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Abstract

This paper introduces a new concept called routing functions,
which have a close relation to one-to-many disjoint paths in
networks. By using a minimal routing function, m disjoint
paths whose maximal length is minimized in the worst case
can be obtained in a k-dimensional hypercube, where m≤k.
Besides, there exist routing functions that can be used to
construct m disjoint paths whose total length is minimized.
The end nodes of these paths are not necessarily distinct. A
minimal routing function can also be used to construct a
maximal number of disjoint paths in the folded hypercube
whose maximal length is minimized in the worst case.

 1. Introduction

In the past decade, routing with internally node-disjoint
paths (disjoint paths for short) has received much attention
because disjoint paths have the advantages of efficiency and
fault tolerance. There are three categories of disjoint paths,
i.e., one-to-one, one-to-many, and many-to-many. Suppose
that W is an interconnection network (network for short) with
node connectivity k [2]. According to Menger's theorem [2],
there exist k disjoint paths from one source node to another
destination node in W. These disjoint paths belong to the
one-to-one category. Many one-to-one disjoint paths
constructed for a variety of networks can be found in the
literature [3, 4, 6-10, 12, 22, 24]. There is an excellent survey
of one-to-one disjoint paths in [19] where several related
problems were also addressed.

According to Theorem 2.6 in [1], there exist k disjoint
paths from one source node to another k distinct destination
nodes in W. These disjoint paths belong to the one-to-many
category. A k-dimensional hypercube (abbreviated to a k-
cube) consists of 2k nodes that are labeled with 2k binary
numbers from 0 to 2k−1. Two nodes of a k-cube are adjacent
if and only if their labels differ by exactly one bit. The node
connectivity of a k-cube is k. In [23], k disjoint paths were
constructed from one source node to another k destination
nodes in a k-cube, where the k destination nodes were
distinct. The maximal length is minimized in the worst case.
In [15], m disjoint paths were constructed from one source
node to another m destination nodes in a k-cube, where m≤k

and the m destination nodes were not necessarily distinct.
The total length is minimized. One-to-many disjoint paths
constructed for other networks appeared in [5, 9, 11, 20].
There were many-to-many disjoint paths constructed for the
hypercube [17] and the star graph [9, 18].

In this paper, a new concept called routing functions is
proposed, which is useful to derive one-to-many disjoint
paths. In the next section, routing functions and their
fundamental properties are introduced. In Section 3, by the
aid of a minimal routing function, m disjoint paths from one
source node to another m distinct destination nodes are
constructed in a k-cube, where m≤k. It is shown in Section 4
that the maximal length of the m disjoint paths is minimized
in the worst case. For any given m destination nodes, the
maximal length of the resulting m disjoint paths is equal to
dismax or min{dismax+2, k+1}, where dismax is the maximal
distance from the source node to the destination nodes. In
Section 5, the situation that the m destination nodes are not
necessarily distinct is discussed. In Section 6, this paper
concludes with some remarks on routing functions. It is
indicated that a minimal routing function can be also used to
derive a maximal number of disjoint paths in the folded
hypercube whose maximal length is minimized in the worst
case, and there are routing functions that can be used to
construct m disjoint paths in a k-cube whose total length is
minimized.

2. Routing functions

Suppose that s, d1, d2, … , dm are arbitrary m+1 distinct nodes
of a k-cube, where m≤k. Since the hypercube is node

symmetric, we assume s=
876k

0...00 =0k without loss of
generality. A routing function for a k-cube is a one-to-one
correspondence Φ from D={d1, d2, … , dm} to I={n1, n2, … ,
nm}, where 1≤nj≤k for all 1≤j≤m and n1, n2, … , nm denote m
distinct dimensions of a k-cube. Suppose di=di,1di,2… di,k, and
let |di| denote the number of bits 1 contained in di (i.e., the
distance from s to di), where 1≤i≤m. We define VΦ=(v1, v2, … ,
vk), where vj=|{di |  |di|=j, =)(, idid Φ 0, and 1≤i≤m}| for all

1≤j≤k. For example, if m=k=5, (d1, d2, d3, d4, d5)= (00011,
00101, 00111, 00110, 11100), and (Φ(d1), Φ(d2), Φ(d3),
Φ(d4), Φ(d5))=(5, 2, 3, 4, 1), then VΦ=(0, 1, 0, 0, 0). We say



(v1, v2, … , vk)<(v'1, v'2, … , v'k) if either v1<v'1 or v1=v'1,
v2=v'2, … , vl−1=v'l−1, and vl<v'l for some 2≤l≤k. Φ is said to be
minimal if VΦ≤VΦ' for every routing function Φ': D → I. A
minimal Φ can be determined in O(k3) time (see Section 6).

