One-to-Many Disjoint Paths in Hypercubes

Cheng-Nan Lai, Gen-Huey Chen
Department of Computer Science and
Information Engineering,
National Taiwan University, Taipei, TAIWAN

Dyi-Rong Duh
Department of Computer Science and Information Engineering, National Chi Nan University, Nantou, TAIWAN

Abstract

This paper introduces a new concept called routing functions, which have a close relation to one-to-many disjoint paths in networks. By using a minimal routing function, m disjoint paths whose maximal length is minimized in the worst case can be obtained in a k-dimensional hypercube, where $m \leq k$. Besides, there exist routing functions that can be used to construct m disjoint paths whose total length is minimized. The end nodes of these paths are not necessarily distinct. A minimal routing function can also be used to construct a maximal number of disjoint paths in the folded hypercube whose maximal length is minimized in the worst case.

1. Introduction

In the past decade, routing with internally node-disjoint paths (disjoint paths for short) has received much attention because disjoint paths have the advantages of efficiency and fault tolerance. There are three categories of disjoint paths, i.e., one-to-one, one-to-many, and many-to-many. Suppose that W is an interconnection network (network for short) with node connectivity k [2]. According to Menger's theorem [2], there exist k disjoint paths from one source node to another destination node in W. These disjoint paths belong to the one-to-one category. Many one-to-one disjoint paths constructed for a variety of networks can be found in the literature [$3,4,6-10,12,22,24]$. There is an excellent survey of one-to-one disjoint paths in [19] where several related problems were also addressed.

According to Theorem 2.6 in [1], there exist k disjoint paths from one source node to another k distinct destination nodes in W. These disjoint paths belong to the one-to-many category. A k-dimensional hypercube (abbreviated to a k cube) consists of 2^{k} nodes that are labeled with 2^{k} binary numbers from 0 to $2^{k}-1$. Two nodes of a k-cube are adjacent if and only if their labels differ by exactly one bit. The node connectivity of a k-cube is k. In [23], k disjoint paths were constructed from one source node to another k destination nodes in a k-cube, where the k destination nodes were distinct. The maximal length is minimized in the worst case. In [15], m disjoint paths were constructed from one source node to another m destination nodes in a k-cube, where $m \leq k$
and the m destination nodes were not necessarily distinct. The total length is minimized. One-to-many disjoint paths constructed for other networks appeared in [5, 9, 11, 20]. There were many-to-many disjoint paths constructed for the hypercube [17] and the star graph $[9,18]$.

In this paper, a new concept called routing functions is proposed, which is useful to derive one-to-many disjoint paths. In the next section, routing functions and their fundamental properties are introduced. In Section 3, by the aid of a minimal routing function, m disjoint paths from one source node to another m distinct destination nodes are constructed in a k-cube, where $m \leq k$. It is shown in Section 4 that the maximal length of the m disjoint paths is minimized in the worst case. For any given m destination nodes, the maximal length of the resulting m disjoint paths is equal to $d i s_{\text {max }}$ or $\min \left\{d i s_{\text {max }}+2, k+1\right\}$, where $d i s_{\text {max }}$ is the maximal distance from the source node to the destination nodes. In Section 5, the situation that the m destination nodes are not necessarily distinct is discussed. In Section 6, this paper concludes with some remarks on routing functions. It is indicated that a minimal routing function can be also used to derive a maximal number of disjoint paths in the folded hypercube whose maximal length is minimized in the worst case, and there are routing functions that can be used to construct m disjoint paths in a k-cube whose total length is minimized.

2. Routing functions

Suppose that $s, d_{1}, d_{2}, \ldots, d_{m}$ are arbitrary $m+1$ distinct nodes of a k-cube, where $m \leq k$. Since the hypercube is node symmetric, we assume $s=\overbrace{00 \ldots 0}^{k}=0^{k}$ without loss of generality. A routing function for a k-cube is a one-to-one correspondence Φ from $D=\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$ to $I=\left\{n_{1}, n_{2}, \ldots\right.$, $\left.n_{m}\right\}$, where $1 \leq n_{j} \leq k$ for all $1 \leq j \leq m$ and $n_{1}, n_{2}, \ldots, n_{m}$ denote m distinct dimensions of a k-cube. Suppose $d_{i}=d_{i 11} d_{i, 2} \ldots d_{i, k}$ and let $\left|d_{i}\right|$ denote the number of bits 1 contained in d_{i} (i.e., the distance from s to d_{i}), where $1 \leq i \leq m$. We define $V_{\Phi}=\left(v_{1}, v_{2}, \ldots\right.$, v_{k}, where $v_{j}=\mid\left\{d_{i}| | d_{i} \mid=j, d_{i, \Phi\left(d_{i}\right)}=0\right.$, and $\left.1 \leq i \leq m\right\} \mid$ for all $1 \leq j \leq k$. For example, if $m=k=5,\left(d_{1}, d_{2}, d_{3}, d_{4}, d_{5}\right)=(00011$, 00101, 00111, 00110, 11100), and $\left(\Phi\left(d_{1}\right), \Phi\left(d_{2}\right), \Phi\left(d_{3}\right)\right.$, $\left.\Phi\left(d_{4}\right), \Phi\left(d_{5}\right)\right)=(5,2,3,4,1)$, then $V_{\Phi}=(0,1,0,0,0)$. We say
$\left(v_{1}, v_{2}, \ldots, v_{k}\right)<\left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{k}^{\prime}\right)$ if either $v_{1}<v_{1}^{\prime}$ or $v_{1}=v_{1}^{\prime}$, $v_{2}=v_{2}^{\prime}, \ldots, v_{l-1}=v_{l-1}^{\prime}$, and $v_{l}<v_{l}^{\prime}$ for some $2 \leq l \leq k$. Φ is said to be minimal if $V_{\Phi} \leq V_{\Phi^{\prime}}$ for every routing function $\Phi^{\prime}: D \rightarrow I$. A minimal Φ can be determined in $O\left(k^{3}\right)$ time (see Section 6).

A minimal Φ is intended to derive m disjoint paths from s to $d_{1}, d_{2}, \ldots, d_{m}$, and there is a favorable property about a minimal Φ : if $d_{i_{1}, \Phi\left(d_{i_{1}}\right)}=d_{i_{2}, \Phi\left(d_{i_{2}}\right)}=\cdots=$ $d_{i_{c}, \Phi\left(d_{i_{c}}\right)}=1$, then there exist c disjoint shortest paths from s to $d_{i_{1}}, d_{i_{2}}, \ldots, d_{i_{c}}$, respectively, where $\left\{d_{i_{1}}, d_{i_{2}}, \ldots\right.$, $\left.d_{i_{c}}\right\} \subseteq D($ see Section 4$)$. Let $e_{\beta}=0^{\beta-1} 10^{k-\beta}, \beta=1,2, \ldots, k$, denote the k adjacent nodes of s. An intuitive meaning of $\Phi\left(d_{i}\right)=n_{j}$ is to assign the immediate successor of s in the path to d_{i} to be the node $e_{n_{j}}$.

In the rest of this section, some fundamental properties of Φ are introduced. Suppose that $\Phi^{\prime}: D^{\prime} \rightarrow I^{\prime}$ and $\Phi^{\prime \prime}: D^{\prime \prime} \rightarrow$ $I^{\prime \prime}$ are two routing functions, where $\left\{D^{\prime}, D^{\prime \prime}\right\}$ is a partition of D and $\left\{I^{\prime}, I^{\prime \prime}\right\}$ is a partition of I. If $\Phi^{\prime}\left(d_{i}\right)=\Phi\left(d_{i}\right)$ for all $d_{i} \in D^{\prime}$ and $\Phi^{\prime \prime}\left(d_{j}\right)=\Phi\left(d_{j}\right)$ for all $d_{j} \in D^{\prime \prime}$, then Φ is said to be the union of Φ^{\prime} and $\Phi^{\prime \prime}$, denoted by $\Phi=\Phi^{\prime} \cup \Phi^{\prime \prime}$. If $\Phi=\Phi^{\prime} \cup \Phi^{\prime \prime}$, then $V_{\Phi}=V_{\Phi}+V_{\Phi^{\prime \prime}}$, i.e., $V_{\Phi}=\left(v_{1}^{\prime}+v^{\prime \prime}, v_{2}^{\prime}+v^{\prime \prime}, \ldots, v_{k}^{\prime}+v^{\prime \prime}{ }_{k}\right)$ where $V_{\Phi}=\left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{k}^{\prime}\right)$ and $V_{\Phi^{\prime}}=\left(v^{\prime \prime}, v^{\prime \prime}, \ldots, v_{k}^{\prime \prime}\right)$. The following two lemmas are immediate.

