One-to-Many Disjoint Paths in Hypercubes

Cheng-Nan Lai, Gen-Huey Chen

Department of Computer Science and Information Engineering, National Taiwan University, Taipei, TAIWAN

Abstract

This paper introduces a new concept called routing functions, which have a close relation to one-to-many disjoint paths in networks. By using a minimal routing function, m disjoint paths whose maximal length is minimized in the worst case can be obtained in a k-dimensional hypercube, where $m \le k$. Besides, there exist routing functions that can be used to construct m disjoint paths whose total length is minimized. The end nodes of these paths are not necessarily distinct. A minimal routing function can also be used to construct a maximal number of disjoint paths in the folded hypercube whose maximal length is minimized in the worst case.

1. Introduction

In the past decade, routing with internally node-disjoint paths (disjoint paths for short) has received much attention because disjoint paths have the advantages of efficiency and fault tolerance. There are three categories of disjoint paths, i.e., one-to-one, one-to-many, and many-to-many. Suppose that *W* is an interconnection network (network for short) with node connectivity *k* [2]. According to Menger's theorem [2], there exist *k* disjoint paths from one source node to another destination node in *W*. These disjoint paths belong to the one-to-one category. Many one-to-one disjoint paths constructed for a variety of networks can be found in the literature [3, 4, 6-10, 12, 22, 24]. There is an excellent survey of one-to-one disjoint paths in [19] where several related problems were also addressed.

According to Theorem 2.6 in [1], there exist k disjoint paths from one source node to another k distinct destination nodes in W. These disjoint paths belong to the one-to-many category. A k-dimensional hypercube (abbreviated to a kcube) consists of 2^k nodes that are labeled with 2^k binary numbers from 0 to 2^{k-1} . Two nodes of a k-cube are adjacent if and only if their labels differ by exactly one bit. The node connectivity of a k-cube is k. In [23], k disjoint paths were constructed from one source node to another k destination nodes in a k-cube, where the k destination nodes were distinct. The maximal length is minimized in the worst case. In [15], m disjoint paths were constructed from one source node to another m destination nodes in a k-cube, where $m \le k$ Dyi-Rong Duh

Department of Computer Science and Information Engineering, National Chi Nan University, Nantou, TAIWAN

and the *m* destination nodes were not necessarily distinct. The total length is minimized. One-to-many disjoint paths constructed for other networks appeared in [5, 9, 11, 20]. There were many-to-many disjoint paths constructed for the hypercube [17] and the star graph [9, 18].

In this paper, a new concept called routing functions is proposed, which is useful to derive one-to-many disjoint paths. In the next section, routing functions and their fundamental properties are introduced. In Section 3, by the aid of a minimal routing function, m disjoint paths from one source node to another m distinct destination nodes are constructed in a k-cube, where $m \le k$. It is shown in Section 4 that the maximal length of the *m* disjoint paths is minimized in the worst case. For any given *m* destination nodes, the maximal length of the resulting m disjoint paths is equal to dis_{\max} or $\min\{dis_{\max}+2, k+1\}$, where dis_{\max} is the maximal distance from the source node to the destination nodes. In Section 5, the situation that the m destination nodes are not necessarily distinct is discussed. In Section 6, this paper concludes with some remarks on routing functions. It is indicated that a minimal routing function can be also used to derive a maximal number of disjoint paths in the folded hypercube whose maximal length is minimized in the worst case, and there are routing functions that can be used to construct *m* disjoint paths in a *k*-cube whose total length is minimized.

2. Routing functions

Suppose that *s*, *d*₁, *d*₂, ..., *d*_m are arbitrary *m*+1 distinct nodes of a *k*-cube, where *m*≤*k*. Since the hypercube is node symmetric, we assume $s=00...0=0^k$ without loss of generality. A routing function for a *k*-cube is a one-to-one correspondence *F* from $D=\{d_1, d_2, ..., d_m\}$ to $I=\{n_1, n_2, ..., n_m\}$, where $1 \le n_j \le k$ for all $1 \le j \le m$ and $n_1, n_2, ..., n_m$ denote *m* distinct dimensions of a *k*-cube. Suppose $d_i=d_{i,1}d_{i,2}...d_{i,k}$, and let $|d_i|$ denote the number of bits 1 contained in d_i (i.e., the distance from *s* to d_i), where $1 \le i \le m$. We define $V_F=(v_1, v_2, ..., v_k)$, where $v_j=|\{d_i | |d_i|=j, d_{i,F(d_i)}=0, \text{ and } 1\le i \le m\}|$ for all $1\le j\le k$. For example, if m=k=5, $(d_1, d_2, d_3, d_4, d_5)=$ (00011, 00101, 00111, 00110, 11100), and (*F*(d_1), *F*(d_2), *F*(d_3), *F*(d_4), *F*(d_5))=(5, 2, 3, 4, 1), then $V_F=(0, 1, 0, 0, 0)$. We say $(v_1, v_2, ..., v_k) < (v'_1, v'_2, ..., v'_k)$ if either $v_1 < v'_1$ or $v_1 = v'_1$, $v_2 = v'_2, ..., v_{l-1} = v'_{l-1}$, and $v_l < v'_l$ for some $2 \le l \le k$. F is said to be *minimal* if $V_F \le V_{F'}$ for every routing function $F': D \to I$. A minimal F can be determined in $O(k^3)$ time (see Section 6).

A minimal F is intended to derive m disjoint paths from s to $d_1, d_2, ..., d_m$, and there is a favorable property about a minimal F: if $d_{i_1,F(d_{i_1})} = d_{i_2,F(d_{i_2})} = \cdots =$ $d_{i_c,F(d_{i_c})} = 1$, then there exist c disjoint shortest paths from sto $d_{i_1}, d_{i_2}, ..., d_{i_c}$, respectively, where $\{d_{i_1}, d_{i_2}, ..., d_{i_c}\} \subseteq D$ (see Section 4). Let $e_b = 0^{b-1}10^{k-b}$, b=1, 2, ..., k, denote the k adjacent nodes of s. An intuitive meaning of $F(d_i)=n_j$ is to assign the immediate successor of s in the path to d_i to be the node e_{n_i} .

