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Abstract 
In applications of virtual reality, it is often required to 

establish environment models, which is usually 

time-consuming. In this study, an offline automatic ap-

proach to 3-D indoor virtual environment modeling by 

the way of autonomous land vehicle (ALV) navigation is 

proposed. An ALV is first driven manually along a path 

by a driver to collect environment data using three cam-

eras mounted on the ALV. The system then generates the 

environment model by a data fusion approach using the 

model learning result from the multiple-view data, per-

forms intelligent post-processing works to create a more 

complete model, and uses the VRML language to con-

struct a corresponding 3-D virtual reality (VR) model 

automatically. Good experimental results prove the fea-

sibility of the proposed approach. 

Keyword: Vehicle Navigation, Data Fusion, 

Multi-Camera, Indoor Environment Modeling, Computer 
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1. Introduction 

Autonomous land vehicles (ALV’s) have attracted 

intensive research effort in recent years because of its 

versatile applications. With recent development of com-

puter vision and image processing techniques, more ap-

plications of ALV’s have become feasible. Many appli-

cations of ALV navigation in environments require a 

dependable model of the world. However, establishment 

of environment models is really a time-consuming work. 

Also, recent interests in virtual reality and multimedia 

have provided a great impetus to the development of 

automatic techniques for building graphical models and 

environments by sensing the real world. Learning of 

models in these ways is essential, particularly in terms of 

production times and attaining high fidelity. Many ap-

plication researches have developed techniques for mod-

eling environments using a variety of sensors and a spec-

trum of techniques. Illingworth and Hilton [1] introduced 

the principles and methodologies to build a 3-D model 

world using a variety of sensors and a spectrum of tech-

niques. For 3-D indoor environment modeling, Lebègue 

and Aggarwal [2,3,4,5] developed an integrated system 

to generate architectural CAD models using a mobile 

robot. The system consists of a segment detector, a 

tracker, and a CAD modeler optimized for environments 

with prominent 3-D orientations. Takeshi Shakunaga [6] 

proposed a method by which specific corridor models 

can be recovered from a single image made by a 

well-calibrated camera. The recovery is based on a ge-

neric corridor model that covers a wide variety of corri-

dors. Also, Egazzar, et al. [7] investigated modeling of 

indoor environments using a low-cost, compact, ac-

tive-range camera, known as BIRIS, mounted onto a pan 

and tilt motor unit. Pan and Tsai [8] proposed an inte-

grated approach to automatic model learning and path 

generation for vision-based ALV guidance in building 

corridors. In Chen and Tsai [9], an incre-

mental-learning-by navigation approach to vision-based 

ALV guidance in indoor environments was proposed. 

The proposed learning approach is reliable because of 

the robustness of the use of the proposed MWGHT 

(Multi-Weighted Generalized Hough Transform) match-

ing scheme. And the learned environment model can be 

updated after each navigation session. A new approach to 

vision-based unsupervised learning of unexplored indoor 

environments for ALV navigation was also proposed by 

Chen and Tsai [10]. The ALV can conduct automatic 

learning of navigation environments without human 

involvement. 



2. Overview of Proposed System 

2.1. System Configuration 

An ALV with smart, compact, ridable characteristics, 

as shown in Figure 2.1 is used as a test bed for this study. 

It is a commercial motor-driven vehicle modified by 

adding sensors, electronic controls, an on-board PC, and 

several power conversion equipments. The ALV can be 

switched between the manual operation mode or the 

computer operation mode by the user. 

In the experiments of this study, we use three cameras 

to take images with a resolution of 640×480 elements. 

These cameras are mounted at fixed positions on the 

cross-shaped racks of the ALV. More specifically, there 

are two cameras on a crossbar. One camera is attached to 

the left position and the other is attached to the right po-

sition, of the crossbar. The third camera is on another 

crossbar and is attached to the middle position of that 

crossbar. The lower two cameras are used to grab images 

of the left and the right baselines of the wall in the 

building corridor, and the upper one is used to grab im-

ages of the ceiling of the corridor. 

The ALV is computer-controlled with a modular ar-

chitecture, as shown in Figure 2.2, including four major 

components, namely, a vision system, a central process-

ing unit (the Intel Pentium II 450MHz PC mentioned 

above), a motor control system, and a DC power system. 

The vision system consists of the three cameras, a color 

monitor, and an image frame grabber. The motor control 

system consists of a main control box with the controller 

and the motor driver mentioned previously, and two mo-

tors. 