A minimal Φ is intended to derive m disjoint paths
from s to d1, d2, … , dm, and there is a favorable property
about a minimal Φ: if =⋅⋅⋅==     )(,)(, 2211 ii didi dd ΦΦ

1)(, =
cic did Φ , then there exist c disjoint shortest paths from s

to 
1id , 

2id , … , 
cid , respectively, where {

1id , 
2id , … ,

cid } ⊆ D (see Section 4). Let eβ= 0β−110k−β, β=1, 2, … , k,

denote the k adjacent nodes of s. An intuitive meaning of
Φ(di)=nj is to assign the immediate successor of s in the path
to di to be the node 

jne .

In the rest of this section, some fundamental properties
of Φ are introduced. Suppose that Φ': D' → I' and Φ'': D'' →
I'' are two routing functions, where {D', D''} is a partition of
D and {I', I''} is a partition of I. If Φ'(di)=Φ(di) for all di ∈D'
and Φ''(dj)=Φ(dj) for all dj ∈D'', then Φ is said to be the
union of Φ' and Φ'', denoted by Φ=Φ'∪Φ''. If Φ=Φ'∪Φ'',
then VΦ=VΦ'+VΦ'', i.e., VΦ=(v'1+v''1, v'2+v''2, … , v'k+v''k) where
VΦ'=(v'1, v'2, … , v'k) and VΦ''=(v''1, v''2, … , v''k). The following
two lemmas are immediate.

Lemma 1. Suppose Φ=Φ'∪Φ''. If 1)(, =
id'id Φ  for every di

∈D', then VΦ=VΦ''.

Lemma 2. Suppose that Φ=Φ'∪Φ'' is minimal. Then Φ' and
Φ'' are minimal.

Lemma 3. Suppose 0)(, =
idid Φ , 0)(, =

jdjd Φ , and

1)(, =
jdid Φ , where 1≤i≤m, 1≤j≤m, and i≠j. Then Φ is not

minimal.
Proof. We define Ψ: D → I as follows: Ψ(di)=Φ(dj),
Ψ(dj)=Φ(di), and Ψ(dr)=Φ(dr) for all r ∈{1, 2, … , m}−{i, j}.
Suppose VΦ=(v1, v2, … , vk) and VΨ=(v'1, v'2, … , v'k). If |di|≠|dj|,
then || id'v = || idv −1, || jd'v ≤ || jdv , and v'l=vl for all l ∈{1, 2, … ,

k}−{|di|, |dj|}. If |di|=|dj|, then || id'v ≤ || idv −1 and v'l=vl for all

1≤l≤k and l≠|di|. Hence VΨ<VΦ. ¨

Lemma 4. Suppose 0)(, =
jdjd Φ , 1)(, =

idjd Φ , and

1)(, =
jdid Φ , where 1≤i≤m, 1≤j≤m, and i≠j. Then Φ is not

minimal.
Proof. We define Ψ, VΨ, and VΦ all the same as the above. If

0)(, =
idid Φ , then Φ is not minimal by Lemma 3. If

1)(, =
idid Φ , then 1|||| −=

jj dd v'v  and v'l=vl for all 1≤l≤k and

l≠|dj|, which implies VΨ<VΦ. ¨

Lemma 5. Suppose 0)(, =
idid Φ , 1)(, =

jdid Φ , and |di|<|dj|,

where 1≤i≤m, 1≤j≤m, and i≠j. Then Φ is not minimal.

Proof. We define Ψ, VΨ, and VΦ all the same as the above.
Then 1|||| −=

ii dd v'v  and v'l=vl for all 1≤l<|di|. Hence we

have VΨ<VΦ. ¨

Lemma 6. If Φ is minimal and 0)(, =
idid Φ , then

kididiii ddddd
ii ,1)(,1)(,2,1, ...1... +− ΦΦ ∉{d1, d2, … , dm}

( ...2,1, ii dd  kididi ddd
ii ,1)(,1)(, ...1 +− ΦΦ is the node obtained by

changing the bit )(, idid Φ  of di to 1).