Lemma 1. Suppose $\Phi=\Phi^{\prime} \cup \Phi^{\prime \prime}$. If $d_{i, \Phi^{\prime}\left(d_{i}\right)}=1$ for every d_{i} $\in D^{\prime}$, then $V_{\Phi}=V_{\Phi^{\prime \prime}}$.

Lemma 2. Suppose that $\Phi=\Phi^{\prime} \cup \Phi^{\prime \prime}$ is minimal. Then Φ^{\prime} and $\Phi^{\prime \prime}$ are minimal.

Lemma 3. Suppose $d_{i, \Phi\left(d_{i}\right)}=0, \quad d_{j, \Phi\left(d_{j}\right)}=0$, and $d_{i, \Phi\left(d_{j}\right)}=1$, where $1 \leq i \leq m, 1 \leq j \leq m$, and $i \neq j$. Then Φ is not minimal.
Proof. We define $\Psi: D \rightarrow I$ as follows: $\Psi\left(d_{i}\right)=\Phi\left(d_{j}\right)$, $\Psi\left(d_{j}\right)=\Phi\left(d_{i}\right)$, and $\Psi\left(d_{r}\right)=\Phi\left(d_{r}\right)$ for all $r \in\{1,2, \ldots, m\}-\{i, j\}$. Suppose $V_{\Phi}=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ and $V_{\Psi}=\left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{k}^{\prime}\right)$. If $\left|d_{i}\right| \nmid\left|d_{j}\right|$, then $v_{\left|d_{i}\right|}^{\prime}=v_{\left|d_{i}\right|}-1, \quad v_{\left|d_{j}\right|}^{\prime} \leq v_{\left|d_{j}\right|}$, and $v_{l}^{\prime}=v_{l}$ for all $l \in\{1,2, \ldots$, $k\}-\left\{\left|d_{i}\right|,\left|d_{j}\right|\right\}$. If $\left|d_{i}\right|=\left|d_{j}\right|$, then $v_{\left|d_{i}\right|}^{\prime} \leq v_{\left|d_{i}\right|}-1$ and $v_{l}^{\prime}=v_{l}$ for all $1 \leq l \leq k$ and $l \neq\left|d_{i}\right|$. Hence $V_{\Psi}<V_{\Phi}$.

Lemma 4. Suppose $d_{j, \Phi\left(d_{j}\right)}=0, \quad d_{j, \Phi\left(d_{i}\right)}=1$, and $d_{i, \Phi\left(d_{j}\right)}=1$, where $1 \leq i \leq m, 1 \leq j \leq m$, and $i \neq j$. Then Φ is not minimal.
Proof. We define Ψ, V_{Ψ}, and V_{Φ} all the same as the above. If $d_{i, \Phi\left(d_{i}\right)}=0$, then Φ is not minimal by Lemma 3. If $d_{i, \Phi\left(d_{i}\right)}=1$, then $v_{\left|d_{j}\right|}^{\prime}=v_{\left|d_{j}\right|}-1$ and $v_{l}^{\prime}=v_{l}$ for all $1 \leq l \leq k$ and $l \neq\left|d_{j}\right|$, which implies $V_{\Psi}<V_{\Phi}$.

Lemma 5. Suppose $d_{i, \Phi\left(d_{i}\right)}=0, d_{i, \Phi\left(d_{j}\right)}=1$, and $\left|d_{i}\right|<\left|d_{j}\right|$, where $1 \leq i \leq m, 1 \leq j \leq m$, and $i \neq j$. Then Φ is not minimal.

Proof. We define Ψ, V_{Ψ}, and V_{Φ} all the same as the above. Then $v_{\left|d_{i}\right|}^{\prime}=v_{\left|d_{i}\right|}-1$ and $v_{l}^{\prime}=v_{l}$ for all $1 \leq l<\left|d_{i}\right|$. Hence we have $V_{\Psi}<V_{\Phi}$.

Lemma 6. If Φ is minimal and $d_{i, \Phi\left(d_{i}\right)}=0$, then $d_{i, 1} d_{i, 2} \ldots d_{i, \Phi\left(d_{i}\right)-1} 1 d_{i, \Phi\left(d_{i}\right)+1} \ldots d_{i, k} \notin\left\{d_{1}, \quad d_{2}, \quad \ldots, \quad d_{m}\right\}$ $\left(d_{i, 1} d_{i, 2} \ldots \quad d_{i, \Phi\left(d_{i}\right)-1} 1 d_{i, \Phi\left(d_{i}\right)+1} \ldots d_{i, k}\right.$ is the node obtained by changing the bit $d_{i, \Phi\left(d_{i}\right)}$ of d_{i} to 1$)$.
Proof. Suppose conversely $d_{i, 1} d_{i, 2} \ldots d_{i, \Phi\left(d_{i}\right)-1} 1 d_{i, \Phi\left(d_{i}\right)+1} \ldots d_{i, k}=d_{r}$ for some $1 \leq r \leq m$ and $r \neq i$. That is, $d_{r, \Phi\left(d_{i}\right)}=1$ and $d_{r, j}=d_{i, j}$ for all $1 \leq j \leq k$ and $j \neq \Phi\left(d_{i}\right)$. Then $\Phi\left(d_{r}\right) \in\left\{n_{1}, n_{2}, \ldots, n_{m}\right\}$. If $d_{r, \Phi\left(d_{r}\right)}=0$, then Φ is not minimal by Lemma 3, which is a contradiction. If $d_{r, \Phi\left(d_{r}\right)}=d_{i, \Phi\left(d_{r}\right)}=1$, then Φ is not minimal by Lemma 4 , which is again a contradiction.

3. A procedure to produce disjoint paths

In this section, a recursive procedure, named Paths, is proposed. With inputs minimal $\Phi, m, k, D=\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$, and $I=\left\{n_{1}, n_{2}, \ldots, n_{m}\right\}$, the procedure can produce m disjoint shortest paths, denoted by $P_{1}, P_{2}, \ldots, P_{m}$, in a k-cube that connect $\left\{e_{n_{1}}, e_{n_{2}}, \ldots, e_{n_{m}}\right\}$ and $\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$, where P_{i} $(1 \leq i \leq m)$ is the path to d_{i}. By augmenting $P_{1}, P_{2}, \ldots, P_{m}$ with links $\left(s, e_{n_{1}}\right),\left(s, e_{n_{2}}\right), \ldots,\left(s, e_{n_{m}}\right)$, we have m disjoint paths from s to $d_{1}, d_{2}, \ldots, d_{m}$, respectively.

In the procedure, $*^{k-1} 1$ and $*^{k-1} 0$ represent two disjoint $(k-1)$-cubes whose nodes have rightmost bits 1 and 0 , respectively, where $* \in\{0,1\}$ and $*^{k-1}=\overbrace{* * \cdots *}^{k-1}$ (usually, a k-cube is represented with $*^{k}$). For each node $x=x_{1} x_{2} \ldots x_{k}$ of a k-cube, define $x^{(k)}=x_{1} x_{2} \ldots x_{k-1}\left(1-x_{k}\right)$, i.e., x differs from $x^{(k)}$ only in the bit x_{k}. The following is a formal description of the procedure.