2.2. Brief Description of Proposed System 

The goal of this study is to construct an appropriate 

3-D model of the indoor environment using the images 

taken by three cameras mounted on an AVL. The 3-D 

model data may be used to build a virtual reality envi-

ronment for many applications (e.g., navigation, visuali-

zation, and so on). The proposed approach consists 

roughly of three stages. The first stage is initial learning, 

in which the ALV is driven manually along a path de-

cided by a driver. Three images are captured simultane-

ously from the three cameras and the control status data 

are recorded in each navigation cycle. Then, a certain 

off-line procedure is performed to construct the initial 

model. This is accomplished by calculating the relations 

between the ALV and the environment features observed 

in each learning cycle, and by matching the features with 

the partially learned model, followed by the step of fus-

ing the processed data from the three cameras. The sec-

ond stage is to refine the observed 3-D raw data pro-

duced by imperfect matching and image processing 

techniques using data extracted from limited camera 

views. The third stage is to connect different corridors to 

complete the model by performing a line-pattern match-

ing algorithm and to build the 3-D VR environment 

model, using the refined 3-D data. 

2.3. Procedure of System Operations 

The system operations are based on a hierarchical 

approach, which include the following steps: 

(1) Perform camera calibration for each camera. 

(2) Grab an image from each of the three cameras and save 

them as an initial model at the initial location. 

(3) Drive the ALV manually from the initial location and 

grab three images of the current environment scene. 

(4) Record the environment images, the counter values of 

 
Figure 2.1 The ALV used in the experiments.
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the odometer, and the turn angles of the front wheels. 

(5) Manually drive the ALV a certain distance and make ap-

propriate turns to keep it in the middle of the corridor. 

(6) If the ALV reaches the destination, go to (8) to perform 

off-line processing; else, go to (3) for the next cycle. 

(7) Perform image processing. 

(8) Perform model learning. 

(9) Generate the overall 2-D environment model. 

(10) Construct a corresponding 3-D VR model. 

 

3. Detection of Environment Features for 
Model Learning 

3.1. Introduction 

Selecting stable environment features and developing 

effective methods to extract these features are the most 

important keys to successful model learning. In this study, 

the selected environment features come from the base-

lines and ceiling information in building environments. 

Some advantages of selecting features from these sources 

are listed in the following: 

Baselines: baselines are abundant and easily visible 

in buildings; 

Ceiling information: ceiling information are seldom 

disturbed and usually are with uniform patterns.  

In the proposed system, computer vision techniques 

are employed to locate environment features. At first, 

visual features are found by image processing techniques. 

Next, the locations of the features are calculated by 

computer vision techniques. At last, a model-matching 

algorithm for line segments and corners is proposed to 

find the correspondence between the sensed local model 

and the learned global model. The matching results then 

are used to locate the ALV and construct the environment 

model. 

3.2. Coordinate System Transformation 

Four coordinate systems and coordinate transforma-

tions are defined here for use in the following sections. 

They include the camera coordinate system (CCS), the 

image coordinate system (ICS), the vehicle coordinate 

system (VCS), and the global coordinate system (GCS). 

These coordinate systems are shown in Figure 3.1. Since 

the origins of the ICS, CCS, and VCS are attached to 

some points on the ALV, the ICS, CCS, and VCS are 

moving with the vehicle during navigation. On the con-

trary, the GCS is fixed all the time, and is defined to be 

coincident with the VCS when the ALV is at the starting 

position in the initial model learning stage. 

The location of the vehicle can be assured once the 

relation between the VCS and the GCS is found. Since 

the vehicle is on the ground all the time, the z-axis and 

the z'-axis can be ignored.  

The transformation between the two 2D coordinate 

systems x-y and x'-y' can be written as follows: 
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where ( )′ ′x yp p,  is the translation vector from the ori-

gin of x'-y' to the origin of x-y and ω is the relative rota-

tion angle of x-y with respect to x'-y', as shown in Figure 

3.2. The translation vector ( )′ ′x yp p,  and the rotation 

angle ω of the ALV in the x'-y' coordinate system deter-

mine the position and the direction of the vehicle in the 

GCS, respectively. 

The transformation between the CCS and the VCS 

can be written in terms of homogenous coordinates as: 
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Figure 3.1 Coordinate Systems. 



r31 = cos sin ,φ ϕ  

r32 = sin ,φ  
r33 = cos cos ,φ ϕ  
and θ is the pan angle, φ the tilt angle, and ϕ the 

swing angle, of the camera with respect to the VCS; and 

( )ddd zyx ,,  is the translation vector from the origin of 

the CCS to the origin of the VCS. The values of θ, φ, ϕ, 

 , , dd yx and dz  are measured by performing camera 

calibration. 