Proof. Suppose conversely
kididiii ddddd

ii ,1)(,1)(,2,1, ...1... +− ΦΦ  =dr for some 1≤r≤m and

r≠i. That is, 1)(, =
idrd Φ  and =jrd , jid ,  for all 1≤j≤k and

j≠Φ(di). Then Φ(dr) ∈{n1, n2, … , nm}. If 0)(, =
rdrd Φ , then

Φ is not minimal by Lemma 3, which is a contradiction. If
1)(,)(, ==

rr didr dd ΦΦ , then Φ is not minimal by Lemma 4,

which is again a contradiction. ¨

3. A procedure to produce disjoint paths

In this section, a recursive procedure, named Paths, is
proposed. With inputs minimal Φ, m, k, D={d1, d2, … , dm},
and I={n1, n2, … , nm}, the procedure can produce m disjoint
shortest paths, denoted by P1, P2, … , Pm, in a k-cube that
connect {

1ne , 
2ne , … , 

mne } and {d1, d2, … , dm}, where Pi

(1≤i≤m) is the path to di. By augmenting P1, P2, … , Pm with
links (s, 

1ne ), (s, 
2ne ), … , (s, 

mne ), we have m disjoint

paths from s to d1, d2, … , dm, respectively.
In the procedure, ∗k−11 and ∗k−10 represent two disjoint

(k−1)-cubes whose nodes have rightmost bits 1 and 0,

respectively, where ∗ ∈{0, 1} and 
876 1

1
−

− ∗⋅⋅⋅∗∗=∗
k

k  (usually, a
k-cube is represented with ∗k). For each node x=x1x2...xk of a
k-cube, define x(k)=x1x2...xk−1(1−xk), i.e., x differs from x(k)

only in the bit xk. The following is a formal description of the
procedure.

Procedure Paths(Φ, m, k, D, I).

Step 1. If k=2, then {
Construct P1, P2, … , Pm as the m disjoint
paths in a 2-cube that connect {

1ne ,

2ne , … , 
mne } and {d1, d2, … , dm}.

Return P1, P2, … , Pm. }

Step 2. Determine dc so that |dc|≤|di| for all 1≤i≤m, where
1≤c≤m. If there are multiple candidates for dc,
then select arbitrary one with 1)(, =

cdcd Φ , or

select any if they all have 0)(, =
cdcd Φ . Without

loss of generality, we assume c=1, nc=n1=k, and
Φ(di)=ni for all 1≤i≤m.

Step 3. Partition D into D' and D'', where D'={dj |



=)(, cdjd Φ =)(, 1djd Φ 0, =kjd  and 1≤j≤m} and

D''={dj | =)(, cdjd Φ =)(, 1djd Φ 1, =kjd  and

1≤j≤m}.

Step 4. Construct P1, P2, … , Pm according to the
following four cases.

Case 1. d1,k=0.
/* Without loss of generality, suppose D'={d1,
d2, … , dr} and D''={dr+1, dr+2, … , dm}, where
1≤r≤m. Define Ψ': {d2, d3, … , dr} → {n2, n3, … , nr}
as follows: Ψ'(di)=Φ(di)=ni for all 2≤i≤r, and Ψ'':
{ )(

1
kd , dr+1, dr+2, … , dm} → {u, nr+1, nr+2, … , nm}

as follows: Ψ''( )(
1

kd )=u and Ψ''(di)=Φ(di)=ni for
all r+1≤i≤m, where 1≤u<k and d1,u=1. */
Construct P2, P3, … , Pr in 01−∗k  by executing
Paths(Ψ', r−1, k−1, {d2, d3, … , dr}, {n2, n3, … ,
nr}).  /* P2, P3, … , Pr connect {

2ne , 
3ne , … ,

rne } and {d2, d3, … , dr}. */

Construct P'1, Pr+1, Pr+2, … , Pm in 1−∗k 1 by

executing Paths(Ψ'', m−r+1, k−1, { )(
1

kd , dr+1,
dr+2, … , dm}, {u, nr+1, nr+2, … , nm}), where P'1 is
the path to )(

1
kd .  /* P'1, Pr+1, Pr+2, … , Pm

connect { )(k
ue , )(

1

k
nr

e
+

, )(
2

k
nr

e
+

, … , )(k
nm

e } and { )(
1

kd ,

dr+1, dr+2, … , dm}. */
Construct P1 as P'1 augmented with the link ( )(

1
kd ,

d1).
Augment P1, Pr+1, Pr+2, … , Pm with links (ek, 

)(k
ue ),

(
1+rne , )(

1

k
nr

e
+

), (
2+rne , )(

2

k
nr

e
+

), … , (
mne , )(k

nm
e ).

