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ABSTRACT 

In this paper, an efficient VLSI architecture for the 2-D in-
verse discrete wavelet transform is proposed. We adopt a 
tree-block pipeline-scheduling scheme in it for increasing 
computation performance and reducing temporary buffer. 
The scheme divides the input data into several wavelet 
blocks and processes these blocks one by one, so that the 
size of buffer for storing temporal data is greatly reduced to 
only the size of one block. The scheduling also makes the 
data flow tight and regular to meet high speed and low 
complexity. In addition, the architecture is pipelined effi-
ciently to reach higher throughput rate. Each filter is de-
signed regularly and modularly, so it is easily scalable for 
different filter lengths and different levels by adding some 
extra modules and some control signals. We also show that 
hardware utilization of the two filters is 100%. Due to its 
low hardware cost, small storage, regularity, and high per-
formance, the architecture can be applied to real-time ap-
plications, such as MPEG-4 and JPEG-2000. 

1. INTRODUCTION 

Recently, there has been a great amount of interest in the 
field of Forward and Inverse Discrete Wavelet Transform 
(FDWT/IDWT) for image and video processing. The 
FDWT decomposes a nonstationary signal into a set of 
multiscaled wavelets, which are relatively more stationary 
and easier to be coded, and then these transformed compo-
nents can be exactly recovered by IDWT. The advantage of 
DWT is favored over other transforms mainly from the fact 
that the DWT performs a mutiresolution analysis of a sig-
nal with localization in both time and frequency. This mu-
tiresolution analysis is very similar to the way in which the 
human visual system interprets images, and such is a natu-
ral and efficient way to code and store the two-dimensional 
image data. However, software computation of the DWT 
requires a relatively long computation time. Therefore, de-
signing a special integrated circuit for DWT is necessary 
and urgent to achieve higher computation speed, especially 
for real-time high-resolution video processing. 

Up to now, a number of VLSI architectures for DWT have 
been designed and implemented to meet the requirement 
for real-time applications. Lewis and Knowles [1] first 
presented multipilerless 2-D forward and inverse architec-
ture based on the four-tap Daubechies wavelet transform. 
As a result, their architecture doesn’t work efficiently for 

other wavelets. In [2]-[6], the architectures for FDWT have 
been developed and have worked efficiently in some ap-
plications. In [7]-[9], efficient VLSI architectures for both 
FDWT and IDWT was proposed and implemented. Most 
of the above architectures were aimed at the optimal design 
for the FDWT, which was modified to fit the manner in 
IDWT. Such design, on the one hand, is well done for 
combining the architecture of the FDWT and IDWT in a 
single chip, but on the other hand, these architectures were 
not the optimal solutions for the design of IDWT. Conse-
quently, they might not work efficiently in the inverse 
manner. Kim and Lee [10] developed a scalable VLSI ar-
chitecture employing a two-channel quadrature mirror fil-
ter (QMF) lattice for the one-dimensional (1-D) DWT. 
Acharya and Chen [11] presented a systolic architecture for 
1-D DWT and it is suitable for both decomposition and 
reconstruction of signals. The above architectures could 
work efficiently for 1-D DWT, but it needs a large storage 
module for rearranging the data between the row and col-
umn computations when the architectures were extended to 
the separable 2-D DWT. It is impractical to implement in a 
single chip when the image size becomes too large. In [12], 
a low-cost VLSI architecture based on 2-D IDWT was 
presented but was not easily to scale up for different filter 
lengths. Chakrabarti and Mumford [14] proposed several 
architectures and scheduling algorithms for encoders and 
decoders based on 2-D DWT. Their motivation was to aid 
the designer in choosing one that is best suited for a spe-
cific application. While some applications require the la-
tency or the computation time to be low others require the 
memory size or the area to be low. However, the filters 
used in their architectures were not active all the time. That 
means the computation time can be sped up. 