Procedure Paths (Φ, m, k, D, I).
Step 1. If $k=2$, then $\{$
Construct $P_{1}, P_{2}, \ldots, P_{m}$ as the m disjoint paths in a 2-cube that connect $\left\{e_{n_{1}}\right.$, $\left.e_{n_{2}}, \ldots, e_{n_{m}}\right\}$ and $\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$.
Return $\left.P_{1}, P_{2}, \ldots, P_{m}.\right\}$
Step 2. Determine d_{c} so that $\left|d_{c}\right| \leq\left|d_{i}\right|$ for all $1 \leq i \leq m$, where $1 \leq c \leq m$. If there are multiple candidates for d_{c}, then select arbitrary one with $d_{c, \Phi\left(d_{c}\right)}=1$, or select any if they all have $d_{c, \Phi\left(d_{c}\right)}=0$. Without loss of generality, we assume $c=1, n_{c}=n_{1}=k$, and $\Phi\left(d_{i}\right)=n_{i}$ for all $1 \leq i \leq m$.
Step 3. Partition D into D^{\prime} and $D^{\prime \prime}$, where $D^{\prime}=\left\{d_{j} \mid\right.$
$d_{j, \Phi\left(d_{c}\right)}=d_{j, \Phi\left(d_{1}\right)}=d_{j, k}=0 \quad$ and $\left.\quad 1 \leq j \leq m\right\} \quad$ and
$D^{\prime \prime}= \begin{cases}d_{j} & \mid \quad d_{j, \Phi\left(d_{c}\right)}=d_{j, \Phi\left(d_{1}\right)}=d_{j, k}=1 \quad \text { and }\end{cases}$ $1 \leq j \leq m\}$.

Step 4. Construct $P_{1}, P_{2}, \ldots, P_{m}$ according to the following four cases.

Case 1. $d_{1, k}=0$.
/* Without loss of generality, suppose $D^{\prime}=\left\{d_{1}\right.$, $\left.d_{2}, \ldots, d_{r}\right\}$ and $D^{\prime \prime}=\left\{d_{r+1}, d_{r+2}, \ldots, d_{m}\right\}$, where $1 \leq r \leq m$. Define $\Psi^{\prime}:\left\{d_{2}, d_{3}, \ldots, d_{r}\right\} \rightarrow\left\{n_{2}, n_{3}, \ldots, n_{r}\right\}$ as follows: $\Psi^{\prime}\left(d_{i}\right)=\Phi\left(d_{i}\right)=n_{i}$ for all $2 \leq i \leq r$, and $\Psi^{\prime \prime}$: $\left\{d_{1}^{(k)}, d_{r+1}, d_{r+2}, \ldots, d_{m}\right\} \rightarrow\left\{u, n_{r+1}, n_{r+2}, \ldots, n_{m}\right\}$ as follows: $\Psi^{\prime \prime}\left(d_{1}^{(k)}\right)=u$ and $\Psi^{\prime \prime}\left(d_{i}\right)=\Phi\left(d_{i}\right)=n_{i}$ for all $r+1 \leq i \leq m$, where $1 \leq u<k$ and $d_{1, u}=1$. */
Construct $P_{2}, P_{3}, \ldots, P_{r}$ in $*^{k-1} 0$ by executing $\operatorname{Paths}\left(\Psi^{\prime}, r-1, k-1,\left\{d_{2}, d_{3}, \ldots, d_{r}\right\},\left\{n_{2}, n_{3}, \ldots\right.\right.$, $\left.n_{r}\right\}$). /* $P_{2}, P_{3}, \ldots, P_{r}$ connect $\left\{e_{n_{2}}, e_{n_{3}}, \ldots\right.$, $\left.e_{n_{r}}\right\}$ and $\left\{d_{2}, d_{3}, \ldots, d_{r}\right\} . * /$
Construct $P_{1}^{\prime}, P_{r+1}, P_{r+2}, \ldots, P_{m}$ in $*^{k-1} 1$ by executing $\operatorname{Paths}\left(\Psi^{\prime \prime}, m-r+1, k-1,\left\{d_{1}^{(k)}, d_{r+1}\right.\right.$, $\left.\left.d_{r+2}, \ldots, d_{m}\right\},\left\{u, n_{r+1}, n_{r+2}, \ldots, n_{m}\right\}\right)$, where P_{1}^{\prime} is the path to $d_{1}^{(k)} . \quad / * P_{1}^{\prime}, P_{r+1}, P_{r+2}, \ldots, P_{m}$ connect $\left\{e_{u}^{(k)}, e_{n_{r+1}}^{(k)}, e_{n_{r+2}}^{(k)}, \ldots, e_{n_{m}}^{(k)}\right\}$ and $\left\{d_{1}^{(k)}\right.$, $\left.d_{r+1}, d_{r+2}, \ldots, d_{m}\right\}$. */
Construct P_{1} as P_{1}^{\prime} augmented with the link ($d_{1}^{(k)}$, d_{1}).
Augment $P_{1}, P_{r+1}, P_{r+2}, \ldots, P_{m}$ with links $\left(e_{k}, e_{u}^{(k)}\right)$, $\left(e_{n_{r+1}}, e_{n_{r+1}}^{(k)}\right),\left(e_{n_{r+2}}, e_{n_{r+2}}^{(k)}\right), \ldots,\left(e_{n_{m}}, e_{n_{m}}^{(k)}\right)$.

