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Abstract

This paper introduces a new concept called routing functions,
which have a close relation to one-to-many digoint paths in
networks. By using a minimal routing function, m digoint
paths whose maximal length is minimized in the worst case
can be obtained in a k-dimensional hypercube, where mgk.
Besides, there exist routing functions that can be used to
construct m digoint paths whose total length is minimized.
The end nodes of these paths are not necessarily distinct. A
minimal routing function can aso be used to construct a
maximal number of digoint paths in the folded hypercube
whose maximal length is minimized in the worst case.

1. Introduction

In the past decade, routing with internally node-digoint
paths (digoint paths for short) has received much attention
because digoint paths have the advantages of efficiency and
fault tolerance. There are three categories of digoint paths,
i.e., one-to-one, one-to-many, and many-to-many. Suppose
that Wis an interconnection network (network for short) with
node connectivity k [2]. According to Menger's theorem [2],
there exist k digoint paths from one source node to another
destination node in W. These digoint paths belong to the
one-to-one category. Many one-to-one digoint paths
congtructed for a variety of networks can be found in the
literature[3, 4, 6-10, 12, 22, 24]. Thereisan excellent survey
of one-to-one digoint paths in [19] where severa related
problems were also addressed.

According to Theorem 2.6 in [1], there exist k digoint
paths from one source node to another k distinct destination
nodesin W. These digoint paths belong to the one-to-many
category. A k-dimensional hypercube (abbreviated to a k-
cube) consists of 2 nodes that are labeled with 2 binary
numbers from 0 to 2% 1. Two nodes of a k-cube are adjacent
if and only if their labels differ by exactly one bit. The node
connectivity of a k-cube is k. In [23], k digoint paths were
constructed from one source node to another k destination
nodes in a k-cube, where the k destination nodes were
distinct. The maximal length is minimized in the worst case.
In [15], m digoint paths were constructed from one source
node to another m destination nodes in a k-cube, where mek
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and the m destination nodes were not necessarily distinct.
The total length is minimized. One-to-many digoint paths
constructed for other networks appeared in [5, 9, 11, 20].
There were many-to-many digoint paths constructed for the
hypercube [17] and the star graph [9, 18].

In this paper, a new concept called routing functions is
proposed, which is useful to derive one-to-many digoint
paths. In the next section, routing functions and their
fundamental properties are introduced. In Section 3, by the
aid of aminima routing function, m digoint paths from one
source node to another m distinct destination nodes are
constructed in a k-cube, where mgk. It is shown in Section 4
that the maximal length of the m digoint paths is minimized
in the worst case. For any given m destination nodes, the
maximal length of the resulting m digoint paths is equal to
dis,o Or min{dis,,+2, k+1}, where dis,,, is the maximal
distance from the source node to the destination nodes. In
Section 5, the situation that the m destination nodes are not
necessarily distinct is discussed. In Section 6, this paper
concludes with some remarks on routing functions. It is
indicated that a minimal routing function can be also used to
derive a maximal number of digoint paths in the folded
hypercube whose maxima length is minimized in the worst
case, and there are routing functions that can be used to
construct m digoint paths in a k-cube whose total length is
minimized.

2. Routing functions

Supposethat s, dy, d,, ..., d, are arbitrary m+1 distinct nodes
of a k-cube, where mEk. Since the hypercube is node
S
symmetric, we assume s=00..0=0 without loss of
generality. A routing function for a k-cube is a one-to-one
correspondence F from D={d,, d,, ..., d.} to I={n,, n,, ...,
Ny}, where 1£n£k for al 1£jEmand ny, n,, ..., n, denote m
distinct dimensions of a k-cube. Suppose d=d,,d ....d;,, and
let |d;] denote the number of bits 1 contained in d; (i.e., the
distancefromstod;), where LEi£m. We defineVe=(vy, v,, ...,
Vi), where vi=[{d; | FiFj, dig 4, =0, and 1Ei£m}]| for all