It can be seen that there are a few architectures for 2-D 
IDWT and most of them are just modified from the archi-
tectures for FDWT as mention before. Actually, the be-
haviors of FDWT and IDWT are similar but not really all 
the same. The most difference is that in the FDWT the re-
quired computation for the next level is reduced while the 
required computation for the next level is increased in the 
IDWT. If we treated the behavior in the IDWT like the one 
in the FDWT, such design might not work efficiently in the 
inverse manner. In this paper, we consider the difference 
between FDWT and IDWT, so we concentrate on the 
manner in IDWT and propose a tree-block pipe-
line-scheduling scheme for the VLSI design. The rest of 
this paper is organized as follows. In Section II, we briefly 
described the subband structure of the IDWT. In Section III, 
we introduce the tree-block scheduling scheme. In Section 
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IV, we describe the proposed VLSI architecture. Then in 
Section V, we show the proposed architecture can be easily 
scalable for different filter lengths and different octave lev-
els. In Section VI, we present some results. Finally, some 
conclusions are presented in Section VII. 

2. INVERSE DISCRETE WAVELET TRANSFORM 
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 Fig. 1. The synthesis of 2-D separable IDWT for three-level. 

The IDWT processes the input signal subbands from the 
coarsest resolution level to the finest one. Generally, the 
2-D IDWT computation can be classified into separable 
and non-separable types according to its operating manner. 
Here we only consider the separable type. Fig. 1 shows the 
computation of a three-level 2-D separable IDWT synthe-
sis process, in which each level is composed of two types 
of processing, the column-wise processing and the 
row-wise processing. Each processing consists of the 
high-pass filtering (G), the low-pass filtering (H), and up 
sampling. We denote the four inputs at dth-level computa-
tion along the column by HHd, HLd, LHd, and LLd, and de-
note the two inputs at dth-level computation along the row 
by Hd and L d. Suppose that the length of filter (or filter tap) 
is of size K, the transfer functions of filters H and G are 
represented as follows: 
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In the following section we first present our proposed ar-
chitecture with four filter taps for both H(z) and G(z) and 
with three-level reconstruction for example, and then we 
will show it can be easily scalable for different filter 
lengths and different octave levels. 
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Fig. 2. An example for the processing of 2-D 3-level IDWT. 

Now, we look close to the procedure of the reconstruction. 
Let us consider a three level 2-D IDWT for image synthe-

sis. An N×N sequence of input data can be represented as 
Fig. 2(a). At the beginning of processing, the 
finer-coefficient subband labeled LL2 in Fig. 2(b) is first 
reconstructed from the four coarsest subbands LL1 , LH1, 
HL1 , and HH1 in Fig. 2(a), and then the four subband LL2, 
LH2, HL2, and HH2 is used further to obtain the next finer 
scaled wavelet coefficients. This processing continues until 
the original image of size N × N is reconstructed (see Fig. 
1(a)→(b)→(c)→(d)). Note that, because of the up sam-
pling required for both column-wise and row-wise proc-
essing, the size of the synthesized subband is four times 
larger than the original after one level processing. Then, 
the required computation in the next level is relatively in-
creased. 

3. TREE-BLOCK SCHEDULE 

We propose a new scheme for the 2-D IDWT called 
tree-block pipelining schedule. In this scheme, the schedule 
of the input subband coefficients is based on the depth-first 
(block-first) traverse, while the previous methods are based 
on the breadth-first (level-first) traverse [2]-[4]. Specifi-
cally, the breadth-first traverse just like Fig.1 first inputs 
the four coarsest subbands to reconstruct the finer subband 
that is further used with three other subbands in the next 
level; the processing is repeated level by level until the 
original image is reconstructed. In such method, at each 
level, the processing cannot be started until the four wave-
let subbands are obtained, so this breadth-first traverse will 
need a great amount buffers to store temporal low-low 
subbands. For example, an N×N input sequence for the 
computation of three-level IDWT at least requires 2 / 4N  
temporary buffers to store the finest subband coefficients; 
it is impractical for high-resolution image frame. Besides, 
waiting the produced coefficients makes the hardware idle 
some time, as a result, such design increases the overall 
computation time. 
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Fig. 3. Reorganizing of a wavelet tree into a wavelet block. 