In the rest of this section, some fundamental properties of F are introduced. Suppose that $F': D' \rightarrow I'$ and $F'': D'' \rightarrow$ I'' are two routing functions, where $\{D', D''\}$ is a partition of D and $\{I', I''\}$ is a partition of I. If $F'(d_i)=F(d_i)$ for all $d_i \in D'$ and $F''(d_j)=F(d_j)$ for all $d_j \in D''$, then F is said to be the *union* of F' and F'', denoted by $F=F'\cup F''$. If $F=F'\cup F''$, then $V_F=V_{F'}+V_{F''}$, i.e., $V_F=(v'_1+v''_1, v'_2+v''_2, ..., v'_k+v''_k)$ where $V_F=(v'_1, v'_2, ..., v'_k)$ and $V_{F''}=(v''_1, v''_2, ..., v''_k)$. The following two lemmas are immediate.

Lemma 1. Suppose $F = F' \cup F''$. If $d_{i,F'(d_i)} = 1$ for every $d_i \in D'$, then $V_F = V_{F''}$.

Lemma 2. Suppose that $F = F \cup F''$ is minimal. Then F' and F'' are minimal.

Lemma 3. Suppose $d_{i,F(d_i)} = 0$, $d_{j,F(d_j)} = 0$, and $d_{i,F(d_j)} = 1$, where $1 \le i \le m$, $1 \le j \le m$, and $i \ne j$. Then F is not minimal.

Proof. We define **Y**: *D* → *I* as follows: **Y**(*d_i*)=**F**(*d_j*), **Y**(*d_j*)=**F**(*d_i*), and **Y**(*d_r*)=**F**(*d_r*) for all *r* ∈ {1, 2, ..., *m*}-{*i*, *j*}. Suppose *V_F*=(*v*₁, *v*₂, ..., *v_k*) and *V_Y*=(*v*'₁, *v*'₂, ..., *v'_k*). If |*d_i*|≠|*d_j*|, then *v'*_{|*d_i*|} = *v*_{|*d_i*|} −1, *v'*_{|*d_j*|} ≤ *v*_{|*d_j*|}, and *v'_i*=*v_l* for all *l* ∈ {1, 2, ..., *k*}-{|*d_i*|, |*d_j*|}. If |*d_i*|=|*d_j*|, then *v'*_{|*d_j*|} ≤ *v*_{|*d_i*|} −1 and *v'_i*=*v_l* for all

 $1 \le l \le k \text{ and } l \ne |d_i|$. Hence $V_Y < V_F$.

Lemma 4. Suppose $d_{j,F(d_j)} = 0$, $d_{j,F(d_i)} = 1$, and $d_{i,F(d_j)} = 1$, where $1 \le i \le m$, $1 \le j \le m$, and $i \ne j$. Then F is not minimal.

Proof. We define Y, V_Y , and V_F all the same as the above. If $d_{i,F(d_i)} = 0$, then F is not minimal by Lemma 3. If $d_{i,F(d_i)} = 1$, then $v'_{|d_j|} = v_{|d_j|} - 1$ and $v'_i = v_i$ for all $1 \le l \le k$ and

$$l \neq |d_j|$$
, which implies $V_Y < V_F$.

Lemma 5. Suppose $d_{i,F(d_i)} = 0$, $d_{i,F(d_j)} = 1$, and $|d_i| < |d_j|$, where $1 \le i \le m$, $1 \le j \le m$, and $i \ne j$. Then F is not minimal. *Proof.* We define **Y**, $V_{\mathbf{Y}}$, and V_{F} all the same as the above. Then $v'_{|d_i|} = v_{|d_i|} - 1$ and $v'_i = v_i$ for all $1 \le l < |d_i|$. Hence we have $V_{\mathbf{Y}} < V_{F}$.

Lemma 6. If F is minimal and $d_{i,F(d_i)} = 0$, then $d_{i,1}d_{i,2}...d_{i,F(d_i)-1}1d_{i,F(d_i)+1}...d_{i,k} \notin \{d_1, d_2, ..., d_m\}$ $(d_{i,1}d_{i,2}... d_{i,F(d_i)-1}1d_{i,F(d_i)+1}...d_{i,k}$ is the node obtained by changing the bit $d_{i,F(d_i)}$ of d_i to 1).

Proof. Suppose conversely $d_{i,1}d_{i,2}...d_{i,F(d_i)-1}1d_{i,F(d_i)+1}...d_{i,k} = d_r$ for some 1≤*r*≤*m* and $r \neq i$. That is, $d_{r,F(d_i)} = 1$ and $d_{r,j} = d_{i,j}$ for all 1≤*j*≤*k* and $j \neq F(d_i)$. Then $F(d_r) \in \{n_1, n_2, ..., n_m\}$. If $d_{r,F(d_r)} = 0$, then F is not minimal by Lemma 3, which is a contradiction. If $d_{r,F(d_r)} = d_{i,F(d_r)} = 1$, then F is not minimal by Lemma 4, which is again a contradiction.

3. A procedure to produce disjoint paths

In this section, a recursive procedure, named *Paths*, is proposed. With inputs minimal F, m, k, $D=\{d_1, d_2, ..., d_m\}$, and $I=\{n_1, n_2, ..., n_m\}$, the procedure can produce m disjoint shortest paths, denoted by $P_1, P_2, ..., P_m$, in a k-cube that connect $\{e_{n_1}, e_{n_2}, ..., e_{n_m}\}$ and $\{d_1, d_2, ..., d_m\}$, where P_i $(1 \le i \le m)$ is the path to d_i . By augmenting $P_1, P_2, ..., P_m$ with links $(s, e_{n_1}), (s, e_{n_2}), ..., (s, e_{n_m})$, we have m disjoint paths from s to $d_1, d_2, ..., d_m$, respectively.

In the procedure, $*^{k-1}1$ and $*^{k-1}0$ represent two disjoint (k-1)-cubes whose nodes have rightmost bits 1 and 0, respectively, where $* \in \{0, 1\}$ and $*^{k-1} = \underbrace{**\cdots *}_{k-1}$ (usually, a *k*-cube is represented with $*^k$). For each node $x=x_1x_2...x_k$ of a *k*-cube, define $x^{(k)}=x_1x_2...x_{k-1}(1-x_k)$, i.e., *x* differs from $x^{(k)}$ only in the bit x_k . The following is a formal description of the procedure.

Procedure Paths(F, m, k, D, I).

Step 1. If k=2, then { Construct $P_1, P_2, ..., P_m$ as the *m* disjoint paths in a 2-cube that connect { e_{n_1} ,

$$e_{n_2}, \ldots, e_{n_m}$$
 and $\{d_1, d_2, \ldots, d_m\}$.
Return P_1, P_2, \ldots, P_m .