Case 2. d1,k=1 and |d1|=1.
/* Suppose D'={d2, d3, … , dr} and D''={d1, dr+1,
dr+2, … , dm}, where 1≤r≤m. Define Ψ': {d2, d3, … ,
dr} → {n2, n3, … , nr} as follows: Ψ'(di)=Φ(di)=ni

for all 2≤i≤r, and Ψ'': {dr+1, dr+2, … , dm} → {nr+1,
nr+2, … , nm} as follows: Ψ''(di)=Φ(di)=ni for all
r+1≤i≤m. */
Construct P2, P3, … , Pr in 01−∗k  by executing
Paths(Ψ', r−1, k−1, {d2, d3, … , dr}, {n2, n3, … ,
nr}).  /* P2, P3, … , Pr connect {

2ne , 
3ne , … ,

rne } and {d2, d3, … , dr}. */

Construct Pr+1, Pr+2, … , Pm in 1−∗k 1 by executing
Paths(Ψ'', m−r, k−1, {dr+1, dr+2, … , dm}, {nr+1,
nr+2, … , nm}).  /* Pr+1, Pr+2, … , Pm connect { )(

1

k
nr

e
+

,
)(
2

k
nr

e
+

, … , )(k
nm

e } and {dr+1, dr+2, … , dm}. */

Construct P1 as (ek, d1).  /* P1 has length 0. */
Augment Pr+1, Pr+2, … , Pm with links (

1+rne ,

)(
1

k
nr

e
+

), (
2+rne , )(

2

k
nr

e
+

), … , (
mne , )(k

nm
e ).

Case 3. d1,k=1, |d1|>1, and d1,α=1 for some α ∈{1,
2, … , k−1}−{k, nr+1, nr+2, … , nm}.
/* Suppose D'={d2, d3, … , dr} and D''={d1, dr+1,
dr+2, … , dm}, where 1≤r≤m. Define Ψ': {d2, d3, … ,
dr} → {n2, n3, … , nr} as follows: Ψ'(di)=Φ(di)=ni

for all 2≤i≤r, and Ψ'': {d1, dr+1, dr+2, … , dm} → {α,
nr+1, nr+2, … , nm} as follows: Ψ''(d1)=α and
Ψ''(di)=Φ(di)=ni for all r+1≤i≤m. */
Construct P2, P3, … , Pr in 01−∗k  by executing
Paths(Ψ', r−1, k−1, {d2, d3, … , dr}, {n2, n3, … ,
nr}).  /* P2, P3, … , Pr connect {

2ne , 
3ne , … ,

rne } and {d2, d3, … , dr}. */

Construct P1, Pr+1, Pr+2, … , Pm in 1−∗k 1 by
executing Paths(Ψ'', m−r+1, k−1, {d1, dr+1, dr+2, … ,
dm}, {α, nr+1, nr+2, … , nm}).  /* P1, Pr+1, Pr+2, … ,
Pm connect { )(keα , )(

1

k
nr

e
+

, )(
2

k
nr

e
+

, … , )(k
nm

e } and {d1,

dr+1, dr+2, … , dm}. */
Augment P1, Pr+1, Pr+2, … , Pm with links (ek, 

)(keα ),

(
1+rne , )(

1

k
nr

e
+

), (
2+rne , )(

2

k
nr

e
+

), … , (
mne , )(k

nm
e ).

Case 4. d1,k=1, |d1|>1, and d1,α=0 for all α ∈{1,
2, … , k−1}−{k, nr+1, nr+2, … , nm}.
/* Suppose D'={d2, d3, … , dr} and D''={d1, dr+1,
dr+2, … , dm}, where 1≤r≤m. Define Ψ'': {dr+1,
dr+2, … , dm} → {nr+1, nr+2, … , nm} as follows:
Ψ''(di)=Φ(di)=ni for all r+1≤i≤m. */
Construct Pr+1, Pr+2, … , Pm in 1−∗k 1 by executing
Paths(Ψ'', m−r, k−1, {dr+1, dr+2, … , dm}, {nr+1,
nr+2, … , nm}).  /* Pr+1, Pr+2, … , Pm connect { )(

1

k
nr

e
+

,

)(
2

k
nr

e
+

, … , )(k
nm

e } and {dr+1, dr+2, … , dm}. */

/* Define Ω'': {dr+1, dr+2, … , dm} → {nr+1, nr+2, … ,

nm} as follows: Ω''(di)=nj if Pi begins at )(k
n j

e  for

all r+1≤i≤m, where r+1≤j≤m. */
If d1 ∉Pi for all r+1≤i≤m, then {

/* Define Ψ': { )(
1

kd , d2, d3, … , dr} → {u,

n2, n3, … , nr} as follows: Ψ'( )(
1

kd )=u and
Ψ'(di)=Φ(di)=ni for all 2≤i≤r, where 1≤u<k
and d1,u=1. */
Construct P'1, P2, P3, … , Pr in 01−∗k  by

executing Paths(Ψ', r, k−1, { )(
1

kd , d2,
d3, … , dr}, {u, n2, n3, … , nr}), where P'1 is
the path to )(

1
kd .  /* P'1, P2, P3, … , Pr

connect {eu, 2ne , 
3ne , … , 

rne } and

{ )(
1

kd , d2, d3, … , dr}. */
Construct P1 as P'1 augmented with the link



( )(
1

kd , d1).
/* Suppose u=nh for some r+1≤h≤m. */
Augment Pr+1, Pr+2, … , Pm with links (