However, the tree-block scheduling, at the beginning, di-
vides all the input subband coefficients into several wavelet 
trees [13]. Each tree contains a tree root, which is one co-
efficient in the coarsest subband, and its descendants, 
which are the coefficients relative to the tree root in all the 
finer scale subbands (see Fig. 3(a)). Then, the coefficients 
of each wavelet tree are reorganized to form a wavelet 
block as shown in Fig. 3(b) where B(i,j) represents the 
wavelet block at location (i,j). The concept of the wavelet 
block provides an association between wavelet coefficients 
and what they represent spatially in the image frame. 
Therefore, this scheduling scheme processes the frame 
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block by block for all levels not level by level until the 
whole frame is reconstructed. The advantages of the 
block-based processing are that (1): The next level compu-
tations within the same block can be started as early as 
possible and are easily pipelined to get a higher perform-
ance, and (2): the size of a wavelet block is invariant and is 
less than the image size, so the size of buffer for storing 
temporal data is greatly reduced from the whole frame size 
to the size of a wavelet block. For a D-level IDWT, we 
need only 14D−  temporary buffers and the value of D is 
always small. 

We assume that the synthesized level is D, and that the size 
of synthesized image is N×N. Thus, the input sequence is 
divided into 2 / 4DN  wavelet blocks each of which is of 
size 2 2D D× . Each wavelet block B(i,j) contains 4 coeffi-
cients at the first level, which are LL1(i,j), LH1(i,j), HL1(i,j) 
and HH1(i,j), 12 coefficients at the second level, which are 
LH2(2i+r,2j+s), HL2(2i+r,2j+s), and HH2(2i+r,2j+s) for 
0 , 1r s≤ ≤ , 48 coefficients at the third level, which are 
LH3(4i+r,4j+s), HL3(4i+r,4j+s), and HH3(4i+r,4j+s) for 
0 , 3r s≤ ≤ , and 13 2d +⋅  coefficients at the dth level, 

which are LHd(
12l− i+r, 12l− j+s), HLd(

12l− i+r, 12l− j+s), 
and HHd(

12l− i+r, 12l− j+s) for 10 , 2 1lr s −≤ ≤ − . Here 
LLd(x,y), LHd(x,y), HLd(x,y), and HHd(x,y) represent the 
wavelet coefficients at the coordinate (x,y) in the subband 
LLd, LHd, HLd, and HHd,  and Ld(x,y) and Hd(x,y) repre-
sent the wavelet coefficients at the coordinate (x,y) in sub-
band Ld and HHd, respectively. The scheduling procedure 
for a wavelet block B(i,j) is described below. 

At Level d: 

(1) For 10 , 2 1dr s −≤ ≤ − , schedule HHd(2
d-1i+r, 2d-1j+s) 

and HLd(2
d-1i+r, 2d-1j+s) at time T + (2/3)(4d-1-1) + 

2(2d-1r+s). Compute the outputs Hd(2
di+2r, 12d − j+s) and 

Hd(2
di+2r+1, 2d-1j+s). Schedule LLd(2

di+r,2dj+s) and 
LHd(2

di+r,2dj+s) at time T + (2/3)(4d-1-1) + 2(2dr+s) + 1. 
Compute the outputs Ld(2

di+2r, 2d-1 j+s) and Ld(2
d i+2r+1, 

2d-1 j+s). 

(2) For 10 , 2 1dr s −≤ ≤ − , schedule Hd(2
di+2r, 2d-1j+s) and 

Hd(2
di+2r+1, 2d-1j+s) at time T + (2/3)(4d-1-1) + 2(2d r+s)+1, 

and schedule Ld(2
di+2r, 2d-1j+s) and Ld(2

di+2r+1, 2d-1j+s) at 
time T+(2/3)(4d-1-1)+2(2dr+s)+2. Compute LLd(2

di+2r, 
2dj+2s), LLd(2

di+2r, 2dj+2s+1), LLd(2
di+2r+1, 2dj+2s), and 

LLd(2
di+2r+1, 2dj+2s+1). 

It can be seen that the procedure is executed block by block 
in the row major order. Thus, the beginning time T in each 
wavelet block B(i,j) can be calculated as   
2

(4 1)
3

D − × ( )
2D

N
i j+ × . 