1£j£k. For example, if mek=5, (d,, d,, d;, d,, d5)= (00011,
00101, 00111, 00110, 11100), and (F(d), F(d,), F(dy,
F(d), F(ds)=(5, 2, 3, 4, 1), then V;=(0, 1, 0, 0, 0). We say



V1, Vo oory VI<(V'y, VY5, ..., V) if ether v<v'; Oor vi=V'y,
Vo=V, .., V=V, and Vi<V, for some 2£l£k. F issaid to be
minimal if VLEVe. for every routing function F: D ® |. A
minima F can be determined in O(k®) time (see Section 6).

A minimal F is intended to derive m digoint paths
from sto d,, d,, ..., d,, and there is a favorable property
about a minima F: if dp @) = di,r (d,) = ¥%=
di.F @ ) =1, then there exist c disjoint shortest paths from s
to di, d;,, ..., d , respectively, where {d; , d; .
d, } I D (see Section 4). Let &= 0°'10*°, b=1, 2, ..., k,
denote the k adjacent nodes of s. An intuitive meaning of
F (d)=ny isto assign the immediate successor of s in the path
tod; tobethenode €, .

In the rest of this section, some fundamental properties
of F areintroduced. Supposethat F: D'® I'and F": D" ®
I" are two routing functions, where {D', D"} is a partition of
Dand{I', I"} isapartition of I. If F'(d)=F(d) for ald, T D'
and F"(d)=F(d,) for al d; T D", then F is said to be the
union of F' and F", denoted by F=F'EF". If F=F'EF",
then Ve=Ve +Ve, i.e, Ve=(V H', ViV, L ViRV where
Ve=(V'y, Vi, .., V) and Ve.=(V', VY, L., VYY), The following
two lemmas areimmediate.

Lemma 1. Suppose F=F'EF". If d,¢.4, =1 for every d
1 D', then Vi=V;...

Lemma 2. Suppose that F=F'EF" isminimal. Then F' and
F"areminimal.

Lemma 3. Suppose Gip(q)=0, djz(q)=0, ad
dif g, =1, where 1£i£m, 1£j£m, and itj. Then F is not
minimal.

Proof. We define Y: D ® | as follows: Y(d)=F(d),
Y (d)=F(d),and Y (d)=F () for al r T {1,2, ..., m}-{i, j}.
S"lppowVF :(Vlv Va, lvk) md VY:(Vllv VI21 ---:V'k)' If |di|1 |dJ|!
then Vig =Vy -1 Vig £V andvi=viforal1T{1,2, ...,
K- {Idi|, [d;[}. If [di|=Ick], then vldiIEVIdil' 1and v'=v, for dll
1£lEk and 11 d|. Hence Vy <V. O
Lemma 4. Suppose djrq)=0, djgq)=1, ad
dip @) =1 where 1£i£m, 1£j£m, and itj. Then F is not

minimal.
Proof. We define Y, V, and V: al the same as the above. If
dig@)=0, then F is not minimal by Lemma 3. If

dir gy =1, then Vg =vg -1 and vi=v, for al 1£1£k and
1* |d|, which implies Vy <Vk. O
Lemma 5. Suppose d;g (q) =0, dif @) =1, and Hil<ldj,
where 1Ei£m, 1£j£m, and it j. Then F isnot minimal.

Proof. We define Y, V, and Vi all the same as the above.
Then vy =vy - 1 and Vi=v, for al 1£I<|d]|. Hence we

have V, <Vg. O
Lemma 6. If F is minima and dig 4, =0, then
d|,1d|,2d|,F (dl)-lldl,F (d|)+ldl,k| {dl, d2| raey dm}
(digdiz- dig(g)-12dig (g, )+1--0i IS the node obtained by
changing the bit d; - 4 , of d;to 1).