Step 2. Determine d_c so that $|d_c| \le |d_i|$ for all $1 \le i \le m$, where $1 \le c \le m$. If there are multiple candidates for d_c , then select arbitrary one with $d_{c,F(d_c)} = 1$, or select any if they all have $d_{c,F(d_c)} = 0$. Without loss of generality, we assume c=1, $n_c=n_1=k$, and $F(d_i)=n_i$ for all $1 \le i \le m$.

Step 3. Partition D into D' and D'', where $D'=\{d_i \mid D'' \in D'=\{d_i \mid D'' \in D'=\{d_i \mid D'' \in D'=1\}$

 $\begin{array}{ll} d_{j,F(d_c)} = d_{j,F(d_1)} = d_{j,k} = 0 \quad \text{and} \quad 1 \leq j \leq m \} & \text{and} \\ D'' = \{ d_j \quad | \quad d_{j,F(d_c)} = d_{j,F(d_1)} = d_{j,k} = 1 & \text{and} \\ 1 \leq j \leq m \}. \end{array}$

Step 4. Construct $P_1, P_2, ..., P_m$ according to the following four cases.

Case 1. $d_{1,k}=0$.

/* Without loss of generality, suppose $D' = \{d_1, d_2, ..., d_r\}$ and $D'' = \{d_{r+1}, d_{r+2}, ..., d_m\}$, where 1≤r≤m. Define **Y**: $\{d_2, d_3, ..., d_r\} \rightarrow \{n_2, n_3, ..., n_r\}$ as follows: **Y**'(d_i)=**F**(d_i)= n_i for all 2≤*i*≤r, and **Y**'': $\{d_1^{(k)}, d_{r+1}, d_{r+2}, ..., d_m\} \rightarrow \{u, n_{r+1}, n_{r+2}, ..., n_m\}$ as follows: **Y**''($d_1^{(k)}$)=u and **Y**''(d_i)=**F**(d_i)= n_i for all $r+1 \le i \le m$, where $1 \le u < k$ and $d_{1,u}=1$. */

Construct P_2 , P_3 , ..., P_r in $*^{k-1} 0$ by executing *Paths*(\mathbf{Y}' , r-1, k-1, $\{d_2, d_3, ..., d_r\}$, $\{n_2, n_3, ..., n_r\}$). /* P_2 , P_3 , ..., P_r connect $\{e_{n_2}, e_{n_3}, ..., e_n\}$ and $\{d_2, d_3, ..., d_r\}$. */

Construct P'_1 , P_{r+1} , P_{r+2} , ..., P_m in $*^{k-1} 1$ by executing $Paths(\mathbf{Y}'', m-r+1, k-1, \{d_1^{(k)}, d_{r+1}, d_{r+2}, ..., d_m\}$, $\{u, n_{r+1}, n_{r+2}, ..., n_m\}$), where P'_1 is the path to $d_1^{(k)}$. /* P'_1 , P_{r+1} , P_{r+2} , ..., P_m connect $\{e_u^{(k)}, e_{n_{r+1}}^{(k)}, e_{n_{r+2}}^{(k)}, ..., e_{n_m}^{(k)}\}$ and $\{d_1^{(k)}, d_{r+1}, d_{r+2}, ..., d_m\}$. */

Construct P_1 as P'_1 augmented with the link $(d_1^{(k)}, d_1)$.

Augment $P_1, P_{r+1}, P_{r+2}, ..., P_m$ with links $(e_k, e_u^{(k)}),$ $(e_{n_{r+1}}, e_{n_{r+1}}^{(k)}), (e_{n_{r+2}}, e_{n_{r+2}}^{(k)}), ..., (e_{n_m}, e_{n_m}^{(k)}).$

Case 2. $d_{1,k}=1$ and $|d_1|=1$.

/* Suppose $D'=\{d_2, d_3, ..., d_r\}$ and $D''=\{d_1, d_{r+1}, d_{r+2}, ..., d_m\}$, where $1 \le r \le m$. Define $\mathbf{Y}: \{d_2, d_3, ..., d_r\} \to \{n_2, n_3, ..., n_r\}$ as follows: $\mathbf{Y}'(d_i)=\mathbf{F}(d_i)=n_i$ for all $2 \le i \le r$, and $\mathbf{Y}'': \{d_{r+1}, d_{r+2}, ..., d_m\} \to \{n_{r+1}, n_{r+2}, ..., n_m\}$ as follows: $\mathbf{Y}''(d_i)=\mathbf{F}(d_i)=n_i$ for all $r+1\le i\le m$. */

Construct P_2 , P_3 , ..., P_r in $*^{k-1} 0$ by executing *Paths*(\mathbf{Y}' , r-1, k-1, $\{d_2, d_3, ..., d_r\}$, $\{n_2, n_3, ..., n_r\}$). /* P_2 , P_3 , ..., P_r connect $\{e_{n_2}, e_{n_3}, ..., e_n\}$ and $\{d_2, d_3, ..., d_r\}$. */

Construct $P_{r+1}, P_{r+2}, ..., P_m$ in $*^{k-1}$ 1 by executing Paths($\mathbf{Y}'', m-r, k-1, \{d_{r+1}, d_{r+2}, ..., d_m\}, \{n_{r+1}, n_{r+2}, ..., n_m\}$). /* $P_{r+1}, P_{r+2}, ..., P_m$ connect $\{e_{n_{r+1}}^{(k)}, e_{n_{r+2}}^{(k)}, ..., e_{n_m}^{(k)}\}$ and $\{d_{r+1}, d_{r+2}, ..., d_m\}$. */ Construct P_1 as (e_k, d_1) . /* P_1 has length 0. */

Augment P_{r+1} , P_{r+2} , ..., P_m with links $(e_{n_{r+1}})$,

$$e_{n_{r+1}}^{(k)}$$
), $(e_{n_{r+2}}, e_{n_{r+2}}^{(k)})$, ..., $(e_{n_m}, e_{n_m}^{(k)})$.

Case 3. $d_{1,k}=1$, $|d_1|>1$, and $d_{1,a}=1$ for some $a \in \{1, 2, ..., k-1\}-\{k, n_{r+1}, n_{r+2}, ..., n_m\}$.