4. PROPOSED ARCHITECTURE 

Based on the tree-block scheduling described in Section III, 
the computations of a wavelet block B(i,j) is shown in Fig. 
4. According to the equations in Fig. 4, the data flow of the 
tree-block architecture is drawn in Fig. 5. To minimize the 
hardware cost, the data flow can be folded along 

x-direction and y-direction onto one processor. Then, an ef-
ficient architecture for 2-D IDWT computation is derived. 
Fig. 6 presents the block diagram of this high performance 
and low cost VLSI architecture, which is composed of one 
column filter, one row filter, two storage units, and a tem-
porary buffer unit. From Fig. 4, the proposed inverse ar-
chitecture first performs the column filtering and then the 
row filtering to process the decomposed subbands. Note 
that the two efficient filter structures are used to process 
the computation of each wavelet block in the row major 
order for all levels. The column filtering computes along 
the columns and produces the outputs in the row major or-
der. The row filtering read the data from the column filter-
ing and computes along the rows and produces the outputs 
in the row major order. The two storage units store the par-
tial results for the column and row filtering, which will be 
used within current block or in other blocks. The tempo-
rary buffer unit stores the subband LLd(for d >1) of a 
wavelet block. The details of each component are de-
scribed in the following discussions. We first present our 
proposed architecture with four filter taps for both H(z) and 
G(z) and with three-level reconstruction for example, and 
then we will show it can be easily scalable for different fil-
ter lengths and different octave levels.  

For d = 1 to D { 
For q = ( id ⋅−12 ) to ( 122 11 −+⋅ −− dd i ) { 

For p = ( id ⋅−12 ) to ( 122 11 −+⋅ −− dd i ) { 
Column-wise processing:  
Hd(2p,q)=HLd(p,q)h0+HHd(p,q)g0+HLd(p-1,q)h2+HHd(p-1,q)g2 
Hd(2p+1,q)=HLd(p,q)h1+HHd(p,q)g1+HLd(p-1,q)h3+HHd(p-1,q)g3 

Ld(2p,q)=LLd(p,q)h0+LHd(p,q)g0+LLd(p-1,q)h2+LHd(p-1,q)g2 

Ld(2p+1,q)=LLd(p,q)h1+LHd(p,q)g1+LLd(p-1,q)h3+LHd(p-1,q)g3 
Row-wise processing:  
LLd+1(2p,2q)=Ld(2p,q)h0+Hd(2p,q)g0+Ld(2p,q-1)h2+Hd(2p,q-1)g2 

LLd+1(2p,2q+1)=Ld(2p,q)h1+Hd(2p,q)g1+Ld(2p,q-1)h3+Hd(2p,q-1)g3 

LLd+1(2p+1,2q)=Ld(2p+1,q)h0+Hd(2p+1,q)g0+Ld(2p+1,q-1)h2+Hd(2p+1,q-1)g2 

LLd+1(2p+1,2q+1)=Ld(2p+1,q)h1+Hd(2p+1,q)g1+Ld(2p+1,q-1)h3+Hd(2p+1,q-1)g3 

} 
} 

} 
 

Fig. 4. The computations of a wave block B(i,j). 
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Fig. 5. The data flow for one wavelet block (D=3). 

We now list the equations for column filtering in the dth 
level. Here we only show the equations for computing the 
outputs Hd(i,j) because the equations for computing Ld(i,j) 
is similar to the ones for Hd(i,j). The equations are shown 
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as follows. 

Hd(m,n)=HLd(m,n)h0+HHd(m,n)g0+HLd(m-1,n)h2+HHd(m-1,n)g2.     (1) 

Hd(m+1,n)=HLd(m,n)h1+HHd(m,n)g1+HLd(m-1,n)h3+HHd(m-1,n)g3.   (2) 

Hd(m+2,n)=HLd(m+1,n)h0+HHd(m+1,n)g0+HLd(m,n)h2+HHd(m,n)g2.  (3) 

Hd(m+3,n)=HLd(m+1,n)h1+HHd(m+1,n)g1+HLd(m,n)h3+HHd(m,n)g3.  (4) 

Hd(m+4,n)=HLd(m+2,n)h1+HHd(m+2,n)g1+HLd(m+1,n)h3+HHd(m+1,n)g3. 

... 