Proof. Suppose conversely
di1di 5 dig (@ )-11dig (g ys1--d; « =0 for some 1£rém and
rti.Thatis, d g, =1and d;; =d;; foral 1£j£k and
j*F(d). Then F(d) T {ny n; ..., ne}. If d, g4, =0, then
F is not minima by Lemma 3, which is a contradiction. If
drg,) = dig(g,) =1, then F isnot minimal by Lemma 4,

which is again a contradiction. O

3. A procedureto produce digoint paths

In this section, a recursive procedure, named Paths, is
proposed. With inputs minimal F, m, k, D={d,, d,, ..., d.},
and I={n,, n,, ..., N}, the procedure can produce m digoint
shortest paths, denoted by P, P,, ..., P, in a k-cube that
connect{enl, €n, 1 oo enm} and {d,, d,, ..., d .}, where P,

(1£i£m) is the path to d. By augmenting P, P,, ..., P, with
links (s, enl)’ (s, enz), e (5, €n. ), we have m digjoint
pathsfromstod,, d,, ..., d,, respectively.

In the procedure, ***1 and ***0 represent two digoint

(k- 1)-cubes whose nodes have rightmost bits 1 and 0,
k-1

~ f_H
respectively, where * T {0, 1} and **! =*x:::* (usualy, a
k-cube is represented with *%). For each node X=XX,...x, of a
k-cube, define x®=xx,..X.1(1-%), i.e., x differs from x®
only in the bit x,. The following is aformal description of the
procedure.

Procedure PathgF, m, k, D, I).

Stepl. If k=2, then{
Construct P, P,, ..., P, as the m digoint
paths in a 2-cube that connect {e;ql,

S enm} and{d,, d,, ...,d.}.
Return Py, P,, ..., P... }

Determine d, so that [dJE|d;| for al 1£i£m, where
1£cEm. If there are multiple candidates for d,
then select arbitrary one with dg g, =1, or

select any if they al have dg (4, =0. Without

loss of generality, we assume c=1, n=n;=k, and
F(d)=nforal 1LEiEm.

Partition D into D' and D", where D'={d, |

€

Step 2.



Step 4.

d“: (do) = dij (dy) = dj,k :0 md l£J£m} and
D":{dj | dij(dc):dj,F(dl) = dj,k :1 and
1EjEm}.

Construct P,, P,,
following four cases.

Case 1. d;,=0.

/* Without loss of generality, suppose D'={d,,
d,, ..., d} and D"={d,,s, drp, ..., dy}, Where
1E£rEm. DefineY'": {d,, d;, ...,d} ® {n, ng, ...,n}
asfollows: Y'(d)=F(d)=n; for all 2£i£r, and Y":
{d® d.y, Az ..o, At ® {U, Niag, Ny .oy N
as follows: Y"(d*)=u and Y"(d;)=F (d))=n; for
all r+1£iEm, where 1fu<k and d, =1.*/

Construct P, P,, ..., P, in **"10 by executing
Pathin, Ir- l, k' 1, {dz, d3, sy dr}, {nz, n3, caay
n}). /* P, P, ..., P, connect {enz, €y v oo
&, } and{d, ds, ..., d}.*/

Construct P, Py, Py ..., Py in *<11 by
executing Pathg(Y", mr+1, k-1, {d®, d.,,,
gy ory Aoty {U, Dy, Ny -0, NG, Where P s
the path to d®. / P, P,y Pus ..., Py

efl';)} and{ d

..., P, according to the

connect { e, 9, e .
dr+11 r+2y * e drn} */

Construct P, asP'; augmented with the link (d{,
d).

Augment Py, P, Pr., ..., Powith links (g, &),

k k k
(qﬂ'rﬂ’ e'(1r+)1)’ (enr+2 ( ) ) (enn’ eElm))

n+2

Case 2. d;,=1 and [dy|=1.