Case 2. $d_{1, k}=1$ and $\left|d_{1}\right|=1$.
I^{*} Suppose $D^{\prime}=\left\{d_{2}, d_{3}, \ldots, d_{r}\right\}$ and $D^{\prime \prime}=\left\{d_{1}, d_{r+1}\right.$, $\left.d_{r+2}, \ldots, d_{m}\right\}$, where $1 \leq r \leq m$. Define $\Psi^{\prime}:\left\{d_{2}, d_{3}, \ldots\right.$, $\left.d_{r}\right\} \rightarrow\left\{n_{2}, n_{3}, \ldots, n_{r}\right\}$ as follows: $\Psi^{\prime}\left(d_{i}\right)=\Phi\left(d_{i}\right)=n_{i}$ for all $2 \leq i \leq r$, and $\Psi^{\prime \prime}:\left\{d_{r+1}, d_{r+2}, \ldots, d_{m}\right\} \rightarrow\left\{n_{r+1}\right.$, $\left.n_{r+2}, \ldots, n_{m}\right\}$ as follows: $\Psi^{\prime \prime}\left(d_{i}\right)=\Phi\left(d_{i}\right)=n_{i}$ for all $r+1 \leq i \leq m$. */
Construct $P_{2}, P_{3}, \ldots, P_{r}$ in $*^{k-1} 0$ by executing $\operatorname{Paths}\left(\Psi^{\prime}, r-1, k-1,\left\{d_{2}, d_{3}, \ldots, d_{r}\right\},\left\{n_{2}, n_{3}, \ldots\right.\right.$, $\left.\left.n_{r}\right\}\right) . \quad / * P_{2}, P_{3}, \ldots, P_{r}$ connect $\left\{e_{n_{2}}, e_{n_{3}}, \ldots\right.$,
$\left.e_{n_{r}}\right\}$ and $\left\{d_{2}, d_{3}, \ldots, d_{r}\right\} . * /$
Construct $P_{r+1}, P_{r+2}, \ldots, P_{m}$ in $*^{k-1} 1$ by executing $\operatorname{Paths}\left(\Psi^{\prime \prime}, m-r, k-1,\left\{d_{r+1}, d_{r+2}, \ldots, d_{m}\right\},\left\{n_{r+1}\right.\right.$, $\left.\left.n_{r+2}, \ldots, n_{m}\right\}\right) . \quad / * P_{r+1}, P_{r+2}, \ldots, P_{m}$ connect $\left\{e_{n_{r+1}}^{(k)}\right.$,
$\left.e_{n_{r+2}}^{(k)}, \ldots, e_{n_{m}}^{(k)}\right\}$ and $\left\{d_{r+1}, d_{r+2}, \ldots, d_{m}\right\} . * /$
Construct P_{1} as $\left(e_{k}, d_{1}\right)$. /* P_{1} has length $0 . * /$
Augment $P_{r+1}, P_{r+2}, \ldots, P_{m}$ with links $\left(e_{n_{r+1}}\right.$,
$\left.e_{n_{r+1}}^{(k)}\right),\left(e_{n_{r+2}}, e_{n_{r+2}}^{(k)}\right), \ldots,\left(e_{n_{m}}, e_{n_{m}}^{(k)}\right)$.
Case 3. $d_{1, k}=1,\left|d_{1}\right|>1$, and $d_{1, \alpha}=1$ for some $\alpha \in\{1$, $2, \ldots, k-1\}-\left\{k, n_{r+1}, n_{r+2}, \ldots, n_{m}\right\}$.
$/^{*}$ Suppose $D^{\prime}=\left\{d_{2}, d_{3}, \ldots, d_{r}\right\}$ and $D^{\prime \prime}=\left\{d_{1}, d_{r+1}\right.$, $\left.d_{r+2}, \ldots, d_{m}\right\}$, where $1 \leq r \leq m$. Define $\Psi^{\prime}:\left\{d_{2}, d_{3}, \ldots\right.$, $\left.d_{r}\right\} \rightarrow\left\{n_{2}, n_{3}, \ldots, n_{r}\right\}$ as follows: $\Psi^{\prime}\left(d_{i}\right)=\Phi\left(d_{i}\right)=n_{i}$ for all $2 \leq i \leq r$, and $\Psi^{\prime \prime}:\left\{d_{1}, d_{r+1}, d_{r+2}, \ldots, d_{m}\right\} \rightarrow\{\alpha$, $\left.n_{r+1}, n_{r+2}, \ldots, n_{m}\right\}$ as follows: $\Psi^{\prime \prime}\left(d_{1}\right)=\alpha$ and $\Psi^{\prime \prime}\left(d_{i}\right)=\Phi\left(d_{i}\right)=n_{i}$ for all $r+1 \leq i \leq m$. */
Construct $P_{2}, P_{3}, \ldots, P_{r}$ in $*^{k-1} 0$ by executing $\operatorname{Paths}\left(\Psi^{\prime}, r-1, k-1,\left\{d_{2}, d_{3}, \ldots, d_{r}\right\},\left\{n_{2}, n_{3}, \ldots\right.\right.$, $\left.\left.n_{r}\right\}\right) . / * P_{2}, P_{3}, \ldots, P_{r}$ connect $\left\{e_{n_{2}}, e_{n_{3}}, \ldots\right.$, $\left.e_{n_{r}}\right\}$ and $\left\{d_{2}, d_{3}, \ldots, d_{r}\right\} . * /$
Construct $P_{1}, P_{r+1}, P_{r+2}, \ldots, P_{m}$ in $*^{k-1} 1$ by executing $\operatorname{Paths}\left(\Psi^{\prime \prime}, m-r+1, k-1,\left\{d_{1}, d_{r+1}, d_{r+2}, \ldots\right.\right.$, $\left.\left.d_{m}\right\},\left\{\alpha, n_{r+1}, n_{r+2}, \ldots, n_{m}\right\}\right) . \quad / * P_{1}, P_{r+1}, P_{r+2}, \ldots$, P_{m} connect $\left\{e_{\alpha}^{(k)}, e_{n_{r+1}}^{(k)}, e_{n_{r+2}}^{(k)}, \ldots, e_{n_{m}}^{(k)}\right\}$ and $\left\{d_{1}\right.$, $\left.d_{r+1}, d_{r+2}, \ldots, d_{m}\right\} . * /$
Augment $P_{1}, P_{r+1}, P_{r+2}, \ldots, P_{m}$ with links $\left(e_{k}, e_{\alpha}^{(k)}\right)$, $\left(e_{n_{r+1}}, e_{n_{r+1}}^{(k)}\right),\left(e_{n_{r+2}}, e_{n_{r+2}}^{(k)}\right), \ldots,\left(e_{n_{m}}, e_{n_{m}}^{(k)}\right)$.

Case 4. $d_{1, k}=1,\left|d_{1}\right|>1$, and $d_{1, \alpha}=0$ for all $\alpha \in\{1$, $2, \ldots, k-1\}-\left\{k, n_{r+1}, n_{r+2}, \ldots, n_{m}\right\}$.
/* Suppose $D^{\prime}=\left\{d_{2}, d_{3}, \ldots, d_{r}\right\}$ and $D^{\prime \prime}=\left\{d_{1}, d_{r+1}\right.$, $\left.d_{r+2}, \ldots, d_{m}\right\}$, where $1 \leq r \leq m$. Define $\Psi^{\prime \prime}:\left\{d_{r+1}\right.$, $\left.d_{r+2}, \ldots, d_{m}\right\} \rightarrow\left\{n_{r+1}, n_{r+2}, \ldots, n_{m}\right\}$ as follows: $\Psi^{\prime \prime}\left(d_{i}\right)=\Phi\left(d_{i}\right)=n_{i}$ for all $r+1 \leq i \leq m$. */
Construct $P_{r+1}, P_{r+2}, \ldots, P_{m}$ in $*^{k-1} 1$ by executing $\operatorname{Paths}\left(\Psi^{\prime \prime}, m-r, k-1,\left\{d_{r+1}, d_{r+2}, \ldots, d_{m}\right\},\left\{n_{r+1}\right.\right.$, $\left.\left.n_{r+2}, \ldots, n_{m}\right\}\right) . \quad / * P_{r+1}, P_{r+2}, \ldots, P_{m}$ connect $\left\{e_{n_{r+1}}^{(k)}\right.$,
$\left.e_{n_{r+2}}^{(k)}, \ldots, e_{n_{m}}^{(k)}\right\}$ and $\left\{d_{r+1}, d_{r+2}, \ldots, d_{m}\right\} . * /$
/* Define $\Omega^{\prime \prime}:\left\{d_{r+1}, d_{r+2}, \ldots, d_{m}\right\} \rightarrow\left\{n_{r+1}, n_{r+2}, \ldots\right.$, $\left.n_{m}\right\}$ as follows: $\Omega^{\prime \prime}\left(d_{i}\right)=n_{j}$ if P_{i} begins at $e_{n_{j}}^{(k)}$ for all $r+1 \leq i \leq m$, where $r+1 \leq j \leq m$. */ If $d_{1} \notin P_{i}$ for all $r+1 \leq i \leq m$, then $\{$
$/ *$ Define $\Psi^{\prime}:\left\{d_{1}^{(k)}, d_{2}, d_{3}, \ldots, d_{r}\right\} \rightarrow\{u$, $\left.n_{2}, n_{3}, \ldots, n_{r}\right\}$ as follows: $\Psi^{\prime}\left(d_{1}^{(k)}\right)=u$ and $\Psi^{\prime}\left(d_{i}\right)=\Phi\left(d_{i}\right)=n_{i}$ for all $2 \leq i \leq r$, where $1 \leq u<k$ and $d_{1, u}=1 . * /$
Construct $P_{1}^{\prime}, P_{2}, P_{3}, \ldots, P_{r}$ in $*^{k-1} 0$ by executing $\operatorname{Paths}\left(\Psi^{\prime}, r, k-1,\left\{d_{1}^{(k)}, d_{2}\right.\right.$, $\left.\left.d_{3}, \ldots, d_{r}\right\},\left\{u, n_{2}, n_{3}, \ldots, n_{r}\right\}\right)$, where P_{1}^{\prime} is the path to $d_{1}^{(k)}$. $/^{*} P_{1}^{\prime}, P_{2}, P_{3}, \ldots, P_{r}$ connect $\left\{e_{u}, e_{n_{2}}, e_{n_{3}}, \ldots, e_{n_{r}}\right\}$ and $\left\{d_{1}^{(k)}, d_{2}, d_{3}, \ldots, d_{r}\right\} . * /$
Construct P_{1} as P_{1}^{\prime} augmented with the link
$\left(d_{1}^{(k)}, d_{1}\right)$.
/* Suppose $u=n_{h}$ for some $r+1 \leq h \leq m$. */ Augment $P_{r+1}, P_{r+2}, \ldots, P_{m}$ with links ($e_{n_{r+1}}$,
$\left.e_{n_{r+1}}^{(k)}\right),\left(e_{n_{r+2}}, e_{n_{r+2}}^{(k)}\right), \ldots,\left(e_{n_{h-1}}, e_{n_{h-1}}^{(k)}\right),\left(e_{k}\right.$,
$\left.\left.e_{u}^{(k)}\right),\left(e_{n_{n+1}}, e_{n_{h+1}}^{(k)}\right), \ldots,\left(e_{n_{m}}, e_{n_{m}}^{(k)}\right).\right\}$
If $d_{1} \in P_{l}$ for some $r+1 \leq l \leq m$ and $d_{l}^{(k)} \notin\left\{d_{2}, d_{3}, \ldots\right.$, $\left.d_{r}\right\}$, then $\{$
/* Define $\Theta^{\prime}:\left\{d_{l}^{(k)}, d_{2}, d_{3}, \ldots, d_{r}\right\} \rightarrow$
$\left\{\Omega \Omega^{\prime \prime}\left(d_{l}\right), \quad n_{2}, \quad n_{3}, \ldots, n_{r}\right\}$ as follows: $\Theta^{\prime}\left(d_{l}^{(k)}\right)=\Omega^{\prime \prime}\left(d_{l}\right)$ and $\Theta^{\prime}\left(d_{i}\right)=\Phi\left(d_{i}\right)=n_{i}$ for all $2 \leq i \leq r$. */
Construct $P_{l}^{\prime}, P_{2}, P_{3}, \ldots, P_{r}$ in $*^{k-1} 0$ by executing $\operatorname{Paths}\left(\Theta^{\prime}, r, k-1,\left\{d_{l}^{(k)}, d_{2}\right.\right.$, $\left.\left.d_{3}, \ldots, d_{r}\right\},\left\{\Omega^{\prime \prime}\left(d_{l}\right), n_{2}, n_{3}, \ldots, n_{r}\right\}\right)$, where P_{l}^{\prime} is the path to $d_{l}^{(k)} . I^{*} P_{l}^{\prime}, P_{2}, P_{3}, \ldots$, P_{r} connect $\left\{e_{\Omega^{\prime \prime}\left(d_{l}\right)}, e_{n_{2}}, e_{n_{3}}, \ldots, e_{n_{r}}\right\}$ and $\left\{d_{l}^{(k)}, d_{2}, d_{3}, \ldots, d_{r}\right\}$. */
Construct P_{1} as the subpath of P_{l} from $e_{\Omega^{\prime \prime}\left(d_{l}\right)}^{(k)}$ to d_{1}.
Reconstruct P_{l} as P_{l}^{\prime} augmented with the $\operatorname{link}\left(d_{l}^{(k)}, d_{l}\right)$.
Augment $P_{1}, P_{r+1}, P_{r+2}, \ldots, P_{l-1}, P_{l+1}, \ldots, P_{m}$ with links $\left(e_{n_{r+1}}, e_{n_{r+1}}^{(k)}\right),\left(e_{n_{r+2}}, e_{n_{r+2}}^{(k)}\right), \ldots$, $\left(e_{\Omega^{\prime \prime}\left(d_{l}\right)-1}, \quad e_{\Omega^{\prime \prime}\left(d_{l}\right)-1}^{(k)}\right), \quad\left(e_{k}, \quad e_{\Omega^{\prime \prime}\left(d_{l}\right)}^{(k)}\right)$, $\left.\left(e_{\Omega^{\prime \prime}\left(d_{l}\right)+1}, e_{\Omega^{\prime \prime}\left(d_{l}\right)+1}^{(k)}\right), \ldots,\left(e_{n_{m}}, e_{n_{m}}^{(k)}\right).\right\}$
If $d_{1} \in P_{l}$ for some $r+1 \leq l \leq m$ and $d_{l}^{(k)} \in\left\{d_{2}, d_{3}, \ldots\right.$, $\left.d_{r}\right\}$, then
/* Suppose $d_{l}^{(k)}=d_{h}$ for some $2 \leq h \leq r$.
Define $\Psi:\left\{d_{1}, d_{2}, \ldots, d_{m}\right\} \rightarrow\left\{n_{1}, n_{2}, \ldots, n_{m}\right\}$ as follows: $\Psi\left(d_{l}\right)=\Phi\left(d_{h}\right), \quad \Psi\left(d_{h}\right)=\Omega^{\prime \prime}\left(d_{l}\right)$, $\Psi\left(d_{1}\right)=\Phi\left(d_{1}\right)=k, \Psi\left(d_{i}\right)=\Phi\left(d_{i}\right)$ for all $2<i \leq r$ and $i \neq h$, and $\Psi\left(d_{j}\right)=\Omega{ }^{\prime \prime}\left(d_{j}\right)$ for all $r+1 \leq j \leq m$ and $j \neq l$. */
Construct $P_{1}, P_{2}, \ldots, P_{m}$ all the same as Case 3. I^{*} Substitute Ψ for the Φ in Case 3. */