From the above computations, it can be seen that the coef-
ficient HHd(m,n) appears in all the four equations ( equa-
tion (1)-(4)) and so does the coefficient HLd(m,n). If we 
can process the four equations in parallel, the storage ac-
cess times of HHd(m,n) and HLd(m,n) will be reduced and 
the computation time will speed up. According to this idea, 
the column filter is designed with four modules, Mu, where 
1 4u≤ ≤ . Each of them has the same structure and calcu-
lates one of the four equations. Fig. 7(a) and Fig. 7(b) show 
the structure of module Mu and the block diagram of the 
column filter, respectively. The module Mu consists of two 
multipliers and one adder. The 2n-to-n reduced width mul-
tipliers we developed [15] are used here to reduce the area. 
When n is large enough, the 2n-to-n multiplier needs only 
half area of a standard parallel multiplier. To reach higher 
performance, two registers are inserted into the output for 
pipelining with the row filter. 

Column Filter Row Filter

Storage Unit 1 Storage Unit 2

Temporary Buffer

wavelet
cofficients

original
image

registers

LLd(d>1)

Fig. 6. The block diagram of the tree-block architecture. 
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Fig. 7. (a) The structure of M(u) and 

                 (b) The block diagram of the column filter. 

In Fig. 7(b), two coefficients, HHd(m,n) and HLd(m,n), are 
fed simultaneously into four modules to compute the four 
equations in parallel, but the results are only the partial 
sums of the product terms of four finer coefficients, 
Hd(m,n), Hd(m+1,n), Hd(m+2,n), and Hd(m+3,n). Thus, 
equation (1) to (4) should be changed as follows: 

Hd(m,n)=HLd(m,n)h0+HHd(m,n)g0+Pd(m,n) 

[Pd(m,n)=HLd(m-1,n)h2+HHd(m-1,n)g2]. 

Hd(m+1,n)=HLd(m,n)h1+HHd(m,n)g1+Pd(m+1,n) 
[Pd(m+1,n)=HLd(m-1,n)h3+HHd(m-1,n)g3]. 

Pd(m+2,n)=HLd(m,n)h2+HHd(m,n)g2. 

Pd(m+3,n)=HLd(m,n)h3+HHd(m,n)g3. 

where Pd(m,n), Pd(m+1,n), Pd(m+2,n), and Pd(m+3,n) rep-
resent the partial sums of Hd(m,n), Hd(m+1,n), Hd(m+2,n), 
and Hd(m+3,n), respectively. To store these partial sums of 
the finer coefficients, storage unit 1 is used for column fil-
tering as shown in Fig. 7(b). It can be seen that there are 
two register banks in storage unit 1. Based on the concept 
of wavelet block, each register bank consists of two types 
of register sub-banks, one for intra-block storing and an-
other for inter-block storing, which are implemented with 
shift register routing networks shown in Fig. 8. Intra-block 
sub-bank with the size of 8 units stores the partial sums 
that will be used within the current wavelet block, while 
Inter-block sub-banks with the size of 2N units store the 
partial sums that will be used in the other wavelet block. 
Here we need an inter-block sub-bank in each level be-
cause the lifetimes of inter-block sub-banks in different 
levels are overlap. Since the column filtering computes the 
outputs in the row major order, we must store the partial 
sums of one-row coefficients. Thus, the size of the in-
ter-block sub-bank for dth level is relative to the image size 

N and level d and is of size 32 d

N
− . An example for the 

scheduling for the column filtering in a wavelet block is 
shown in Fig. 9, where Qd represents the partial sum of 
Ld(m,n). To understand the difference between the in-
ter-block registers and intra-block registers, for instance, 
P1(2,0) and P1(3,0) in Fig. 9 belong to the other block, and 
they will be store in inter-block register bank. P2(2,0) and 
P2(3,0) are stored in intra-block register bank since they are 
within current wavelet block and will be used in the 7th 
clock cycle. 

Inter-block register sub-bank level 3

Inter-block register sub-bank level 2

Inter-block register sub-bank level 1

Intra-block register sub-bank

Pd(m,n)
 or

Qd(m,n)

Pd(m+2,n)
or

 Qd(m+2,n)
N/4 units

N units

N/2 units

8 units

 
Fig. 8. The routing networks of the registers in storage unit 1. 