/* Suppose $D'=\{d_2, d_3, ..., d_r\}$ and $D''=\{d_1, d_{r+1}, d_{r+2}, ..., d_m\}$, where 1≤*r*≤*m*. Define **Y**: { $d_2, d_3, ..., d_r\}$ → { $n_2, n_3, ..., n_r$ } as follows: **Y**'(d_i)=**F**(d_i)= n_i for all 2≤*i*≤*r*, and **Y**'': { $d_1, d_{r+1}, d_{r+2}, ..., d_m\}$ → {**a**, $n_{r+1}, n_{r+2}, ..., n_m$ } as follows: **Y**''(d_1)=**a** and **Y**''(d_i)=**F**(d_i)= n_i for all *r*+1≤*i*≤*m*. */

Construct P_2 , P_3 , ..., P_r in $*^{k-1} 0$ by executing Paths(\mathbf{Y}' , r-1, k-1, $\{d_2, d_3, ..., d_r\}$, $\{n_2, n_3, ..., n_r\}$). /* P_2 , P_3 , ..., P_r connect $\{e_{n_2}, e_{n_3}, ..., e_{n_r}\}$ and $\{d_2, d_3, ..., d_r\}$. */

Construct P_1 , P_{r+1} , P_{r+2} , ..., P_m in $*^{k-1} 1$ by executing *Paths*(Y'', m-r+1, k-1, $\{d_1, d_{r+1}, d_{r+2}, ..., d_m\}$, $\{a, n_{r+1}, n_{r+2}, ..., n_m\}$). /* P_1 , P_{r+1} , P_{r+2} , ..., P_m connect $\{e_a^{(k)}, e_{n_{r+1}}^{(k)}, e_{n_{r+2}}^{(k)}, ..., e_{n_m}^{(k)}\}$ and $\{d_1, d_n\}$

$$d_{r+1}, d_{r+2}, \ldots, d_m$$
.*

Augment $P_1, P_{r+1}, P_{r+2}, ..., P_m$ with links $(e_k, e_a^{(k)}), (e_{n_{r+1}}, e_{n_{r+1}}^{(k)}), (e_{n_{r+2}}, e_{n_{r+2}}^{(k)}), ..., (e_{n_m}, e_{n_m}^{(k)}).$

Case 4. $d_{1,k}=1$, $|d_1|>1$, and $d_{1,a}=0$ for all $a \in \{1, 2, ..., k-1\} - \{k, n_{r+1}, n_{r+2}, ..., n_m\}$.

/* Suppose $D'=\{d_2, d_3, ..., d_r\}$ and $D''=\{d_1, d_{r+1}, d_{r+2}, ..., d_m\}$, where $1 \le r \le m$. Define **Y**'': $\{d_{r+1}, d_{r+2}, ..., d_m\} \rightarrow \{n_{r+1}, n_{r+2}, ..., n_m\}$ as follows: **Y**''(d_i)=**F**(d_i)= n_i for all $r+1 \le i \le m$. */

Construct P_{r+1} , P_{r+2} , ..., P_m in $*^{k-1}$ 1 by executing *Paths*(\mathbf{Y}'' , m-r, k-1, { d_{r+1} , d_{r+2} , ..., d_m }, { n_{r+1} , n_{r+2} , ..., n_m }). /* P_{r+1} , P_{r+2} , ..., P_m connect { $e_{n_{r+1}}^{(k)}$,

 $e_{n_{r+2}}^{(k)}, \ldots, e_{n_m}^{(k)}$ } and $\{d_{r+1}, d_{r+2}, \ldots, d_m\}$. */

/* Define **W**'': $\{d_{r+1}, d_{r+2}, ..., d_m\} \to \{n_{r+1}, n_{r+2}, ..., n_m\}$ as follows: **W**''(d_i)= n_j if P_i begins at $e_{n_j}^{(k)}$ for

all $r+1 \le i \le m$, where $r+1 \le j \le m$. */

If $d_1 \notin P_i$ for all $r+1 \le i \le m$, then {

/* Define **Y**: $\{d_1^{(k)}, d_2, d_3, ..., d_r\} \rightarrow \{u, n_2, n_3, ..., n_r\}$ as follows: $\mathbf{Y}(d_1^{(k)})=u$ and $\mathbf{Y}(d_i)=\mathbf{F}(d_i)=n_i$ for all $2 \le i \le r$, where $1 \le u < k$ and $d_{1,u}=1$. */ Construct $P'_1, P_2, P_3, ..., P_r$ in $*^{k-1}$ 0 by executing *Paths*($\mathbf{Y}', r, k-1, \{d_1^{(k)}, d_2, d_3, ..., d_r\}, \{u, n_2, n_3, ..., n_r\}$), where P'_1 is the path to $d_1^{(k)}$. /* $P'_1, P_2, P_3, ..., P_r$

connect $\{e_u, e_{n_2}, e_{n_3}, ..., e_{n_r}\}$ and

 $\{ d_1^{(k)}, d_2, d_3, ..., d_r \}. */$

Construct P_1 as P'_1 augmented with the link

 $(d_1^{(k)}, d_1).$ /* Suppose $u=n_h$ for some $r+1 \le h \le m. */$ Augment $P_{r+1}, P_{r+2}, ..., P_m$ with links $(e_{n_{r+1}}, e_{n_{r+1}}^{(k)}), (e_{n_{r+2}}, e_{n_{r+2}}^{(k)}), ..., (e_{n_{h-1}}, e_{n_{h-1}}^{(k)}), (e_k, e_u^{(k)}), (e_{n_{h+1}}, e_{n_{h+1}}^{(k)}), ..., (e_{n_m}, e_{n_m}^{(k)}).$

If $d_1 \in P_l$ for some $r+1 \le l \le m$ and $d_l^{(k)} \notin \{d_2, d_3, ..., d_r\}$, then {

/* Define **Q**': { $d_l^{(k)}$, d_2 , d_3 , ..., d_r } → {**W**''(d_l), n_2 , n_3 , ..., n_r } as follows: **Q**'($d_l^{(k)}$)=**W**''(d_l) and **Q**'(d_i)=**F**(d_i)= n_i for all 2≤i≤r. */

Construct P'_{l} , P_{2} , P_{3} , ..., P_{r} in $*^{k-1}$ 0 by executing $Paths(Q', r, k-1, \{d_{l}^{(k)}, d_{2}, d_{3}, ..., d_{r}\}, \{W''(d_{l}), n_{2}, n_{3}, ..., n_{r}\})$, where P'_{l} is the path to $d_{l}^{(k)}$. /* P'_{l} , P_{2} , P_{3} , ..., P_{r} connect $\{e_{W'(d_{l})}, e_{n_{2}}, e_{n_{3}}, ..., e_{n_{r}}\}$ and $\{d_{l}^{(k)}, d_{2}, d_{3}, ..., d_{r}\}$. */

Construct P_1 as the subpath of P_l from $e_{\mathbf{W}'(d_l)}^{(k)}$ to d_1 .