Step 5. Return $P_{1}, P_{2}, \ldots, P_{m}$.
Intuitively, the m disjoint paths from s to $d_{1}, d_{2}, \ldots, d_{m}$ can be obtained by first including m links $\left(s, e_{\Phi\left(d_{1}\right)}\right)$, (s, $\left.e_{\Phi\left(d_{2}\right)}\right), \ldots,\left(s, e_{\Phi\left(d_{m}\right)}\right)$ and then constructing m disjoint paths, i.e., $P_{1}, P_{2}, \ldots, P_{m}$, that connect $\left\{e_{\Phi\left(d_{1}\right)}, e_{\Phi\left(d_{2}\right)}, \ldots\right.$, $\left.e_{\Phi\left(d_{m}\right)}\right\}$ and $\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$. The latter can be done by executing $\operatorname{Paths}(\Phi, m, k, D, I)$. In Step 2, the k-cube was
divided into two $(k-1)$-cubes $*^{k-1} 0$ and $*^{k-1} 1$, according to the dimension $\Phi\left(d_{c}\right)=k$. In Step $3,\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$ was partitioned into D^{\prime} and $D^{\prime \prime}$ which contain nodes belonging to $*^{k-1} 0$ and $*^{k-1} 1$, respectively. In Step $4, P_{1}, P_{2}, \ldots, P_{m}$ were constructed according to four cases in which paths in $*^{k-1} 0$ and $*^{k-1} 1$ need to be constructed in a recursive manner. In Case $1,\left|D^{\prime}\right|-1$ disjoint paths in $*^{k-1} 0$ that connect $\left\{e_{\Phi\left(d_{2}\right)}, e_{\Phi\left(d_{3}\right)}, \ldots, e_{\Phi\left(d_{r}\right)}\right\}$ and $D^{\prime}-\left\{d_{1}\right\}$ and $\left|D^{\prime \prime}\right|+1$ disjoint paths in $*^{k-1} 1$ that connect $\left\{e_{u}^{(k)}, e_{\Phi\left(d_{r+1}\right)}^{(k)}\right.$, $\left.e_{\Phi\left(d_{r+2}\right)}^{(k)}, \ldots, e_{\Phi\left(d_{m}\right)}^{(k)}\right\}$ and $D^{\prime \prime} \cup\left\{d_{1}^{(k)}\right\}$ were constructed. It should be noted that e_{k} in $*^{k-1} 1$ corresponds to $s=0^{k}$ in $*^{k-1} 0$ (refer to Figure 1). In Case 2, $\left|D^{\prime}\right|$ disjoint paths in $*^{k-1} 0$ that connect $\left\{e_{\Phi\left(d_{2}\right)}, e_{\Phi\left(d_{3}\right)}, \ldots, e_{\Phi\left(d_{r}\right)}\right\}$ and D^{\prime} and $\left|D^{\prime \prime}\right|-1$ disjoint paths in $*^{k-1} 1$ that connect $\left\{e_{\Phi\left(d_{r+1}\right)}^{(k)}\right.$, $\left.e_{\Phi\left(d_{r+2}\right)}^{(k)}, \ldots, e_{\Phi\left(d_{m}\right)}^{(k)}\right\}$ and $D^{\prime \prime}-\left\{d_{1}\right\}$ were constructed. Since $d_{1}=e_{k}, P_{1}$ has length 0 . In Case $3,\left|D^{\prime}\right|$ disjoint paths in $*^{k-1} 0$ that connect $\left\{e_{\Phi\left(d_{2}\right)}, e_{\Phi\left(d_{3}\right)}, \ldots, e_{\Phi\left(d_{r}\right)}\right\}$ and D^{\prime} and $\left|D^{\prime}\right|$ disjoint paths in $*^{k-1} 1$ that connect $\left\{e_{\alpha}^{(k)}, e_{\Phi\left(d_{r+1}\right)}^{(k)}\right.$, $\left.e_{\Phi\left(d_{r+2}\right)}^{(k)}, \ldots, e_{\Phi\left(d_{m}\right)}^{(k)}\right\}$ and $D^{\prime \prime}$ were constructed.