Time 
unit 

Input 
Input /  

Read from  
storage unit 1 

Output 
Output/ 
Write to  

storage unit 1 
1 HH1(0,0), HL1(0,0) P1(0,0), P1(1,0) H1(0,0), H1(1,0) P1(2,0), P1(3,0) 
2 LH1(0,0), LL1(0,0) Q1(0,0), Q1(1,0) L1(0,0), L1(1,0) Q1(2,0), Q1(3,0) 
3 HH2(0,0), HL2(0,0) P2(0,0), P2(1,0) H2(0,0), H2(1,0) P2(2,0), P2(3,0) 
4 LH2(0,0), LL2(0,0) Q2(0,0), Q2(1,0) L2(0,0), L2(1,0) Q2(2,0), Q2(3,0) 
5 HH2(0,1), HL2(0,1) P2 (0,1), P2(1,1) H2(0,1), H2(1,1) P2(2,1), P2(3,1) 
6 LH2(0,1), LL2(0,1) Q2(0,1), Q2(1,1) L2(0,1), L2(1,1) Q2(2,1), Q2(3,1) 
7 HH2(1,0), HL2(1,0) P2(2,0), P2(3,0) H2(2,0), H2(3,0) P2(4,0), P2(5,0) 
8 ... ... ... ... 

Fig. 9. The schedule for the column filtering. 

The equations for the row filtering, which are analogous to 
column filtering, are shown as follows. 

LLd+1(m,n)=Ld(m,n)h0+Hd(m,n)g0+Ld(m,n-1)h2+Hd(m,n-1)g2         (5) 

LLd+1(m,n+1)=Ld(m,n)h1+Hd(m,n)g1+Ld(m,n-1)h3+Hd(m,n-1)g3       (6) 
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LLd+1(m,n+2)=Ld(m,n+1)h0+Hd(m,n+1)g0+Ld(m,n)h2+Hd(m,n)g2      (7) 

LLd+1(m,n+3)=Ld(m,n+1)h0+Hd(m,n+1)g0+Ld(m,n)h2+Hd(m,n)g2      (8) 

LLd+1(m,n+4)=Ld(m,n+2)h0+Hd(m,n+2)g0+Ld(m,n+1)h2+Hd(m,n+1)g2  

… 

From above, Ld(m,n) and Hd(m,n) are in all of the four 
equations, so the idea of parallel processing is also consid-
ered. Besides, without storing the results, our design starts 
row filtering as soon as the results of the column filtering 
are produced. According to the scheduling in Fig. 9, two 
finer coefficients are produced every clock cycle in the 
column filtering, such as Ld(m,n) and Ld(m+1,n), so that the 
row filter must compute eight equations in parallel. Based 
on these concepts, the row filter is designed with eight 
modules, Su, where 81 ≤≤ u . All of them have the same 
architecture and deal with the partial sum of eight equa-
tions.  

                S5

                S4

                S3

                S2

                S1

                S6

                S7

(a)

(b)

x y

reg
Inter-block register bank 4

                S8h3g3

h1g1

Inter-block register bank 3
h2g2

Inter-block register bank 2

Inter-block register bank 1

storage unit 2

0
0

0
0

0
0

0
0

h0g0

h3g3

h1g1

h2g2

h0g0

...
L2(0,0)
H2(0,0)
L1(0,0)
H1(0,0)

...
L2(1,0)
H2(1,0)
L1(1,0)
H1(1,0)

...
LL2(0,1)

---
LL2(0,1)

---

...
LL2(0,0)

---
LL2(0,0)

---

...
LL2(1,1)

---
LL2(1,1)

---

...
LL2(1,0)

---
LL2(1,0)

---

 Fig. 10. (a) The structure of S(u). 

                    (b) The block diagram of the row filter. 

Fig. 10(a) and Fig. 10(b) show the structure of module Su 
and the block diagram of the row filter, respectively. In 
module Su, we also use the 2n-to-n reduced width multipli-
ers to reduce the area. Similar to the column filter, storage 
unit 2, which is shown in Fig. 10(b), is used here for stor-
ing the partial results of coefficients. It only consists of in-
ter-block registers with each size of 7 units because the 
partial sum of intra-block coefficients will be soon used in 
the next clock cycle. The partial sum of intra-block coeffi-
cients are immediately written to and read from the regis-
ters in module Su. Note that the row filtering processes the 
wavelet blocks in the row major order, so the lifetime of 
inter-block registers in a block is the time to process a 
wavelet block. The produced coefficients of subband LLd 
(for d >1) are stored in the temporary buffer unit whose 

size is 14d −  for dth level. These temporal coefficients in 
buffer will be soon used in the next level. An example for 
the scheduling for the row filtering in a wavelet block is 
shown in Fig. 11. 