Reconstruct P_l as P'_l augmented with the link $(d_l^{(k)}, d_l)$.

Augment $P_1, P_{r+1}, P_{r+2}, ..., P_{l-1}, P_{l+1}, ..., P_m$ with links $(e_{n_{r+1}}, e_{n_{r+1}}^{(k)}), (e_{n_{r+2}}, e_{n_{r+2}}^{(k)}), ..., (e_{W'(d_l)-1}, e_{W'(d_l)-1}^{(k)}), (e_{W'(d_l)+1}, e_{W'(d_l)+1}^{(k)}), ..., (e_{n_m}, e_{n_m}^{(k)}).$

If $d_1 \in P_l$ for some $r+1 \le l \le m$ and $d_l^{(k)} \in \{d_2, d_3, ..., d_r\}$, then

/* Suppose $d_l^{(k)} = d_h$ for some $2 \le h \le r$. Define **Y**: $\{d_1, d_2, ..., d_m\} \rightarrow \{n_1, n_2, ..., n_m\}$ as follows: $\mathbf{Y}(d_l) = \mathbf{F}(d_h)$, $\mathbf{Y}(d_h) = \mathbf{W}''(d_l)$, $\mathbf{Y}(d_1) = \mathbf{F}(d_1) = k$, $\mathbf{Y}(d_i) = \mathbf{F}(d_i)$ for all $2 \le i \le r$ and $i \ne h$, and $\mathbf{Y}(d_j) = \mathbf{W}''(d_j)$ for all $r+1 \le j \le m$ and $j \ne l$. */ Construct $P_1, P_2, ..., P_m$ all the same as Case 3. /* Substitute **Y** for the **F** in Case 3. */

Step 5. Return $P_1, P_2, ..., P_m$.

Intuitively, the *m* disjoint paths from *s* to $d_1, d_2, ..., d_m$ can be obtained by first including *m* links (*s*, $e_{F(d_1)}$), (*s*, $e_{F(d_2)}$), ..., (*s*, $e_{F(d_m)}$) and then constructing *m* disjoint paths, i.e., $P_1, P_2, ..., P_m$, that connect $\{e_{F(d_1)}, e_{F(d_2)}, ..., e_{F(d_m)}\}$ and $\{d_1, d_2, ..., d_m\}$. The latter can be done by executing *Paths*(*F*, *m*, *k*, *D*, *I*). In Step 2, the *k*-cube was

divided into two (k-1)-cubes $*^{k-1}0$ and $*^{k-1}1$, according to the dimension $F(d_c)=k$. In Step 3, $\{d_1, d_2, \dots, d_m\}$ was partitioned into D' and D'' which contain nodes belonging to $*^{k-1}$ 0 and $*^{k-1}$ 1, respectively. In Step 4, P_1, P_2, \dots, P_m were constructed according to four cases in which paths in $*^{k-1}0$ and $*^{k-1}1$ need to be constructed in a recursive manner. In Case 1, |D'|-1 disjoint paths in $*^{k-1}0$ that connect $\{e_{F(d_2)}, e_{F(d_3)}, ..., e_{F(d_r)}\}$ and $D'-\{d_1\}$ and |D''|+1 disjoint paths in $*^{k-1}1$ that connect $\{e_u^{(k)}, e_{F(d_{r+1})}^{(k)}, \}$ $e_{F(d_{\perp,2})}^{(k)}$, ..., $e_{F(d_m)}^{(k)}$ } and $D' \cup \{ d_1^{(k)} \}$ were constructed. It should be noted that e_k in $*^{k-1}1$ corresponds to $s=0^k$ in $*^{k-1}0$ (refer to Figure 1). In Case 2, |D'| disjoint paths in $*^{k-1}$ 0 that connect $\{e_{F(d_2)}, e_{F(d_3)}, ..., e_{F(d_r)}\}$ and D' and |D''|-1 disjoint paths in $*^{k-1}1$ that connect $\{e_{F(d_{r+1})}^{(k)}, \}$ $e_{F(d_{r+2})}^{(k)}, \ldots, e_{F(d_m)}^{(k)}$ } and $D'' - \{d_1\}$ were constructed. Since $d_1 = e_k$, P_1 has length 0. In Case 3, |D'| disjoint paths in $*^{k-1}$ 0 that connect $\{e_{F(d_2)}, e_{F(d_3)}, ..., e_{F(d_r)}\}$ and D' and D' disjoint paths in $*^{k-1}1$ that connect $\{e_{a}^{(k)}, e_{F(d_{-1})}^{(k)}\}$ $e_{F(d_{\dots\gamma})}^{(k)}, \dots, e_{F(d_m)}^{(k)}$ } and D'' were constructed.

In Case 4, |D''|-1 disjoint paths in $*^{k-1}$ 1 that connect $\{e_{F(d_{r+1})}^{(k)}, e_{F(d_{r+2})}^{(k)}, ..., e_{F(d_m)}^{(k)}\}\$ and $D''-\{d_1\}$ were first constructed. The subsequent construction depends on whether d_1 is contained in these |D''|-1 paths or not. If d_1 is not contained in these |D''|-1 paths, then |D'|+1 disjoint paths in $*^{k-1}$ 0 that connect $\{e_u, e_{F(d_2)}, e_{F(d_3)}, ..., e_{F(d_r)}\}\$ and $D'\cup\{d_1^{(k)}\}\$ were constructed. If d_1 is contained in one of these |D''|-1 paths which connects $e_{W''(d_l)}^{(k)}\$ and d_l and d_l and $d_l^{(k)} \notin D'$, then |D'|+1 disjoint paths in $*^{k-1}$ 0 that connect $\{e_{W''(d_l)}, e_{F(d_2)}, e_{F(d_3)}, ..., e_{F(d_r)}\}\$ and $D'\cup\{d_l^{(k)}\}\$ were constructed. If d_1 is contained in one of these |D''|-1 paths which connects $e_{W''(d_l)}^{(k)}\$ were constructed. If d_1 is contained in one of these |D''|-1 paths that connect $\{e_{W''(d_l)}, e_{F(d_2)}, e_{F(d_3)}, ..., e_{F(d_r)}\}\$ and $D'\cup\{d_l^{(k)}\}\$ were constructed. If d_1 is contained in one of these |D''|-1 paths that connects $e_{W''(d_l)}^{(k)}\$ and d_l and $d_l^{(k)} \in D'$, then after substituting Y for F, the situation is the same as Case 3 and $P_1, P_2, ..., P_m$ can be obtained likewise.