1+rne ,
)(
1

k
nr

e
+

), (
2+rne , )(

2

k
nr

e
+

), … , (
1−hne , )(

1

k
nh

e
−

), (ek,

)(k
ue ), (

1+hne , )(
1

k
nh

e
+

), … , (
mne , )(k

nm
e ). }

If d1 ∈Pl for some r+1≤l≤m and )(k
ld ∉{d2, d3, … ,

dr}, then {
/* Define Θ': { )(k

ld , d2, d3, … , dr} →
{Ω''(dl), n2, n3, … , nr} as follows:
Θ'( )(k

ld )=Ω''(dl) and Θ'(di)=Φ(di)=ni for
all 2≤i≤r. */
Construct P'l, P2, P3, … , Pr in 01−∗k  by
executing Paths(Θ', r, k−1, { )(k

ld , d2,
d3, … , dr}, {Ω''(dl), n2, n3, … , nr}), where
P'l is the path to )(k

ld .  /* P'l, P2, P3, … ,
Pr connect { )( ld''eΩ , 

2ne , 
3ne , … , 

rne }

and { )(k
ld , d2, d3, … , dr}. */

Construct P1 as the subpath of Pl from
)(

)(
k

d'' l
eΩ  to d1.

Reconstruct Pl as P'l augmented with the
link ( )(k

ld , dl).
Augment P1, Pr+1, Pr+2, … , Pl−1, Pl+1, … , Pm

with links (
1+rne , )(

1

k
nr

e
+

), (
2+rne , )(

2

k
nr

e
+

), … ,

( 1)( −ld''eΩ , )(
1)(

k
d'' l

e −Ω ), (ek, 
)(

)(
k

d'' l
eΩ ),

( 1)( +ld''eΩ , )(
1)(

k
d'' l

e +Ω ), … , (
mne , )(k

nm
e ). }

If d1 ∈Pl for some r+1≤l≤m and )(k
ld ∈{d2, d3, … ,

dr}, then
/* Suppose )(k

ld =dh for some 2≤h≤r.
Define Ψ: {d1, d2, … , dm} → {n1, n2, … , nm}
as follows: Ψ(dl)=Φ(dh), Ψ(dh)=Ω''(dl),
Ψ(d1)=Φ(d1)=k, Ψ(di)=Φ(di) for all 2≤i≤r
and i≠h, and Ψ(dj)=Ω''(dj) for all r+1≤j≤m
and j≠l. */
Construct P1, P2, … , Pm all the same as
Case 3.  /* Substitute Ψ for the Φ in Case
3. */

Step 5. Return P1, P2, … , Pm.

Intuitively, the m disjoint paths from s to d1, d2, … , dm

can be obtained by first including m links (s, )( 1deΦ ), (s,

)( 2deΦ ), … ,  (s, )( mdeΦ ) and then constructing m disjoint

paths, i.e., P1, P2, … , Pm, that connect { )( 1deΦ , )( 2deΦ , … ,

)( mdeΦ } and {d1, d2, … , dm}. The latter can be done by

executing Paths(Φ, m, k, D, I). In Step 2, the k-cube was

divided into two (k−1)-cubes 01−∗k  and 11−∗k , according
to the dimension Φ(dc)=k. In Step 3, {d1, d2, … , dm} was
partitioned into D' and D'' which contain nodes belonging to

01−∗k  and 11−∗k , respectively. In Step 4, P1, P2, … , Pm

were constructed according to four cases in which paths in
01−∗k  and 11−∗k  need to be constructed in a recursive

manner. In Case 1, |D'|−1 disjoint paths in 01−∗k  that
connect { )( 2deΦ , )( 3deΦ , … , )( rdeΦ } and D'−{d1} and

|D''|+1 disjoint paths in 11−∗k  that connect { )(k
ue , )(

)( 1

k
dr

e
+Φ ,

)(
)( 2

k
dr

e
+Φ , … , )(

)(
k

dm
eΦ } and D''∪{ )(

1
kd } were constructed. It

should be noted that ek in 11−∗k  corresponds to s=0k in
01−∗k  (refer to Figure 1). In Case 2, |D'| disjoint paths in
01−∗k  that connect { )( 2deΦ , )( 3deΦ , … , )( rdeΦ } and D' and