Time unit Input Output 
2 H1(0,0),H1(1,0)  
3 L1(0,0),L1(1,0) LL2(0,0),LL2(0,1),LL2(1,0),LL2(1,1) 
4 H2(0,0),H2(1,0)  
5 L2(0,0),L2(1,0) LL3(0,0),LL3(0,1),LL3(1,0),LL3(1,1) 
6 H2(0,1),H2(1,1)  
7 L2(0,1),L2(1,1) LL3(0,2),LL3(1,3),LL3(1,2),LL3(1,3) 
8 H2(2,0),H2(3,0)  
9 L2(2,0),L2(3,0) LL3(2,0),LL3(2,1),LL3(3,0),LL3(3,1) 
10 H2(2,1),H2(3,1)  
11 L2(2,1),L2(3,1) LL3(2,2),LL3(2,3),LL3(3,2),LL3(3,3) 
…  …  

 
Fig. 11. The schedule for the row filtering. 

5. SCALABILITY FOR THE IDWT 

In this section, we will show the extension for difference 
filter tap and different levels of the proposed architecture. 
When the high-pass filter tap extends to K1 and the 
low-pass filter tap extends to K2 (suppose K1>K2, and K1 
and K2 are both even.), the equations for column filtering in 
the dth level are changed as follows. 

2 1

2 1

1 1
2 2

2 2
0 0

1 1
2 2

2 1 2 1
0 0

( 2 , ) ( , ) ( , ) .

( 2 1, ) ( , ) ( , ) .

K K

d d p d q
p q

K K

d d p d q
p q

H m k n HL m k p n h HH m k q n g

H m k n HL m k p n h HH m k q n g

− −

= =

− −

+ +
= =

+ = + − + + −

+ + = + − + + −

∑ ∑

∑ ∑

 

for k = 0, 1, 2, …, (K1-1). 
It can be observed that HLd(m,n) appears in the first K2 
equations and HHd(m,n) appears in all the K1 equations. 
Similarly, to reduce the storage access times, the architec-
ture for column filtering, which is changed to Fig. 12(b), 
needs K2 Mu-modules and (K1-K2) M′u-modules to calculate 
these K1 equations at the same time. The structure of 
M′u-module is presented in Fig. 12(a). These K2 
Mu-modules compute the partial sum of the first K2 equa-
tions every time while (K1-K2) M′u-modules compute the 
partial sum of the other (K1-K2) equations. To store these 
partial sums, the storage unit 1 needs (K1-2) register banks 
and each register banks are the same as Fig. 13. The total 
size of storage unit 1 is calculated as follows. 

Total size = (Intra-block registers + Inter-block registers) × 
number of register banks 

         = ( 1
... 2

2 2
D

D

N N
N −+ + + + )×(K1-2) ≈ 2(K1-2) ×N 

units 
The equations for the row filtering with K1 high-pass filter 
tap and with K2 low-pass filter tap are shown as follows. 
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for k = 0, 1, 2, …, (K1-1). 

From above, Ld(m,n) appears in the first K2 equations and 
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Hd(m,n) appears in all the K1 equations, so the row filtering 
consists of 2K1 Su-modules as shown in Fig. 14. The K1 
Su-modules compute the K1 equations for Ld(m,n), and the 
other K1 Su-modules compute the K1 equations for 
Ld(m+1,n). Similarly, those Su-modules calculate only par-
tial sums of the equations, which must be stored in the 
storage unit 2. The storage unit 2 includes 2(K1-2) in-

ter-block register banks, each of which is of size 12 −D . 
The total size of storage unit 2 is calculated as follows. 