The maximal length of the *m* disjoint paths from *s* to d_1 , d_2 , ..., d_m is computed as follows.

Theorem 1. Suppose that s, d_1 , d_2 , ..., d_m are arbitrary m+1 distinct nodes of a k-dimensional hypercube, where $m \le k$ and $k \ge 2$. There are m disjoint paths from s to d_1 , d_2 , ..., d_m , respectively, whose maximal length is not greater than k+1 if m=k, and not greater than k if m < k. The maximal length is minimized in the worst case.

The proof of Theorem 1 is presented in the next section.

Figure 1. e_k in $*^{k-1}$ 1 corresponds to $s = 0^k$ in $*^{k-1}$ 0.

4. Proof of Theorem 1

We need to show two properties of $P_1, P_2, ..., P_m$: (P1) $P_1, P_2, ..., P_m$ are disjoint, and (P2) for all $1 \le i \le m$, if $d_{i,F(d_i)} = 1$, then P_i has length $|d_i|-1$, and if $d_{i,F(d_i)} = 0$, then P_i has length $|d_i|+1$ and $|t_i|=|d_i|+1$, where t_i is the immediate predecessor of d_i in P_i . According to (P2), P_i has length k-1 if $|d_i|=k$, and at most k if $|d_i|<k$. Hence, P_i has length at most k. However, when m < k, P_i has length at most k-1, as explained below. If $1^k \in \{d_1, d_2, ..., d_m\}$, then P_i has length at most k-1, for otherwise (P_i has length k) we have $|t_i|=|d_i|+1=(k-1)+1=k$ (i.e., $t_i=1^k$) according to (P2). This contradicts to (P1). On the other hand, if $1^k \notin \{d_1, d_2, ..., d_m\}$, then after adding a new node $d_{m+1}=1^k$ to D and a new dimension $u \in \{1, 2, ..., k\}$ -I to I, Paths(F, m+1, k, D, I) can produce $P_1, P_2, ..., P_{m+1}$. Since $1^k \in \{d_1, d_2, ..., d_{m+1}\}$, P_1 , $P_2, ..., P_{m+1}$ have lengths at most k-1.

Consequently, the *m* disjoint paths from *s* to $d_1, d_2, ..., d_m$ have maximal length k+1 if m=k, and *k* if m<k. Since the diameter of a *k*-cube is *k*, the maximal length of the *m* disjoint paths is at least *k* in the worst case. It was shown in [11] that the maximal length is at least k+1 in the worst case when m=k. Hence the maximal length in Theorem 1 is minimized in the worst case.

(P1) and (P2) can be verified by induction on k. The detailed proof my be found in [21].

5. When $\{d_1, d_2, ..., d_m\}$ is a multiset

A *multiset* is a collection of elements in which multiple occurrences of the same element are allowed [16]. Paths(F, F)

m, *k*, *D*, *I*) can deal with a multiset *D*, if Step 4 is modified as follows. Let $T = \{d_j \mid d_j = e_k \text{ and } r+1 \le j \le m\}$. In Case 2, **Y**'' is changed to **Y**'': $\{d_{r+1}, d_{r+2}, ..., d_m\} - T \rightarrow \{n_{r+1}, n_{r+2}, ..., n_m\} - \{F(d_j) \mid d_j \in T \text{ and } r+1 \le j \le m\}$ so that **Y**''(d_i)= $F(d_i)=n_i$ for all $r+1 \le i \le m$ and $d_i \ne e_k$. Instead of executing *Paths*(**Y**'', *m*-*r*, *k*-1, $\{d_{r+1}, d_{r+2}, ..., d_m\}$, $\{n_{r+1}, n_{r+2}, ..., n_m\}$), we execute *Paths*(**Y**'', *m*-*r*-*|T*], *k*-1, $\{d_{r+1}, d_{r+2}, ..., d_m\} - T$, $\{n_{r+1}, n_{r+2}, ..., n_m\}$), we execute *Paths*(**Y**'', *m*-*r*-*|T*], *k*-1, $\{d_{r+1}, d_{r+2}, ..., d_m\} - T$, $\{n_{r+1}, n_{r+2}, ..., n_m\} - \{F(d_j) \mid d_j \in T \text{ and } r+1 \le j \le m\}$), in order to construct m-r-|T| disjoint paths in $*^{k-1}1$ that connect $\{e_{n_{r+1}}^{(k)}, e_{n_{r+2}}^{(k)}, ..., e_{n_m}^{(k)}\} - \{e_{F(d_j)}^{(k)} \mid d_j \in T \text{ and } r+1 \le j \le m\}$ and $\{d_{r+1}, d_{r+2}, ..., d_m\} - T$. Additionally, we construct another |T| disjoint paths of length one that connect $e_{F(d_j)}^{(k)}$ and d_j for all $d_j \in T$.

In Case 4, the conditions for the second and third situations are changed to $"d_1 \in P_l$ for some $r+1 \le l \le m$, $d_1 \notin \{d_{r+1}, d_{r+2}, ..., d_m\}$, and $d_l^{(k)} \notin \{d_2, d_3, ..., d_r\}$ " and $"d_1 \in P_l$ for some $r+1 \le l \le m$, $d_1 \notin \{d_{r+1}, d_{r+2}, ..., d_m\}$, and $d_l^{(k)} \in \{d_2, d_3, ..., d_r\}$ ", respectively. One more situation whose condition is $"d_1 \in P_l$ for some $r+1 \le l \le m$ and $d_1 \in \{d_{r+1}, d_{r+2}, ..., d_m\}$ " needs to be added. The new situation constructs P_1 , P_2 , ..., P_r in $*^{k-1}$ 0 all the same as the first situation (i.e., $d_1 \notin P_l$ for all $r+1 \le l \le m$).

Both (P1) and (P2) remains correct after the modifications above, as shown in [21]. When $\{d_1, d_2, ..., d_m\}$ is a multiset, Theorem 1 can be rewritten as follows.

Theorem 2. Suppose that *s*, d_1 , d_2 , ..., d_m are arbitrary m+1 nodes of a *k*-dimensional hypercube so that $s \notin \{d_1, d_2, ..., d_m\}$ and $\{d_1, d_2, ..., d_m\}$ is a multiset, where $m \le k$ and $k \ge 2$. There are *m* disjoint paths from *s* to $d_1, d_2, ..., d_m$, respectively,

whose maximal length is not greater than k+1 if m=k, and not greater than k if m < k. The maximal length is minimized in the worst case.