3.3. Locating Environment Features 

One selected environment feature is the baseline on 

the building wall. On the abstract level, these visual fea-

tures can be categorized into two classes, straight lines 

and corners of line segments. In this section, the geomet-

ric properties of the baseline, whose height is fixed and 

known in advance, are used to calculate the VCS coor-

dinates of the baseline segments detected in an input 

image. The method for calculating the VCS coordinates 

of a corner point, which is located on a baseline, is de-

scribed in the following. 

As shown in Figure3.3, the height of the baseline is 

known in advance, after back-projecting a point P in the 

image into the VCS, we can get P'. 

Another type of selected environment feature comes 

from the boundary information of ceiling lamps. Note 

that just one set of parallel lines on the ceiling in the ac-

quired image is utilized. The reason is that we view a 

ceiling lamp as a rectangle, so one set of parallel lines 

are enough to describe the characteristics of it. In this 

study, we select the left and the right boundaries of the 

ceiling lamp as our features. The way we employ for 

calculating the VCS coordinates of the ceiling lamp in-

formation, including the line segments and the corners, is 

similar to the method described above. In addition, the 

height between the floor and the ceiling is known in ad-

vance. 

 

4. Matching Features with Learned Model 
 

There are several existing algorithms for line-pattern 

and point-pattern matching. For example, the General-

ized Hough Transform (GHT) is a popular approach to 

arbitrary pattern matching. It also works for this study. 

However, the GHT is time consuming. Thus it is desired 

to use a faster and simpler matching method for applica-

tions. Another problem arises when computer vision in-

accuracy and image processing errors are involved. This 

makes perfect matching impossible, so a fault-tolerant 

matching algorithm is required. Furthermore, sometimes 

the newly detected features in the local model may not 

exist in the learned global model, so the algorithm should 

also be capable of partial matching.  

There is a basic assumption for the experimental en-

vironment: the objects, namely, the walls and doors, and 

the ceiling lamps, in the environment are all in two or-

thogonal directions. With this assumption, the environ-

ment features can be treated as a set of orthogonal line 

segments. In this study, we use two matching algorithms, 

one for line-segment matching [8] and the other for cor-

ner-matching [10] to meet the above three requirements. 
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5. Side-View Model Learning 
The goal of the proposed model learning method in 

this study is to construct environment models from col-

lected data automatically. Because of the inaccuracy of 

control actions, the estimated location of an ALV is not 

very accurate. Correcting the position of ALV is a neces-

sary work for building an accurate environment model. 

This can avoid error accumulation in a long learning 

process. As shown in Figure 3.2, the ALV location is 

described by the ALV slant angle ω and the ALV position 

(x, y). We first correct the slant angle of the ALV. Then a 

model-matching approach is used to correct the position 

of the ALV. The learning procedure is described as fol-

low. 

Step 1. Set the initial global model as empty. 

Step 2. Extract environment features from the captured image. 

Step 3.Calculate the estimated position and orientation of the 

ALV by the control data [12]. Calculate VCS coordi-

nates of the extracted environment features. 

Step 4. Adjust the turn angle of the ALV by input features and 

re-compute ALV location. 

Step 5. Calculate the GCS of the detected environment features 

by the re-computed ALV location. 

Step 6. Set up a local model by collecting the data of the local 

features computed in Step 6. 

Step 7. If the global model is non-empty, match the local model 

with the global model by using the line-segment or cor-

ner-matching scheme; else, go to Step 10. 

Step 8. Recalculate the accurate ALV location. Then recalculate 

the accurate position of the local features by the match-

ing result and the recalculated ALV location. 

Step 9. Attach the local model to the global model. 

Step 10. Repeat Steps 2 through 10 for the next learning cycle. 

 

6. Data Fusion for Generating Overall 
Environment Model 

 
6.1. Generating Environment Model Using Multiple 

Image 

At each model learning cycle, there are three sets of 

independent image data grabbed from the three cameras 

at the same instance. From each image data, there yields 

a position vector (xt, yt, ω) for computing an accurate 

ALV location after performing the side-view model 

learning procedure described in section 5. Ideally, all the 

three displacements must be identical. Unfortunately, 

because of image processing and vision computation 

errors, they might be different. This is undesirable. 

Therefore, we have to merge the model learning results 

from the three cameras for building the top view of the 

environment model. The data-fusion idea for generating 

the environment model using the learning result from the 

multiple data is shown in Figure 6.1. 

In each learning cycle, three sets of image data are 

collected, and each yields a position vector (xt, yt, ω) for 

computing an accurate ALV location after performing the 

matching step in the side-view model learning procedure. 