[* Suppose D'={d,, ds, ..., d,;} and D"={d,, d..4,
drizy --., Ao}, Where LErEm. Define Y': {d,, d, ...,
d} ® {n, n, ..., n} asfollows: Y'(d)=F(d)=n
for al 2£ifr,and Y": {d,11, drspy ..., A} ® {Nppy,
N ..., N} as follows: Y"(d)=F (d)=n; for al
r+1£iem. */

Construct P,, Ps, ..., P, in **"10 by executing
PathdY', r-1, k-1, {d,, d5, ..., d.}, {n, ng, ...,
n}). * P, P, ..., P, connect {enz, €, o

€, } and{d,, ds, ..., d;}.*/
Construct P,,y, Py, ..., Pnin *<11 by executing
Paths(Y", mer, k-1, {hos, Gross -.r God, {Phus,

Nivgy ooy Nod). 1* Prsty Pragy ooy P connect{ W,
el ..., ey and{d.s, Az ..., Ot */
Construct P, as (e, dy). /* P, haslength 0. */
Augment P,.,, P, ..., P, with links (enm’

(k) ), (enr y e(k) ), .

r+1

k
(e, ef%)).

Case 3. d,,=1, |d,}>1, and d, ,=1 for somea T {1,
y e K= 13 -{K, Nty Ny <oy DY

[* Suppose D'={d,, ds, ..., d;} and D"={d,, d,.,,
Ao ..., Ao, Where 1Er£m. Define Y': {d,, d;, ...,
d} ® {n,ng .., n} asfollows Y'(d)=F(d)=n,
for al 2£ifr,and Y ": {d;, d;11, Aripy ..., At ® {a,
N1, Nup ..., N as follows: Y"(d)=a and
Y"(d)=F(d)=n for al r+1£iE£m. */

Construct P, P,, ..., P, in **"10 by executing
PathgY', r-1, k-1, {d,, d, ..., d}, {n, ns, ...,
n}). I* P, P, ..., P, connect {enz, €, o

&, } and{d; ds, ..., d}.*/

Construct P;, Py, P ..., Py in k-1 by
executing PathgY", m-r+1, k- 1, {d;, d;11,d 15, ...,
ded, {@, Ny Ny oo, N}). /% P, Py, P, oy
(k) (k) alk) (k)

P, connect{ ", &, v € } and {d,,
dr+11 r+2y * e drn} */

Augment Py, P,,, Pr.o, ..., Pywith links (g, €f),
(&0 &) (e, &0)) (e o €y
Case 4. d;,=1, py>1, and d,,=0 for all a T {1,
y ey K= 13 -{K, Nty Ny ooy NS

[* Suppose D'={d,, ds, ..., d;} and D"={d,, d,.,,
Az ..., d}, where 1£rE£m. Define Y™ {d..4,
dio ooy d} ® {Nn.4, Ny, ..., NG as follows:
Y"(d)=F(d)=n for al r+1£i£m.*/

Construct P,,y, Py, ..., Pnin *<11 by executing
PathgY", m-r, k-1, {d.1, s -.oy Aoty { Mg,

Mgy ooos Nod). 1% Prg, Py ooy Py connect{ (k)

el ..., ey and{d.s, Az ..., Ot */

/* DefineW": {d,.1, Az, ..., A} ® {Nriy, Ny -,
Nyt as follows: W'(d))=n; if P, begins at e,ﬂ:‘) for
al r+1£iEm, wherer+1£j£m. */
Ifd, | P;foral r+1£i£m, then {
/* Define Y {d{®, d,, ds, ..., d} ® {u,
Ny Ny, ..., N} as follows: Y'(d))=u and
Y'(d)=F (d)=n, for al 2£i£r, where 1£u<k
andd, =1.*/
Construct P, P,, Ps, ..., P.in *<"10 by
executing Pathg(Y', r, k-1, {d{ d,,
ds, ..., d}, {u,n, ng, ...,n}), where P is
the path to d. /* P, P, Py, ..., P,
connect {e, €y, €, - 6y } and