6. Discussion and conclusion

The main contribution of this paper is to show the effectiveness of routing functions in deriving one-to-many disjoint paths in networks. By using a minimal routing function, *m* disjoint paths whose maximal length is minimized in the worst case can be obtained in a k-cube, where $m \leq k$. The problem of finding a minimal routing function can be reduced to the problem of finding a maximum matching in a weighted bipartite graph. Suppose G=(U, V, E) is a weighted bipartite graph, where U and V are two partite sets of nodes and E is the set of weighted links (each link of G is assigned a weight). A subset of E forms a *matching* in G if no two of them share a common node. A matching in G is maximum if its total weight is maximum. A maximum matching in G can found be in $O(|U \cup V|(|E| + |U \cup V|\log|U \cup V|))$ time (see [14]).

Suppose $F: \{d_1, d_2, ..., d_m\} \rightarrow \{n_1, n_2, ..., n_m\}$ is a routing function, where $\{d_1, d_2, ..., d_m\}$ is a multiset. Let $U=\{d_1, d_2, ..., d_m\}, V=\{n_1, n_2, ..., n_m\}, \text{ and } E=\{(d_i, n_j) \mid i \leq j \leq n_j\}$ $1 \le i \le m$ and $1 \le j \le m$. We assign each link (d_i, n_j) a weight $(k+1)^{k-|d_i|+1}$ if $d_{i,n_i} = 1$, and 1 if $d_{i,n_i} = 0$. A maximum matching M in G contains m links and its total weight can be expressed as $a_1 * (k+1)^k + a_2 * (k+1)^{k-1} + \dots + a_k * (k+1) + a_{k+1}$ where $0 \le a_r \le m$ for all $1 \le r \le k+1$. That is, there are a_r links in M whose weights are $(k+1)^{k-r+1}$ (or equivalently, M contains a_v links (d_i, n_i) of weight $(k+1)^{k-v+1}$ with $|d_i|=v$ and $d_{i,n_i} = 1$ for all $1 \le v \le k$, and a_{k+1} links (d_i, n_j) of weight 1 with $d_{i,n_i} = 0$). For all $1 \le v \le k$, let r_v denote the number of d_i 's with $|d_i|=v$ and $d_i \in U$. A minimal **F** with $V_F = (r_1 - a_1, d_i)$ r_2-a_2, \ldots, r_k-a_k can be obtained from M as follows: $F(d_i)=n_i$ if $(d_i, n_i) \in M$. If **F** is not minimal, then there exists $V_F < V_F$ for some routing function F': $\{d_1, d_2, \dots, d_m\} \rightarrow \{n_1, n_2, \dots, d_m\}$ n_m }, which implies another matching in G whose total weight is greater than the total weight of *M*. This is a contradiction.

Besides minimal routing functions, there are some other routing functions that can be used to produce disjoint paths with different properties. For example, *m* disjoint paths whose total length is minimized can be also produced in a *k*cube, if an implicit routing function in [15] is used. In [15], *m* non-empty subsets $X_1, X_2, ..., X_m$ of $\{1, 2, ..., k\}$ were used to represent *m* nodes $d_1, d_2, ..., d_m$, respectively, so that for all $1 \le u \le m$ and $1 \le w \le k$, $w \in X_u$ if and only if $d_{u,w}=1$. A set of *c* distinct integers $t_1 \in X_{h_1}, t_2 \in X_{h_2}, ..., t_c \in X_{h_c}$ is called a *partial System of Distinct Representatives (SDR* for short) for $\{X_1, X_2, ..., X_m\}$ if $h_1, h_2, ..., h_c$ are all distinct, where $c \le m$ and $1 \le h_i \le m$ for all $1 \le i \le c$. Further, the partial SDR $\{t_1, t_2, ..., t_c\}$ is maximum if *c* is maximized. When c=m, $\{t_1, t_2, ..., t_c\}$ can be used to construct *m* disjoint paths in a *k*-cube whose total length is minimized, if there is no $j \in \{1, 2, ..., m\} - \{h_1, h_2, ..., h_c\}$ satisfying the following two conditions: (C1) $X_j \subset X_{h_i}$ for some $1 \le i \le c$, and (C2) there exists an SDR for $\{X_{h_1}, X_{h_2}, ..., X_{h_{i-1}}, X_j, X_{h_{i+1}}, ..., X_{h_c}\}$. Such a maximum partial SDR can be determined in $O(k^{2.5})$ time (see [15]).

Actually, a maximum partial SDR $\{t_1, t_2, ..., t_c\}$ can be regarded as a routing function $F: D \rightarrow I$ so that $\{t_1, t_2, ..., t_c\}$ \subseteq I and $F(d_h) = t_i$ for all $1 \leq i \leq c$. Suppose $L_F = \{u \mid i \leq i \leq c\}$ $d_{u,F(d_n)} = 1$ and $1 \le u \le m$. It follows that Paths(F, m, k, D, I)can result in *m* disjoint paths from *s* to $d_1, d_2, ..., d_m$ whose total length is minimized, provided $|L_F|$ is maximized and there is no $j \in \{1, 2, ..., m\}$ - L_F satisfying the following two conditions: (C1') $d_{\not =} d_l$ and $d_{j,w} \leq d_{l,w}$ for some $l \in L_F$ and all $1 \le w \le k$, and (C2') there exists a routing function Y with $d_{j,\mathbf{Y}(d_j)} = d_{v,\mathbf{Y}(d_v)} = 1$ for all $v \in L_F - \{l\}$. Here, a routing function $F: D \to I$ with maximum L_{F} corresponds to a maximum partial SDR (L_F corresponds to $\{h_1, h_2, ..., h_c\}$ and $\{F(d_u) \mid u \in L_F\}$ corresponds to $\{t_1, t_2, \dots, t_c\}$). Besides, (C1 ') and (C2') correspond to (C1) and (C2), respectively. A routing function F with maximum L_F so that there is no j $\in \{1, 2, ..., m\} - L_F$ satisfying (C1') and (C2') can be determined with the same time complexity as a maximum partial SDR so that there is no $j \in \{1, 2, ..., m\} - \{h_1, h_2, ..., m\}$ h_c } satisfying (C1) and (C2). There exist other routing functions that can result in *m* disjoint paths from *s* to d_1 , d_2, \ldots, d_m whose total length is minimized. For example, if (C1) is changed to " $|d_i| < |d_i|$ for some $l \in L_F$ ", then the resulting **F** also serves the purpose.