|D''|−1 disjoint paths in 11−∗k  that connect { )(
)( 1

k
dr

e
+Φ ,

)(
)( 2

k
dr

e
+Φ , … , )(

)(
k

dm
eΦ } and D''−{d1} were constructed. Since

d1=ek, P1 has length 0. In Case 3, |D'| disjoint paths in 01−∗k

that connect { )( 2deΦ , )( 3deΦ , … , )( rdeΦ } and D' and |D''|

disjoint paths in 11−∗k  that connect { )(keα , )(
)( 1

k
dr

e
+Φ ,

)(
)( 2

k
dr

e
+Φ , … , )(

)(
k

dm
eΦ } and D'' were constructed.

In Case 4, |D''|−1 disjoint paths in 11−∗k  that connect
{ )(

)( 1

k
dr

e
+Φ , )(

)( 2

k
dr

e
+Φ , … , )(

)(
k

dm
eΦ } and D''−{d1} were first

constructed. The subsequent construction depends on
whether d1 is contained in these |D''|−1 paths or not. If d1 is
not contained in these |D''|−1 paths, then |D'|+1 disjoint paths
in 01−∗k  that connect {eu, )( 2deΦ , )( 3deΦ , … , )( rdeΦ } and

D'∪{ )(
1

kd } were constructed. If d1 is contained in one of

these |D''|−1 paths which connects )(
)(

k
d'' l

eΩ  and dl and
)(k

ld ∉D', then |D'|+1 disjoint paths in 01−∗k  that connect

{ )( ld''eΩ , )( 2deΦ , )( 3deΦ , … , )( rdeΦ } and D'∪{ )(k
ld } were

constructed. If d1 is contained in one of these |D''|−1 paths
that connects )(

)(
k

d'' l
eΩ  and dl and )(k

ld ∈D', then after

substituting Ψ for Φ, the situation is the same as Case 3 and
P1, P2, … , Pm can be obtained likewise.

The maximal length of the m disjoint paths from s to d1,
d2, … , dm is computed as follows.

Theorem 1. Suppose that s, d1, d2, … , dm are arbitrary m+1
distinct nodes of a k-dimensional hypercube, where m≤k and
k≥2. There are m disjoint paths from s to d1, d2, … , dm,
respectively, whose maximal length is not greater than k+1 if
m=k, and not greater than k if m<k. The maximal length is
minimized in the worst case.

The proof of Theorem 1 is presented in the next
section.
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4. Proof of Theorem 1

We need to show two properties of P1, P2, … , Pm: (P1) P1,
P2, … , Pm are disjoint, and (P2) for all 1≤i≤m, if

1)(, =
idid Φ , then Pi has length |di|−1, and if 0)(, =

idid Φ ,

then Pi has length |di|+1 and |ti|=|di|+1, where ti is the
immediate predecessor of di in Pi. According to (P2), Pi has
length k−1 if |di|=k, and at most k if |di|<k. Hence, Pi has
length at most k. However, when m<k, Pi has length at most
k−1, as explained below. If 1k ∈ {d1, d2, … , dm}, then Pi has
length at most k−1, for otherwise (Pi has length k) we have
|ti|=|di|+1=(k−1)+1= k (i.e., ti=1k) according to (P2). This
contradicts to (P1). On the other hand, if 1k ∉{d1, d2, … , dm},
then after adding a new node dm+1=1k to D and a new
dimension u ∈{1, 2, … , k}−I to I, Paths(Φ, m+1, k, D, I) can
produce P1, P2, … , Pm+1. Since 1k ∈{d1, d2, … , dm+1}, P1,
P2, … , Pm+1 have lengths at most k−1.

Consequently, the m disjoint paths from s to d1, d2, … ,
dm have maximal length k+1 if m=k, and k if m<k. Since the
diameter of a k-cube is k, the maximal length of the m
disjoint paths is at least k in the worst case. It was shown in
[11] that the maximal length is at least k+1 in the worst case
when m=k. Hence the maximal length in Theorem 1 is
minimized in the worst case.

(P1) and (P2) can be verified by induction on k. The
detailed proof my be found in [21].