{d® d, ds, ..., d}.*/
Construct P, asP'; augmented with the link



(i, dy).
/* Supposeu=n,, for somer+1£hEm.*/
Augment P, P, ..., P with links ( €.,

[3 k k
qg ; )’ (er}+2 ’ egh)z )' e (er\w—l’ eﬁh—)l)’(a(’

T+l

) (8 (e )
If d, 1 P, for somer+1£l£Emand d® 71 {d,, ds, ...,

d;}, then{
/* Define Q: {d¥, d,, ds, ..., d} ®
{W'(d), n, ns .., n} as follows:
Q(d)=w'(d) and Q'(d)=F (d)=n; for
al 2£ifr.*/

Construct P, P,, Py, ..., P.in *<"10 by

executing PathgQ', r, k-1, {d%, d,
ds, ..., d}, {wW'(d), n,, ng, ..., n}), where
P isthepathto d™. /* P, P, P;, ...,
P, connect {eyq): €+ €+ - & )
and{ d® ,d,, ds, ..., d}.*/
Construct P, as the subpath of P, from
k
ehq,) tod:.
Reconstruct P, as P, augmented with the
link (d®, d).
Augment Py, P,,q, Prio, ..oy Py, Pray vy P
withlinks (e, , & ). (e, . ), ...,
k k
(ew@r1  Ewiars): (@ Ewla)):
(ew(q s ew?(d,)+1)’ (e s ef}:))-}
If d, 1 P, for somer+1£l£Emand d®1 {d, d,, ...,
d}, then

/* Suppose d®=d, for some 2fhfr.
DefineY: {d;, d,, ...,d} ® {ny, n,, ..., N}
as follows. Y(d)=F(d,), Y (d.)=wW'(d),
Y (d)=F(d)=k, Y (d)=F(d) for all Zifr
and it h, and Y (d,)=W'(d) for al r+1££m
andjtl.*/

Construct P, P,, ..., P, al the same as
Case3. /* Subdtitute Y for theF in Case
3.*%/

Step5. ReturnP, P,, ..., P,

Intuitively, the m digoint paths from sto d,, d,, ..., d,,
can be obtained by first including m links (s, eF(dl)), s
eF(dz)), e (S, &(dm)) and then constructing m digoint
paths, i.e., Py, P, ..., Py, that connect {g: ), & (g, -
eF(dm)} and {d,, d,, ..., d.}. The latter can be done by
executing PathgF, m, k, D, I). In Step 2, the k-cube was

divided into two (k- 1)-cubes **10 and xkely according
to the dimension F(d)=k. In Step 3, {d,, d, ..., d,} was
partitioned into D' and D" which contain nodes belonging to

*k-10 and **'1, respectively. In Step 4, Py, P,, ..., P,
were constructed according to four cases in which paths in
*k10 and **'1 need to be constructed in a recursive
manner. In Case 1, |D'|-1 disoint paths in **10 that
connect { & (g, &gy - &(q)t ad D-{d} and
ID"[+1 disjoint pathsin **“*1 that connect {e{, %),
e,y - 8% )} and D"E{ d{} were constructed. It

should be noted that e, in ***1 corresponds to s=0* in
*k-10 (refer to Figure 1). In Case 2, P'| disjoint paths in
*10 that connect { g (4)+ & (4 & (q)} ad D" and

ID"|-1 disioint paths in **'1 that connect {eF(k()dm)'
qgk()d”z)’ eF(k()dm)} and D"-{d,} were constructed. Since

d,=e,, P, haslength 0. In Case 3, |D'| disjoint pathsin **"10
that connect {e- 4, & (q,+ -~ & (q)} @d D' and |D"|

s kel K K
disoint paths in *“*1 that connect {e&l, &, ,,
e, &', ,} and D" were constructed.

