/2+K2/2-1)

storage unit 1

...
LL2(0,0)
HL2(0,0)
LL1(0,0)
HL1(0,0)

...
L2(1,0)
H2(1,0)
L1(1,0)
H1(1,0)

(b)

...
...

...
...

x

(a) M'u

Fig. 12. (a) The structure of M′(u) and (b) The block diagram of the column filter for scalable Architecture.

 8

Inter-block register sub-bank level 3

Intra-block register sub-bank level 2

Inter-block register sub-bank level 1

Intra-block register sub-bank
2D units

N/2D units

N/2D-1 units

N units

...

Fig. 13. The routing networks of the registers in storage unit 1 for scalable Architecture.

Inter-block register bank (K2/2-1)

 S2h2g2

 S1h0g0

Inter-block register bank 1

...

storage unit 2

Inter-block register bank (K2/2)

Inter-block register bank (K1/2-1)

12/2 +KS

2/1KS

Inter-block register bank (K1/2+K2/2-2)

h3g3

h1g1

Inter-block register bank (K1-2)1KS

12/1 +KS

22/1 +KS

2/2/ 21 KKS +

12/2/ 21 ++ KKS

Inter-block register bank (K1/2)

Inter-block register bank (K1/2+K2/2-1)

0
0

0
0

Inter-block register bank (K1+K2/2-3)

h2g2

h0g0

Inter-block register bank (K1-1)

22 −Kg 22 −Kh

02Kg
Inter-block register bank (K1+K2/2-2)

Inter-block register bank (3K1/2-3)
021 −Kg

2/21 KKS +

2/3 1KS

Inter-block register bank (3K1/2+K2/2-4)

h3g3

h1g1

12 −Kg 12 −Kh

012 +Kg

Inter-block register bank (2K1-4)
011 −Kg

12KS

2/2/3 21 KKS +

12/2/3 21 ++ KKS

Inter-block register bank (3K1/2-2)

Inter-block register bank (3K1/2+K2/2-3)

0
0

0
0

units 12 L −

...
LL2(0,1)

LL2(0,1)

...
L2(0,0)
H2(0,0)
L1(0,0)
H1(0,0)

...
L2(1,0)
H2(1,0)
L1(1,0)
H1(1,0)

...
LL2(0,0)

LL2(0,0)

...
LL2(1,1)

LL2(1,1)

...
LL2(1,0)

LL2(1,0)

...
...

...
...

...
...

...

22 −Kg 22 −Kh

02Kg

021 −Kg

0

12 −Kg 12 −Kh

012 +Kg

11−Kg

11+KS

21+KS

12/21 ++KKS

12/3 1 +KS

22/3 1 +KS

2/2KS

...
...

...
...

...
...

...
...

Fig. 14. The block diagram of the row filter for scalable Architecture.