In Case $4,\left|D^{\prime \prime}\right|-1$ disjoint paths in $*^{k-1} 1$ that connect $\left\{e_{\Phi\left(d_{r+1}\right)}^{(k)}, e_{\Phi\left(d_{r+2}\right)}^{(k)}, \ldots, e_{\Phi\left(d_{m}\right)}^{(k)}\right\}$ and $D^{\prime \prime}-\left\{d_{1}\right\}$ were first constructed. The subsequent construction depends on whether d_{1} is contained in these $\left|D^{\prime \prime}\right|-1$ paths or not. If d_{1} is not contained in these $\left|D^{\prime \prime}\right|-1$ paths, then $\left|D^{\prime}\right|+1$ disjoint paths in $*^{k-1} 0$ that connect $\left\{e_{u}, e_{\Phi\left(d_{2}\right)}, e_{\Phi\left(d_{3}\right)}, \ldots, e_{\Phi\left(d_{r}\right)}\right\}$ and $D^{\prime} \cup\left\{d_{1}^{(k)}\right\}$ were constructed. If d_{1} is contained in one of these $\left|D^{\prime \prime}\right|-1$ paths which connects $e_{\Omega^{\prime \prime}\left(d_{l}\right)}^{(k)}$ and d_{l} and $d_{l}^{(k)} \notin D^{\prime}$, then $\left|D^{\prime}\right|+1$ disjoint paths in $*^{k-1} 0$ that connect $\left\{e_{\Omega^{\prime \prime}\left(d_{l}\right)}, e_{\Phi\left(d_{2}\right)}, e_{\Phi\left(d_{3}\right)}, \ldots, e_{\Phi\left(d_{r}\right)}\right\}$ and $D^{\prime} \cup\left\{d_{l}^{(k)}\right\}$ were constructed. If d_{1} is contained in one of these $\left|D^{\prime \prime}\right|-1$ paths that connects $e_{\Omega^{\prime \prime}\left(d_{l}\right)}^{(k)}$ and d_{l} and $d_{l}^{(k)} \in D^{\prime}$, then after substituting Ψ for Φ, the situation is the same as Case 3 and $P_{1}, P_{2}, \ldots, P_{m}$ can be obtained likewise.

The maximal length of the m disjoint paths from s to d_{1}, d_{2}, \ldots, d_{m} is computed as follows.
Theorem 1. Suppose that $s, d_{1}, d_{2}, \ldots, d_{m}$ are arbitrary $m+1$ distinct nodes of a k-dimensional hypercube, where $m \leq k$ and $k \geq 2$. There are m disjoint paths from s to $d_{1}, d_{2}, \ldots, d_{m}$, respectively, whose maximal length is not greater than $k+1$ if $m=k$, and not greater than k if $m<k$. The maximal length is minimized in the worst case.

The proof of Theorem 1 is presented in the next section.

Figure 1. e_{k} in $*^{k-1} 1$ corresponds to $s=0^{k}$ in $*^{k-1} 0$.

4. Proof of Theorem 1

We need to show two properties of $P_{1}, P_{2}, \ldots, P_{m}$: (P1) P_{1}, P_{2}, \ldots, P_{m} are disjoint, and (P2) for all $1 \leq i \leq m$, if $d_{i, \Phi\left(d_{i}\right)}=1$, then P_{i} has length $\left|d_{i}\right|-1$, and if $d_{i, \Phi\left(d_{i}\right)}=0$, then P_{i} has length $\left|d_{i}\right|+1$ and $\left|t_{i}\right|=\left|d_{i}\right|+1$, where t_{i} is the immediate predecessor of d_{i} in P_{i}. According to (P2), P_{i} has length $k-1$ if $\left|d_{i}\right|=k$, and at most k if $\left|d_{i}\right|<k$. Hence, P_{i} has length at most k. However, when $m<k, P_{i}$ has length at most $k-1$, as explained below. If $1^{k} \in\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$, then P_{i} has length at most $k-1$, for otherwise (P_{i} has length k) we have $\left|t_{i}\right|=\left|d_{i}\right|+1=(k-1)+1=k$ (i.e., $t_{i}=1^{k}$) according to (P2). This contradicts to (P1). On the other hand, if $1^{k} \notin\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$, then after adding a new node $d_{m+1}=1^{k}$ to D and a new dimension $u \in\{1,2, \ldots, k\}-I$ to $I, \operatorname{Paths}(\Phi, m+1, k, D, I)$ can produce $P_{1}, P_{2}, \ldots, P_{m+1}$. Since $1^{k} \in\left\{d_{1}, d_{2}, \ldots, d_{m+1}\right\}, P_{1}$, P_{2}, \ldots, P_{m+1} have lengths at most $k-1$.

Consequently, the m disjoint paths from s to d_{1}, d_{2}, \ldots, d_{m} have maximal length $k+1$ if $m=k$, and k if $m<k$. Since the diameter of a k-cube is k, the maximal length of the m disjoint paths is at least k in the worst case. It was shown in [11] that the maximal length is at least $k+1$ in the worst case when $m=k$. Hence the maximal length in Theorem 1 is minimized in the worst case.
(P 1) and (P 2) can be verified by induction on k. The detailed proof my be found in [21].

5. When $\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$ is a multiset

A multiset is a collection of elements in which multiple occurrences of the same element are allowed [16]. Paths $(\Phi$,
$m, k, D, I)$ can deal with a multiset D, if Step 4 is modified as follows. Let $T=\left\{d_{j} \mid d_{j}=e_{k}\right.$ and $\left.r+1 \leq j \leq m\right\}$. In Case 2, $\Psi^{\prime \prime}$ is changed to $\Psi^{\prime \prime}:\left\{d_{r+1}, d_{r+2}, \ldots, d_{m}\right\}-T \rightarrow\left\{n_{r+1}, n_{r+2}, \ldots\right.$, $\left.n_{m}\right\}-\left\{\Phi\left(d_{j}\right) \mid d_{j} \in T\right.$ and $\left.r+1 \leq j \leq m\right\}$ so that $\Psi^{\prime \prime}\left(d_{i}\right)=\Phi\left(d_{i}\right)=n_{i}$ for all $r+1 \leq i \leq m$ and $d_{i} \neq e_{k}$. Instead of executing $\operatorname{Paths}\left(\Psi^{\prime \prime}, m-r\right.$, $\left.k-1,\left\{d_{r+1}, d_{r+2}, \ldots, d_{m}\right\},\left\{n_{r+1}, n_{r+2}, \ldots, n_{m}\right\}\right)$, we execute $\operatorname{Paths}\left(\Psi^{\prime \prime}, m-r-|T|, k-1,\left\{d_{r+1}, d_{r+2}, \ldots, d_{m}\right\}-T,\left\{n_{r+1}, n_{r+2}, \ldots\right.\right.$, $\left.n_{m}\right\}-\left\{\Phi\left(d_{j}\right) \mid d_{j} \in T\right.$ and $\left.\left.r+1 \leq j \leq m\right\}\right)$, in order to construct $m-r-|T|$ disjoint paths in $*^{k-1} 1$ that connect $\left\{e_{n_{r+1}}^{(k)}, e_{n_{r+2}}^{(k)}, \ldots\right.$, $\left.e_{n_{m}}^{(k)}\right\}-\left\{e_{\Phi\left(d_{j}\right)}^{(k)} \mid d_{j} \in T\right.$ and $\left.r+1 \leq j \leq m\right\}$ and $\left\{d_{r+1}, d_{r+2}, \ldots\right.$, $\left.d_{m}\right\}-T$. Additionally, we construct another $|T|$ disjoint paths of length one that connect $e_{\Phi\left(d_{j}\right)}^{(k)}$ and d_{j} for all $d_{j} \in T$.