In Case 4, D"|- 1 disjoint pathsin ***1 that connect
{ (k)

.y &%, - &)} and D-{d} were first

constructed. The subsequent construction depends on
whether d, is contained in these D"[- 1 paths or not. If d, is
not contained in these |D"|- 1 paths, then |D'[+1 digoint paths
in *10 that connect {e,, & 4y, & (a)+ -+ & ()} Ad

D'E{ d{¥} were constructed. If d, is contained in one of
these [D"|-1 paths which connects ey, and d; and
d®i D, then D'|+1 digoint paths in *"10 that connect
e k
{ew): & @) @ &} adDE{d"} were
constructed. If d, is contained in one of these D"|- 1 paths
that connects ely),, and d and d1 D', then after

substituting Y for F, the situation is the same as Case 3 and
P,, P,, ..., P, can be obtained likewise.

The maximal length of them digoint paths from stod,,
d,, ..., d,iscomputed asfollows.

Theorem 1. Suppose that s, dy, d,, ..., d,, are arbitrary m+1
distinct nodes of a k-dimensional hypercube, where mek and
k32. There are m digoint paths from sto d,, d,, ..., d,,
respectively, whose maximal length is not greater than k+1 if
m=k, and not greater than k if m<k. The maximal length is
minimized in the worst case.

The proof of Theorem 1 is presented in the next
section.
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Figurel. e in *“*1 corresponds to s=0in ***0.

4. Proof of Theorem 1

We need to show two properties of Py, P,, ..., P (P1) Py,
P, ..., P, are digoint, and (P2) for al 1£ifm, if
dig 4y =1, then P, has length |- 1, and if d;¢ 4, =0,

then P, has length |d|+1 and [|=|d||+1, where t; is the
immediate predecessor of d in P,. According to (P2), P, has
length k-1 if ik, and a most k if [d|<k. Hence, P, has
length at most k. However, when m<k, P; has length at most
k-1, as explained below. If 1“1 {d,, d,, ..., d,}, then P, has
length at most k-1, for otherwise (P, has length k) we have
t|=d [+ 1=(k- 1)+1= k (i.e, t=1% according to (P2). This
contradicts to (P1). On the other hand, if 1T {d,, d,, ..., d.},
then after adding a new node d,,.,=1 to D and a new
dimensionul {1,2, ..., k}-1tol, Paths(F, m+1, k, D, 1) can
produce P, P,, ..., Pni. Since 21 {dy, d,, ..., dna}, Pi,
P,, ..., Pm1 have lengths at most k- 1.

Consequently, the m digoint paths from sto d, d,, ...,
d,, have maximal length k+1 if m=k, and k if m<k. Since the
diameter of a k-cube is k, the maximal length of the m
digoint pathsis at least k in the worst case. It was shown in
[11] that the maximal length is at least k+1 in the worst case
when m=k. Hence the maximal length in Theorem 1 is
minimized in the worst case.

(P1) and (P2) can be verified by induction on k. The
detailed proof my be found in[21].

5.When {d,, d,, ..., d.} isa multiset

A multiset is a collection of elements in which multiple
occurrences of the same element are allowed [16]. Paths(F,

m, k, D, I) can deal withamultiset D, if Step 4 is modified as
follows. Let T={d | d=e,and r+1£j£m}. InCase 2, Y" is
changed to Y": {d.1, Opy ooy - T ® {Niyq, Ny ..o,
Nt-{F(d)|d T Tand r+1£j£m} so that Y"(d))=F (d)=n, for
al r+1£ifEmand di' e. Instead of executing Paths(Y", m-r,
k-1, {d.1, duzy -oy Aoty {De1y Ny ..., DY), WE execute
Pathg(Y", m-r-|T|, k-1, {d.s1, dripy -y Aid - T, {Npigy Nisy <oy
Nt-{F(d) | d T Tand r+1£j£m}), in order to construct

m-r- [T] digjoint pathsin ***1 that connect { &\ , {9 , ...,

eg?}-{e;"()djﬂ d 1T and r+1£j£m and {d..1, dups ...,

d.}- T. Additionally, we construct another [T] digoint paths
of length one that connect eF(k()d‘) andd, foral d;T T.
J