The three displacements, D1, D2, and D3, presumable 

should be identical. But due to image processing and 

vision computation errors, they might be different, and it 

is undesirable. We propose here a method to decide the 

single displacement, D, from the multiple-view data for 

use in all the three side views (the two corridor sides and 

the corridor ceiling). The distance “Dis” between two 

position vectors, (x1, y1, ω1) and (x2, y2, ω1), is defined 

as following. 
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As shown in Figure 6.1, if any two displacements of 

the three are separated by a distance which is smaller 

than a pre-selected value T, then we decide that the three 

position vectors are similar enough. Then, we use their 

average as the desired single position vector. If two of 

these displacements whose distance is closed enough (<T) 

and the third one is far away from the two, then we use 
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the average of the two similar position vectors as the 

desired vector. Otherwise, if the three position vectors 

are all mutually dissimilar, i.e., if the distance between 

any two of them is larger than a pre-selected value T, 

then we discard all of them, ignore the result of this 

learning cycle, and go to the next learning cycle. 

6.2. Restoration of 2-D Environment Model 

As shown in Figure 6.2, some features cannot be 

modeled accurately by the ALV because of the limit 

viewed of the cameras. In the example, each corner is 

marked by a small black spot, and each unseen feature is 

marked by a dash line. The ALV cannot observe the cor-

ner C, and the two neighboring lines of C are also hidden 

partially. Therefore, restoring these unseen features is 

necessary to make the acquired 2-D environment model 

more completely. 

6.3. Merge of Data of Distinct Corridor Sections 

If more than one corridor exists in the indoor envi-

ronment, or more specifically if there exist crossings in 

the environment, the proposed method, which performs 

model learning for each corridor separately, is insuffi-

cient. Instead, merging of data of distinct corridor sec-

tions is necessary for constructing a complete environ-

ment model. An assumption made in this study is that for 

any two neighboring corridor sections there must exist a 

certain overlapping area. This assumption is reasonable 

because data collection is involved by human beings. 

After traveling through the entire environment, the rela-

tion between two corridors is known. To merge the two 

sections, we can find the corresponding points of the two 

corridors. Using the relation between two corresponding 

points, we can merge two distinct corridor sections. 

 

7. Construction of 3-D Indoor VR  
Environment Model 

 

The final step of this study is to process 3-D data 

building a VR environment model. The result is com-

posed of a set of planar surfaces, represented as polygons, 

in 3-D space. These polygons are defined using the vir-

tual reality markup language (VRML). To view a VRML 

document, a plug-in application should be installed to the 

browser. This plug-in application allow users to access 

VRML worlds with their current browser technologies. 

Our program will generate VRML document automati-

cally depending on the 3-D environment data acquired 

by the method described in section 6. The result can be 

used for various applications such as ALV navigation, 

exhibit houses on world wild web, in which users can 

have a better feeling of involvement in the VR environ-

ment. 

 

8. Experimental Results 
 

The experiments of ALV model learning and 3-D VR 

environment reconstruction were performed in the corri-

dor of a building in National Chiao Tung University. 

Figure 8.1(a) shows a top view of real corridor data 

acquired by the model learning scheme. Figure 8.2 (b) 

shows restoration of a corridor data of Figure 8.1(b). 

Figure 8.2 is an illustrative example of corridor section 

merging. The corresponding points of the two corridors 

are drawn with points. Figure 8.3 is a complete model of 

Figure 8.2(f). Figure 8.4 and Figure 8.5 shows a result of 

3-D indoor VR model reconstruction of Figure 8.3. 

 

9. Conclusions 
 

In this paper, we have proposed a system for learning 

environment models and reconstructing corresponding 

3-D VR models by ALV navigation and computer vision 

techniques. Certain assumptions about the scene struc-

ture are utilized to reduce the complexity of the system. 

The system not only collects the information of the en-

vironment features to build up a top-view environment 

model but also reconstructs a corresponding 3-D VR 

environment model by performing some post-processing 

works to the observed 3-D data. For environment learn-

ing, an algorithm for orthogonal-line-segment and cor-

 
Figure 6.2: An example of senses out of sight. 



ner-pattern matching and a systematical algorithm for 

constructing the learned environment model by 

multi-camera image data fusion have been utilized to 

improve the system performance. Because of the limit of 

the camera view and defective matching results, a 

scheme for restoring the observed 3-D data has also been 

proposed. Furthermore, a scheme to reconstruct 3-D VR 

environment models by using the virtual reality markup 

language (VRML) has been proposed. The proposed 

learning and reconstruction system has been imple-

mented on a prototype ALV. Successful reconstruction of 

3-D VR environment models in indoor corridor envi-

ronments confirms the feasibility of the proposed ap-

proach. 
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Fig. 8-4 The reconstructed 3D-VR Model. 

Figure 8.5: 3-D VR model of Figure 8.4 from different 

viewpoint. 