5. When {d1, d2, … , dm} is a multiset

A multiset is a collection of elements in which multiple
occurrences of the same element are allowed [16]. Paths(Φ,

m, k, D, I) can deal with a multiset D, if Step 4 is modified as
follows. Let T={dj | dj=ek and r+1≤j≤m}. In Case 2, Ψ'' is
changed to Ψ'': {dr+1, dr+2, … , dm}−T → {nr+1, nr+2, … ,
nm}−{Φ(dj) | dj ∈T and r+1≤j≤m} so that Ψ''(di)=Φ(di)=ni for
all r+1≤i≤m and di≠ek. Instead of executing Paths(Ψ'', m−r,
k−1, {dr+1, dr+2, … , dm}, {nr+1, nr+2, … , nm}), we execute
Paths(Ψ'', m−r−|T|, k−1, {dr+1, dr+2, … , dm}−T, {nr+1, nr+2, … ,
nm}−{Φ(dj) | dj ∈T and r+1≤j≤m}), in order to construct
m−r−|T| disjoint paths in ∗k−11 that connect { )(

1

k
nr

e
+

, )(
2

k
nr

e
+

, … ,
)(k

nm
e }−{ )(

)(
k

d j
eΦ | dj ∈T and r+1≤j≤m} and {dr+1, dr+2, … ,

dm}−T. Additionally, we construct another |T| disjoint paths
of length one that connect )(

)(
k

d j
eΦ  and dj for all dj ∈T.

In Case 4, the conditions for the second and third
situations are changed to "d1 ∈Pl for some r+1≤l≤m, d1

∉{dr+1, dr+2, … , dm}, and )(k
ld ∉{d2, d3, … , dr}" and "d1 ∈Pl

for some r+1≤l≤m, d1 ∉{dr+1, dr+2, … , dm}, and )(k
ld ∈{d2,

d3, … , dr}", respectively. One more situation whose
condition is "d1 ∈Pl for some r+1≤l≤m and d1 ∈{dr+1, dr+2, … ,
dm}" needs to be added. The new situation constructs P1,
P2, … , Pr in 01−∗k  all the same as the first situation (i.e., d1

∉Pi for all r+1≤i≤m).
Both (P1) and (P2) remains correct after the

modifications above, as shown in [21]. When {d1, d2, … , dm}
is a multiset, Theorem 1 can be rewritten as follows.

Theorem 2. Suppose that s, d1, d2, … , dm are arbitrary m+1
nodes of a k-dimensional hypercube so that s ∉{d1, d2, … , dm}
and {d1, d2, … , dm} is a multiset, where m≤k and k≥2. There
are m disjoint paths from s to d1, d2, … , dm, respectively,



whose maximal length is not greater than k+1 if m=k, and not
greater than k if m<k. The maximal length is minimized in
the worst case.

6. Discussion and conclusion

The main contribution of this paper is to show the
effectiveness of routing functions in deriving one-to-many
disjoint paths in networks. By using a minimal routing
function, m disjoint paths whose maximal length is
minimized in the worst case can be obtained in a k-cube,
where m≤k. The problem of finding a minimal routing
function can be reduced to the problem of finding a
maximum matching in a weighted bipartite graph. Suppose
G=(U, V, E) is a weighted bipartite graph, where U and V are
two partite sets of nodes and E is the set of weighted links
(each link of G is assigned a weight). A subset of E forms a
matching in G if no two of them share a common node. A
matching in G is maximum if its total weight is maximum. A
maximum matching in G can be found in
O(|U∪V|(|E|+|U∪V|log|U∪V|)) time (see [14]).

Suppose Φ:  {d1, d2, … , dm} → {n1, n2, … , nm} is a
routing function, where {d1, d2, … , dm} is a multiset. Let
U={d1, d2, … , dm}, V={n1, n2, … , nm}, and E={(di, nj)  |
1≤i≤m and 1≤j≤m}. We assign each link (di, nj) a weight

1||)1( +−+ idkk  if 1, =
jnid , and 1 if 0, =

jnid . A maximum

matching M in G contains m links and its total weight can be
expressed as a1∗(k+1)k+a2∗(k+1)k−1+ …  +ak∗(k+1)+ak+1,
where 0≤ar≤m for all 1≤r≤k+1. That is, there are ar links in
M whose weights are 1)1( +−+ rkk  (or equivalently, M

contains av links (di, nj) of weight 1)1( +−+ vkk  with |di|=v
and 1, =

jnid  for all 1≤v≤k, and ak+1 links (di, nj) of weight 1

with 0, =
jnid ). For all 1≤v≤k, let rv denote the number of

di's with |di|=v and di ∈U. A minimal Φ with VΦ= (r1−a1,
r2−a2, … , rk−ak) can be obtained from M as follows: Φ(di)=nj

if (di, nj) ∈M. If Φ is not minimal, then there exists VΦ'<VΦ

for some routing function Φ': {d1, d2, … , dm} → {n1, n2, … ,
nm}, which implies another matching in G whose total weight
is greater than the total weight of M. This is a contradiction.