We have shown in Theorem 2 that the maximal length of the *m* disjoint paths from *s* to $d_1, d_2, ..., d_m$ is minimum for the worst-case scenario. According to (P2), each path from *s* to d_i has length $|d_i|$ (i.e. shortest) if $d_{i,F(d_i)} = 1$, and $|d_i|+2$ (i.e., second shortest) if $d_{i,F(d_i)} = 0$, where $1 \le i \le m$. It follows that for any given $d_1, d_2, ..., d_m$, the maximal length of the *m* disjoint paths from *s* to $d_1, d_2, ..., d_m$, the maximal length of the *m* disjoint paths from *s* to $d_1, d_2, ..., d_m$ is equal to max{ $|d_i| | 1 \le i \le m$ } or min{max{ $|d_i| | 1 \le i \le m$ }+2, k+1}. It should be noted that $P_1, P_2, ..., P_m$ are all shortest. The node $e_{F(d_i)}$ (or $e_{Y(d_i)}$ for the situation of $d_1 \in P_l$ for some $r+1 \le l \le m$ and $d_l^{(k)} \in \{d_2, d_3, ..., d_r\}$ in Case 4 of Step 4) is the immediate successor of *s* in the path to d_i . When $d_{i,F(d_i)} = 1$, $e_{F(d_i)}$ (or $e_{Y(d_i)})$ is contained in a shortest path from *s* to d_i . When $d_{i,F(d_i)} = 0$, $e_{F(d_i)}$ is not contained in any shortest path from *s* to d_i .

A *k*-dimensional folded hypercube [13] is basically a *k*cube augmented with 2^{k-1} complement links. It was shown in [21] that using a minimal routing function, *k*+1 disjoint paths whose maximal length is minimized in the worst case can be constructed in a *k*-dimensional folded hypercube, where *k*+1 is the node connectivity. It is worth while exploring more relations between the characteristics of routing functions and the properties of disjoint paths.

References

- [1] B. Bollobás, *Extremal Graph Theory*. Academic Press, New York, 1978.
- [2] J. A. Bondy and U. S. R. Murthy, *Graph Theory with Applications*. North-Holland, New York, 1976.
- [3] F. Cao, D. Z. Du, D. F. Hsu, and S. H. Teng, "Fault tolerance properties of pyramid networks," *IEEE Transactions on Computers*, vol. 48, no. 1, pp. 88-93, 1999.
- [4] C. P. Chang, J. N. Wang, and L. H. Hsu, "Topological properties of twisted cube," *Information Sciences*, vol. 113, pp. 147-167, 1999.
- [5] C. C. Chen and J. Chen, "Nearly optimal one-to-many parallel routing in star networks," *IEEE Transactions* on *Parallel and Distributed Systems*, vol. 8, no. 12, pp. 1196-1202, 1997.
- [6] K. Day and A. E. Al-Ayyoub, "Fault diameter of kary n-cube networks," *IEEE Transactions on Parallel* and Distributed Systems, vol. 8, no. 9, pp. 903-907, 1997.
- [7] K. Day and A. Tripathi, "Characterization of node disjoint paths in arrangement graphs," Technical Report TR 91-43, Computer Science Department, University of Minnesota, 1991.
- [8] K. Day and A. Tripathi, "A comparative study of topological properties of hypercubes and star graphs," *IEEE Transactions on Parallel and Distributed Systems*, vol. 5, no. 1, pp. 31-38, 1994.
- [9] M. Dietzfelbinger, S. Madhavapeddy, and I. H. Sudborough, "Three disjoint path paradigms in star networks," *Proceedings of the third IEEE Symposium* on Parallel and Distributed Processing, 1991, pp. 400-406.
- [10] D. R. Duh and G. H. Chen, "Topological properties of WK-recursive networks," *Journal of Parallel and Distributed Computing*, vol. 23, pp. 468-474, 1994.
- [11] D. R. Duh and G. H. Chen, "On the Rabin number problem," *Networks*, vol. 30, no. 3, pp. 219-230, 1997.
- [12] D. R. Duh, G. H. Chen, and D. F. Hsu, "Combinatorial properties of generalized hypercube graphs," *Information Processing Letters*, vol. 57, pp. 41-45, 1996.
- [13] A. El-Amawy and S. Latifi, "Properties and performance of folded hypercubes," *IEEE Transactions on Parallel and Distributed Systems*, vol. 2, no. 1, pp. 31-42, 1991.
- [14] Z. Galil, "Efficient algorithms for finding maximum matching in graphs," ACM Computing Surveys, vol. 18, no. 1, pp. 23-38, 1986.
- [15] S. Gao, B. Novick, and K. Qiu, "From Hall's matching theorem to optimal routing on hypercubes," *Journal of Combinatorial Theory, Series B.* vol. 74, pp. 291-301, 1998.

- [16] R. L. Graham, D. E. Knuth, and O. Patashnik, *Concrete Mathematics*, Addison-Wesley Publishing Company, Inc., 1994.
- [17] Q. P. Gu and S. Peng, "*k*-pairwise cluster fault tolerant routing in hypercubes," *IEEE Transactions on Computers*, vol. 46, no. 9, pp. 1042-1049, 1997.
- [18] Q. P. Gu and S. Peng, "Cluster fault-tolerant routing in star graphs," *Networks*, vol. 35, no. 1, pp. 83-90, 2000.
- [19] D. F. Hsu, "On container width and length in graphs, groups, and networks," *IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science*, vol. E77-A, no. 4, pp. 668-680, 1994.
- [20] D. F. Hsu and Y. D. Lyuu, "A graph-theoretical study of transmission delay and fault tolerance," *International Journal of Mini and Microcomputers*, vol. 16, no. 1, pp. 35-42, 1994.
- [21] C. N. Lai, G. H. Chen, and D. R. Duh, "Routing functions – an effective approach to deriving one-tomany disjoint paths," Technical Report NTUCSIE 00-02, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, 2000 (also available at http:// www.csie.ntu.edu.tw/~ghchen).
- [22] S. C. Liaw, G. J. Chang, F. Cao, and D. F. Hsu, "Fault-tolerant routing in circulant networks and cycle prefix networks," *Annals of Combinatorics*, vol. 2, pp. 165-172, 1998.
- [23] M. O. Rabin, "Efficient dispersal of information for security, load balancing, and fault tolerance," *Journal* of the ACM, vol. 36, no. 2, pp. 335-348, 1989.
- [24] Y. Saad and M. H. Schultz, "Topological properties of hypercubes," *IEEE Transactions on Computers*, vol. 37, no. 7, pp. 867-872, 1988.