In Case 4, the conditions for the second and third situations are changed to " $d_{1} \in P_{l}$ for some $r+1 \leq l \leq m, d_{1}$ $\notin\left\{d_{r+1}, d_{r+2}, \ldots, d_{m}\right\}$, and $d_{l}^{(k)} \notin\left\{d_{2}, d_{3}, \ldots, d_{r}\right\}$ " and " $d_{1} \in P_{l}$ for some $r+1 \leq l \leq m, d_{1} \notin\left\{d_{r+1}, d_{r+2}, \ldots, d_{m}\right\}$, and $d_{l}^{(k)} \in\left\{d_{2}\right.$, $\left.d_{3}, \ldots, d_{r}\right\}^{\prime \prime}$, respectively. One more situation whose condition is " $d_{1} \in P_{l}$ for some $r+1 \leq l \leq m$ and $d_{1} \in\left\{d_{r+1}, d_{r+2}, \ldots\right.$, $\left.d_{m}\right\} "$ needs to be added. The new situation constructs P_{1}, P_{2}, \ldots, P_{r} in $*^{k-1} 0$ all the same as the first situation (i.e., d_{1} $\notin P_{i}$ for all $\left.r+1 \leq i \leq m\right)$.

Both (P1) and (P2) remains correct after the modifications above, as shown in [21]. When $\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$ is a multiset, Theorem 1 can be rewritten as follows.

Theorem 2. Suppose that $s, d_{1}, d_{2}, \ldots, d_{m}$ are arbitrary $m+1$ nodes of a k-dimensional hypercube so that $s \notin\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$ and $\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$ is a multiset, where $m \leq k$ and $k \geq 2$. There are m disjoint paths from s to $d_{1}, d_{2}, \ldots, d_{m}$, respectively,
whose maximal length is not greater than $k+1$ if $m=k$, and not greater than k if $m<k$. The maximal length is minimized in the worst case.

6. Discussion and conclusion

The main contribution of this paper is to show the effectiveness of routing functions in deriving one-to-many disjoint paths in networks. By using a minimal routing function, m disjoint paths whose maximal length is minimized in the worst case can be obtained in a k-cube, where $m \leq k$. The problem of finding a minimal routing function can be reduced to the problem of finding a maximum matching in a weighted bipartite graph. Suppose $G=(U, V, E)$ is a weighted bipartite graph, where U and V are two partite sets of nodes and E is the set of weighted links (each link of G is assigned a weight). A subset of E forms a matching in G if no two of them share a common node. A matching in G is maximum if its total weight is maximum. A maximum matching in G can be found in $O(|U \cup V|(|E|+|U \cup V| \log |U \cup V|))$ time (see [14]).

Suppose $\Phi:\left\{d_{1}, d_{2}, \ldots, d_{m}\right\} \rightarrow\left\{n_{1}, n_{2}, \ldots, n_{m}\right\}$ is a routing function, where $\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$ is a multiset. Let $U=\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}, V=\left\{n_{1}, n_{2}, \ldots, n_{m}\right\}$, and $E=\left\{\left(d_{i}, n_{j}\right) \mid\right.$ $1 \leq i \leq m$ and $1 \leq j \leq m\}$. We assign each link (d_{i}, n_{j}) a weight $(k+1)^{k-\left|d_{i}\right|+1}$ if $d_{i, n_{j}}=1$, and 1 if $d_{i, n_{j}}=0$. A maximum matching M in G contains m links and its total weight can be expressed as $a_{1} *(k+1)^{k}+a_{2} *(k+1)^{k-1}+\ldots \quad+a_{k} *(k+1)+a_{k+1}$, where $0 \leq a_{r} \leq m$ for all $1 \leq r \leq k+1$. That is, there are a_{r} links in M whose weights are $(k+1)^{k-r+1}$ (or equivalently, M contains a_{v} links $\left(d_{i}, n_{j}\right)$ of weight $(k+1)^{k-v+1}$ with $\not \phi_{i} \mid=v$ and $d_{i, n_{j}}=1$ for all $1 \leq v \leq k$, and a_{k+1} links $\left(d_{i}, n_{j}\right)$ of weight 1 with $d_{i, n_{j}}=0$). For all $1 \leq v \leq k$, let r_{v} denote the number of d_{i} 's with $\left|d_{i}\right|=v$ and $d_{i} \in U$. A minimal Φ with $V_{\Phi}=\left(r_{1}-a_{1}\right.$, $\left.r_{2}-a_{2}, \ldots, r_{k}-a_{k}\right)$ can be obtained from M as follows: $\Phi\left(d_{i}\right)=n_{j}$ if $\left(d_{i}, n_{j}\right) \in M$. If Φ is not minimal, then there exists $V_{\Phi}<V_{\Phi}$ for some routing function $\Phi:\left\{d_{1}, d_{2}, \ldots, d_{m}\right\} \rightarrow\left\{n_{1}, n_{2}, \ldots\right.$, $\left.n_{m}\right\}$, which implies another matching in G whose total weight is greater than the total weight of M. This is a contradiction.

Besides minimal routing functions, there are some other routing functions that can be used to produce disjoint paths with different properties. For example, m disjoint paths whose total length is minimized can be also produced in a k cube, if an implicit routing function in [15] is used. In [15], m non-empty subsets $X_{1}, X_{2}, \ldots, X_{m}$ of $\{1,2, \ldots, k\}$ were used to represent m nodes $d_{1}, d_{2}, \ldots, d_{m}$, respectively, so that for all $1 \leq u \leq m$ and $1 \leq w \leq k, w \in X_{u}$ if and only if $d_{u, w}=1$. A set of c distinct integers $t_{1} \in X_{h_{1}}, t_{2} \in X_{h_{2}}, \ldots, t_{c} \in X_{h_{c}}$ is called a partial System of Distinct Representatives (SDR for short) for $\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$ if $h_{1}, h_{2}, \ldots, h_{c}$ are all distinct, where $c \leq m$ and $1 \leq h_{i} \leq m$ for all $1 \leq i \leq c$. Further, the partial SDR $\left\{t_{1}, t_{2}, \ldots\right.$, $\left.t_{c}\right\}$ is maximum if c is maximized. When $c=m,\left\{t_{1}, t_{2}, \ldots, t_{c}\right\}$ is called an SDR. A maximum partial $\operatorname{SDR}\left\{t_{1}, t_{2}, \ldots, t_{c}\right\}$ can
be used to construct m disjoint paths in a k-cube whose total length is minimized, if there is no $j \in\{1,2, \ldots, m\}-\left\{h_{1}\right.$, $\left.h_{2}, \ldots, h_{c}\right\}$ satisfying the following two conditions: (C1) X_{j} $\subset X_{h_{i}}$ for some $1 \leq i \leq c$, and (C2) there exists an SDR for $\left\{X_{h_{1}}, X_{h_{2}}, \ldots, X_{h_{i-1}}, X_{j}, X_{h_{i+1}}, \ldots, X_{h_{c}}\right\}$. Such a maximum partial SDR can be determined in $O\left(k^{2.5}\right)$ time (see [15]).