In Case 4, the conditions for the second and third
situations are changed to "d, T P, for some r+1£l£m, d,
1 {d1,drsz ..., Aoy, and d® 7T {d,, ds, ...,d}" and'd, T P,
for some r+1£1£m, d; T {d,.1, drsz -, dpd, and d® 71 {d,,
ds, ..., d}", Arespectively. One more sizuation whose
conditionis"d, I P, for somer+1£lEmandd, | {d., d..>, ...,
d.}" needs to be added. The new situation constructs P;,
P, ...,P.in **"10 all the same as the first situation (i.e., d,
I P, foral r+1£i£m).

Both (P1) and (P2)
modifications above, as shownin [21]. When {d,, d,, ..
isamultiset, Theorem 1 can be rewritten asfollows.

Theorem 2. Suppose that s, dy, d,, ..., d, are arbitrary n+1
nodes of ak-dimensional hypercubesothatsi {d,,d,, ..., dy}
and{d,, d,, ..., d,} isamultiset, where mek and k3 2. There
are m digoint paths from sto d,, d,, ..., d,, respectively,

remains correct after the

. di}



whose maximal length is not greater than k+1 if m=k, and not
greater than k if m<k. The maximal length is minimized in
theworst case.

6. Discussion and conclusion

The main contribution of this paper is to show the
effectiveness of routing functions in deriving one-to-many
digoint paths in networks. By using a minima routing
function, m digoint paths whose maximal length is
minimized in the worst case can be obtained in a k-cube,
where mEk. The problem of finding a minima routing
function can be reduced to the problem of finding a
maximum matching in a weighted bipartite graph. Suppose
G=(U, V, E) isaweighted bipartite graph, whereU and V are
two partite sets of nodes and E is the set of weighted links
(each link of G isassigned aweight). A subset of E forms a
matching in G if no two of them share a common node. A
matching in G is maximumif itstotal weight is maximum. A

maximum matching in G can be found in
O(JUE V|(E[+|UE V]log|UE V))) time (see[14]).
Suppose F: {d,, d,, ..., d} ® {n, n, ..., n} isa

routing function, where {d,, d,, ..., d,} isa multiset. Let
U={d,, dy, ..., do}, V={ny, n, ..., N}, and E={(d;, n) |
1£iEmand 1£j£m}. We assign each link (d;, n;) a weight
(k+DBFif d =1, and 1if d, =0. A maximum

matching M in G contains mlinks and its total weight can be
expressed as a,*(k+l)“+as* (k+1)“'+ +agk (k+1)+ay,
where Of£a,£mfor all 1£r£k+1. That is, there are a, links in
M whose weights are (k+1)%"* (or equivalently, M

contains a, links (d;, n) of weight (k+D* V" with fev
and di,nj =1 for al 1£vEK, and &, links (d;, n;) of weight 1

with di,nj =0). For all 1£v£k, let r, denote the number of

d'swith |di|=v and d, T U. A minimal F with Vi= (r-a,,
r-ay, ..., - &) can be obtained from M as follows: F(d)=n,
if (d, i) T M. If F isnot minimal, then there exists Vi <Vq
for some routing function F": {d, d, ..., d.} ® {n, n,, ...,
n.}, which implies another matching in G whose total weight
is greater than the total weight of M. Thisisacontradiction.
Besides minimal routing functions, there are some other
routing functions that can be used to produce digoint paths
with different properties. For example, m digoint paths
whose total length is minimized can be also produced in a k-
cube, if an implicit routing function in [15] is used. In [15],
m non-empty subsets Xy, X, ..., X,of {1, 2, ..., k} were used
to represent m nodes d,, d,, ..., d,, respectively, so that for
al 1£uEmand 1£wek, w1 X, if and only if d,=1. A set of ¢
distinct integers t, 1 X, s t, 1 Xp, oot 1 Xy iscaleda