Total size =Inter-block registers × number of register banks 

=( 2 1D − )×(2K1−4) units 

6. RESULTS 

It can be seen from the scheduling described in Section III 
that it requires two cycles to process the four coefficients in 
the first level and requires eight cycles to process the six-
teen coefficients in the second level within a wavelet block. 
If the octave level extends to D, the number of cycles to 
process one wavelet block is as follows. 

Cycles = ( 1) 2
2 8 32 ... 2 4 (4 1)

3
D D−+ + + + ⋅ = − . 

Thus, the total number of cycles for processing an N×N 
image is shown below: 

Total Cycles = the number of wavelet blocks 

× Cycles for one block 

               = 2 21 2 2 1
(4 1) (1 )

4 3 3 4
D

D D
N N× − = − . 

When D is large, it needs at most 2(2 / 3)N  cycles to 

process an image frame. In addition, the schedule also 
shows that both row filter and column filter achieve 100% 
hardware utilization and that the data flow is kept regularly. 
The total size of two storage units for an N×N image is as 
follows. 

Total Size = storage unit 1 + storage unit 2 
+ temporary buffer 

≈ 2(K−2)×N+( 2 1D − )×(2K−4)+ 14D−  Units. 

When N is large enough, such as 512 or 1024, the total 
storage size need only 2 ( 2)N K −  units. 

Based on the proposed 2-D IDWT architecture, we com-
pare, in Table I, the characteristics of various architectures 
with respect to the number of multipliers, the number of 
adders, storage size, storage type, and computing time. Let 
the filter tap be K and the image size be N×N, it can be 
seen that the tree-block architecture we proposed is the best 
one in computation time compared with other architectures. 
Besides, both column filter and row filter achieve the 
100% hardware utilization. 

7.RESULTS 

In this paper, we proposed a tree-block scheduling scheme 
for 2-D separable IDWT. The advantage of this scheme is 

that the required buffers stored the temporary subband can 
be greatly reduced because wavelet coefficients are proc-
essed block by block and that the scheduling make the data 
flow tight and regular to meet high speed and low com-
plexity. Based on this technique, an efficient VLSI archi-
tecture have been designed and implemented. To minimize 
the hardware cost, the architecture utilized two efficient 
filter structures with reduced width multipliers to accom-
plish the computation of all octave levels. Moreover, each 
filter in the architecture is designed regularly and modu-
larly, so it is easily scalable for different filter lengths and 
different IDWT octave levels by adding some extra mod-
ules. Additionally, both column and row filters achieve the 
100% resource utilization. Due to its small storage size, 
regularity, and high performance, the architecture is suited 
to time-critical applications, such as MPEG-4 and 
JPEG-2000. 

Architectures Multipliers Adders Storage Size Storage Type Computing Time Control unit 

Direct K K N2 RAM 4N2 Simple 

[8] K
2

1
3  4)1

2
(7 +−
K

 NK RAM N
2 Complex 

[11] 4K 4K-4 NK/2 RAM N
2 Simple 

Tree-Block 4K 4K-2 2N(K-2) Register 
2

3
2

N  Simple 

  
Table I. The comparison of various IDWT architectures. 

8. CONCLUSION 

In this paper, we proposed a tree-block scheduling scheme 
for 2-D separable IDWT. The advantage of this scheme is 
that the required buffers stored the temporary subband can 
be greatly reduced because wavelet coefficients are proc-
essed block by block and that the scheduling make the data 
flow tight and regular to meet high speed and low com-
plexity. Based on this technique, an efficient VLSI archi-
tecture have been designed and implemented. To minimize 
the hardware cost, the architecture utilized two efficient 
filter structures with reduced width multipliers to accom-
plish the computation of all octave levels. Moreover, each 
filter in the architecture is designed regularly and modu-
larly, so it is easily scalable for different filter lengths and 
different IDWT octave levels by adding some extra mod-
ules. Additionally, both column and row filters achieve the 
100% resource utilization. Due to its small storage size, 
regularity, and high performance, the architecture is suited 
to time-critical applications, such as MPEG-4 and 
JPEG-2000. 
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Fig. 12. (a) The structure of M′(u) and (b) The block diagram of the column filter for scalable Architecture. 
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Fig. 13. The routing networks of the registers in storage unit 1 for scalable Architecture. 
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Fig. 14. The block diagram of the row filter for scalable Architecture. 