Actually, a maximum partial $\operatorname{SDR}\left\{t_{1}, t_{2}, \ldots, t_{c}\right\}$ can be regarded as a routing function $\Phi: D \rightarrow I$ so that $\left\{t_{1}, t_{2}, \ldots, t_{c}\right\}$ $\subseteq I$ and $\Phi\left(d_{h_{i}}\right)=t_{i}$ for all $1 \leq i \leq c$. Suppose $L_{\Phi}=\{u \mid$ $d_{u, \Phi\left(d_{u}\right)}=1$ and $\left.1 \leq u \leq m\right\}$. It follows that $\operatorname{Paths}(\Phi, m, k, D, I)$ can result in m disjoint paths from s to $d_{1}, d_{2}, \ldots, d_{m}$ whose total length is minimized, provided $\psi_{\Phi} \mid$ is maximized and there is no $j \in\{1,2, \ldots, m\}-L_{\Phi}$ satisfying the following two conditions: (C1) $d_{j} \neq d_{l}$ and $d_{j, w} \leq d_{l, w}$ for some $l \in L_{\Phi}$ and all $1 \leq w \leq k$, and (C2) there exists a routing function Ψ with $d_{j, \Psi\left(d_{j}\right)}=d_{v, \Psi\left(d_{v}\right)}=1$ for all $v \in L_{\Phi}-\{l\}$. Here, a routing function $\Phi: D \rightarrow I$ with maximum $\mathcal{K}_{\Phi} \mid$ corresponds to a maximum partial SDR (L_{Φ} corresponds to $\left\{h_{1}, h_{2}, \ldots, h_{c}\right\}$ and $\left\{\Phi\left(d_{w}\right) \mid u \in L_{\Phi}\right\}$ corresponds to $\left.\left\{t_{1}, t_{2}, \ldots, t_{c}\right\}\right)$. Besides, (C1) and (C2) correspond to (C1) and (C2), respectively. A routing function Φ with maximum K_{Φ} | so that there is no j $\in\{1,2, \ldots, m\}-L_{\Phi}$ satisfying (C1) and (C2) can be determined with the same time complexity as a maximum partial SDR so that there is no $j \in\{1,2, \ldots, m\}-\left\{h_{1}, h_{2}, \ldots\right.$, h_{c} \} satisfying (C1) and (C2). There exist other routing functions that can result in m disjoint paths from s to d_{1}, d_{2}, \ldots, d_{m} whose total length is minimized. For example, if (C1) is changed to " $\left|d_{j}\right|<\left|d_{\mid}\right|$for some $l \in L_{\Phi}$ ", then the resulting Φ also serves the purpose.

We have shown in Theorem 2 that the maximal length of the m disjoint paths from s to $d_{1}, d_{2}, \ldots, d_{m}$ is minimum for the worst-case scenario. According to (P2), each path from s to d_{i} has length $\left|d_{i}\right|$ (i.e. shortest) if $d_{i, \Phi\left(d_{i}\right)}=1$, and $\left|d_{i}\right|+2$ (i.e., second shortest) if $d_{i, \Phi\left(d_{i}\right)}=0$, where $1 \leq i \leq m$. It follows that for any given $d_{1}, d_{2}, \ldots, d_{m}$, the maximal length of the m disjoint paths from s to $d_{1}, d_{2}, \ldots, d_{m}$ is equal to $\max \left\{\left|d_{i}\right| \mid 1 \leq i \leq m\right\}$ or $\min \left\{\max \left\{\left|d_{i}\right| \mid 1 \leq i \leq m\right\}+2\right.$, $k+1\}$. It should be noted that $P_{1}, P_{2}, \ldots, P_{m}$ are all shortest. The node $e_{\Phi\left(d_{i}\right)}$ (or $e_{\Psi\left(d_{i}\right)}$ for the situation of $d_{1} \in P_{l}$ for some $r+1 \leq I \leq m$ and $d_{l}^{(k)} \in\left\{d_{2}, d_{3}, \ldots, d_{r}\right\}$ in Case 4 of Step 4) is the immediate successor of s in the path to d_{i}. When $d_{i, \Phi\left(d_{i}\right)}=1, e_{\Phi\left(d_{i}\right)}$ (or $\left.e_{\Psi\left(d_{i}\right)}\right)$ is contained in a shortest path from s to d_{i}. When $d_{i, \Phi\left(d_{i}\right)}=0, e_{\Phi\left(d_{i}\right)}$ is not contained in any shortest path from s to d_{i}.

A k-dimensional folded hypercube [13] is basically a k cube augmented with 2^{k-1} complement links. It was shown in [21] that using a minimal routing function, $k+1$ disjoint paths whose maximal length is minimized in the worst case can be constructed in a k-dimensional folded hypercube, where $k+1$ is the node connectivity. It is worth while exploring more
relations between the characteristics of routing functions and the properties of disjoint paths.

References

[1] B. Bollobás, Extremal Graph Theory. Academic Press, New York, 1978.
[2] J. A. Bondy and U. S. R. Murthy, Graph Theory with Applications. North-Holland, New York, 1976.
[3] F. Cao, D. Z. Du, D. F. Hsu, and S. H. Teng, "Fault tolerance properties of pyramid networks," IEEE Transactions on Computers, vol. 48, no. 1, pp. 88-93, 1999.
[4] C. P. Chang, J. N. Wang, and L. H. Hsu, "Topological properties of twisted cube," Information Sciences, vol. 113, pp. 147-167, 1999.
[5] C. C. Chen and J. Chen, "Nearly optimal one-to-many parallel routing in star networks," IEEE Transactions on Parallel and Distributed Systems, vol. 8, no. 12, pp. 1196-1202, 1997.
[6] K. Day and A. E. Al-Ayyoub, "Fault diameter of k ary n-cube networks," IEEE Transactions on Parallel and Distributed Systems, vol. 8, no. 9, pp. 903-907, 1997.
[7] K. Day and A. Tripathi, "Characterization of node disjoint paths in arrangement graphs," Technical Report TR 91-43, Computer Science Department, University of Minnesota, 1991.
[8] K. Day and A. Tripathi, "A comparative study of topological properties of hypercubes and star graphs," IEEE Transactions on Parallel and Distributed Systems, vol. 5, no. 1, pp. 31-38, 1994.
[9] M. Dietzfelbinger, S. Madhavapeddy, and I. H. Sudborough, "Three disjoint path paradigms in star networks," Proceedings of the third IEEE Symposium on Parallel and Distributed Processing, 1991, pp. 400-406.
[10] D. R. Duh and G. H. Chen, "Topological properties of WK-recursive networks," Journal of Parallel and Distributed Computing, vol. 23, pp. 468-474, 1994.
[11] D. R. Duh and G. H. Chen, "On the Rabin number problem," Networks, vol. 30, no. 3, pp. 219-230, 1997.
[12] D. R. Duh, G. H. Chen, and D. F. Hsu, "Combinatorial properties of generalized hypercube graphs," Information Processing Letters, vol. 57, pp. 41-45, 1996.
[13] A. El-Amawy and S. Latifi, "Properties and performance of folded hypercubes," IEEE Transactions on Parallel and Distributed Systems, vol. 2, no. 1, pp. 31-42, 1991.
[14] Z. Galil, "Efficient algorithms for finding maximum matching in graphs," ACM Computing Surveys, vol. 18, no. 1, pp. 23-38, 1986.
[15] S. Gao, B. Novick, and K. Qiu, "From Hall's matching theorem to optimal routing on hypercubes," Journal of Combinatorial Theory, Series B. vol. 74, pp. 291-301, 1998.
[16] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley Publishing Company, Inc., 1994.
[17] Q. P. Gu and S. Peng, " k-pairwise cluster fault tolerant routing in hypercubes," IEEE Transactions on Computers, vol. 46, no. 9, pp. 1042-1049, 1997.
[18] Q. P. Gu and S. Peng, "Cluster fault-tolerant routing in star graphs," Networks, vol. 35, no. 1, pp. 83-90, 2000.
[19] D. F. Hsu, "On container width and length in graphs, groups, and networks," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science, vol. E77-A, no. 4, pp. 668-680, 1994.
[20] D. F. Hsu and Y. D. Lyuu, "A graph-theoretical study of transmission delay and fault tolerance," International Journal of Mini and Microcomputers, vol. 16, no. 1, pp. 35-42, 1994.
[21] C. N. Lai, G. H. Chen, and D. R. Duh, "Routing functions - an effective approach to deriving one-tomany disjoint paths," Technical Report NTUCSIE 0002, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, 2000 (also available at http:// www.csie.ntu.edu.tw/~ghchen).
[22] S. C. Liaw, G. J. Chang, F. Cao, and D. F. Hsu, "Fault-tolerant routing in circulant networks and cycle prefix networks," Annals of Combinatorics, vol. 2, pp. 165-172, 1998.
[23] M. O. Rabin, "Efficient dispersal of information for security, load balancing, and fault tolerance," Journal of the ACM, vol. 36, no. 2, pp. 335-348, 1989.
[24] Y. Saad and M. H. Schultz, "Topological properties of hypercubes," IEEE Transactions on Computers, vol. 37, no. 7, pp. 867-872, 1988.