Besides minimal routing functions, there are some other
routing functions that can be used to produce disjoint paths
with different properties. For example, m disjoint paths
whose total length is minimized can be also produced in a k-
cube, if an implicit routing function in [15] is used. In [15],
m non-empty subsets X1, X2, … , Xm of {1, 2, … , k} were used
to represent m nodes d1, d2, … , dm, respectively, so that for
all 1≤u≤m and 1≤w≤k, w ∈Xu if and only if du,w=1. A set of c
distinct integers t1 ∈ 1hX , t2 ∈ 2hX , … , tc ∈ chX  is called a

partial System of Distinct Representatives (SDR for short)
for {X1, X2, … , Xm} if h1, h2, … , hc are all distinct, where c≤m
and 1≤hi≤m for all 1≤i≤c. Further, the partial SDR {t1, t2, … ,
tc} is maximum if c is maximized. When c=m, {t1, t2, … , tc}
is called an SDR. A maximum partial SDR {t1, t2, … , tc} can

be used to construct m disjoint paths in a k-cube whose total
length is minimized, if there is no j ∈{1, 2, … , m}− {h1,
h2, … , hc} satisfying the following two conditions: (C1) Xj

⊂
ihX  for some 1≤i≤c, and (C2) there exists an SDR for

{
1hX , 

2hX , … , 
1−ihX , jX , 

1+ihX , … , 
chX }. Such a

maximum partial SDR can be determined in O(k2.5) time (see
[15]).

Actually, a maximum partial SDR {t1, t2, … , tc} can be
regarded as a routing function Φ: D → I so that {t1, t2, … , tc}
⊆ I and Φ(

ihd )=ti for all 1≤i≤c. Suppose LΦ={u |

1)(, =
udud Φ  and 1≤u≤m}. It follows that Paths(Φ, m, k, D, I)

can result in m disjoint paths from s to d1, d2, … , dm whose
total length is minimized, provided |LΦ| is maximized and
there is no j ∈{1, 2, … , m}−LΦ satisfying the following two
conditions: (C1 ') dj≠dl and dj,w≤dl,w for some l ∈LΦ and all
1≤w≤k, and (C2') there exists a routing function Ψ with

=)(, jdjd Ψ 1)(, =
vdvd Ψ  for all v ∈LΦ−{l}. Here, a routing

function Φ: D → I with maximum |LΦ| corresponds to a
maximum partial SDR (LΦ corresponds to {h1, h2, … , hc} and
{Φ(du) | u ∈LΦ} corresponds to {t1, t2, … , tc}). Besides, (C1 ')
and (C2') correspond to (C1) and (C2), respectively. A
routing function Φ with maximum |LΦ| so that there is no j
∈{1, 2, … , m}−LΦ satisfying (C1 ') and (C2') can be
determined with the same time complexity as a maximum
partial SDR so that there is no j ∈{1, 2, … , m}−{h1, h2, … ,
hc} satisfying (C1) and (C2). There exist other routing
functions that can result in m disjoint paths from s to d1,
d2, … , dm whose total length is minimized. For example, if
(C1') is changed to "|dj|<|dl| for some l ∈LΦ", then the
resulting Φ also serves the purpose.

We have shown in Theorem 2 that the maximal length
of the m disjoint paths from s to d1, d2, … , dm is
minimum for the worst-case scenario. According to (P2),
each path from s to di has length |di| (i.e. shortest) if

1)(, =
idid Φ , and |di|+2 (i.e., second shortest) if 0)(, =

idid Φ ,

where 1≤i≤m. It follows that for any given d1, d2, … , dm, the
maximal length of the m disjoint paths from s to d1, d2, … , dm

is equal to max{|di| | 1≤i≤m} or min{max{|di| | 1≤i≤m}+2,
k+1}. It should be noted that P1, P2, … , Pm are all shortest.
The node )( ideΦ  (or )( ideΨ  for the situation of d1 ∈Pl for

some r+1≤l≤m and )(k
ld ∈{d2, d3, … , dr} in Case 4 of Step 4)

is the immediate successor of s in the path to di. When
1)(, =

idid Φ , )( ideΦ  (or )( ideΨ ) is contained in a shortest

path from s to di. When 0)(, =
idid Φ , )( ideΦ  is not contained

in any shortest path from s to di.
A k-dimensional folded hypercube [13] is basically a k-

cube augmented with 2k−1 complement links. It was shown in
[21] that using a minimal routing function, k+1 disjoint paths
whose maximal length is minimized in the worst case can be
constructed in a k-dimensional folded hypercube, where k+1
is the node connectivity. It is worth while exploring more



relations between the characteristics of routing functions and
the properties of disjoint paths.
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