partial System of Distinct Representatives (SDR for short)
for { X, X, ..., X;} if hy, h,, ..., hoare dl distinct, where cEm
and 1Eh,Emfor al 1£i£c. Further, the partiad SDR {t,, t,, ...,
t} is maximumif cis maximized. When c=m, {t;, t,, ..., t}
iscaled an SDR. A maximum partial SDR {t,, t,, ..., t} can

be used to construct m digoint paths in a k-cube whose tota
length is minimized, if thereisno j 1{1, 2, ..., m}- {h,,
h,, ..., h} satisfying the following two conditions: (C1) X
I Xy for some 1£ifc, and (C2) there exists an SDR for

{Xp o Xpo oo X Xjy Xpv o Xy }. Such a

maximum partial SDR can be determined in O(k*9) time (see
[15]).

Actualy, a maximum partial SDR {t;, t,, ..., t} can be
regarded asarouting function F: D ® | sothat {t;, t,, ..., t}
i 1 and F(dy)=t for al 1fifc. Suppose Le={u |

dup(a,) =1 and 1£uEm} . It follows that Paths(F, m, k, D, 1)

can result in mdigjoint paths from sto d,, d,, ..., d,, whose
total length is minimized, provided || is maximized and
thereisnoj 1 {1, 2, ..., m}- Lq satisfying the following two
conditions: (C1') d*d, and d; ,£d,,, for some | 1L and all
1EwEk, and (C2") there exists a routing function Y with
djy g, = duy @, =1 for al v T Le-{I}. Here, a routing

function F: D ® | with maximum || corresponds to a
maximum partial SDR (L correspondsto {h,, h,, ..., h} and
{F(d)|ul L} correspondsto {t,, t,, ..., t}). Besides, (C1"
and (C2") correspond to (C1) and (C2), respectively. A
routing function F with maximum || so that there is no j
T{1, 2, ..., m}-L satisfying (C1") and (C2) can be
determined with the same time complexity as a maximum
partiadl SDR so that thereisnoj 1 {1, 2, ..., mi-{hy, h,, ...,
h} satisfying (C1l) and (C2). There exist other routing
functions that can result in m digoint paths from sto d,,
d,, ..., d, whose total length is minimized. For example, if
(C1) is changed to "|dj|<[d| for some | T L.", then the
resulting F also serves the purpose.

We have shown in Theorem 2 that the maximal length
of themdigoint pathsfromstod,, d,, ...,dis
minimum for the worst-case scenario. According to (P2),
each path from s to d, has length |d;| (i.e. shortest) if
dig @) =1, and i[+2 (i.e,, second shortest) if dig 4, =0,

where 1Ei£m. It follows that for any given d,, d,, ..., d,,, the
maximal length of themdigjoint pathsfrom stod,, d,, ..., d,,
is equal to max{|d| | 2£i£m} or min{max{|d| | 1EiEm}+2,
k+1}. It should be noted that Py, P,, ..., P,, are all shortest.
Thenode g (4, (or & (4, for the situation of d, TP for

somer+1£lEmand d* 1 {d,, d,, ..., d} in Case4 of Step 4)
is the immediate successor of s in the path to d. When
dif@) =1 & (Or & () is contained in a shortest

pathfromstod. When d;¢ ) =0, &, isnotcontained

in any shortest path fromstod..

A k-dimensional folded hypercube [13] isbasicaly a k-
cube augmented with 2* complement links. It was shown in
[21] that using aminimal routing function, k+1 digoint paths
whose maximal length is minimized in the worst case can be
constructed in a k-dimensional folded hypercube, where k+1
is the node connectivity. It is worth while exploring more



relations between the characteristics of routing functions and
the properties of digoint paths.
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