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ABSTRACT 
This paper presents a new method to interpolate digital 
color images by exploiting the spatial and spectral 
correlations inherent in the images. The proposed method 
involves two main steps: interpolating green image plane 
solely based on the local spatial correlation within the 
color plane, and interpolating red and blue image planes 
based on the spectral correlation between different color 
image planes. The performance of the proposed algorithm 
is evaluated by interpolating down-sampled color images 
back to their original image sizes and comparing the 
results with the original images as well as those generated 
by other existing image interpolation schemes. 
Experimental results show that the proposed method can 
better preserve valuable image attributes: edge sharpness 
and color consistency, which have great influence on the 
perceived visual quality of the interpolated images. 

1. INTRODUCTION 
Image interpolation is often required in many imaging 
applications for enlarging images or restoring low-
resolution images to their original sizes. These include 
image zooming in digital imaging devices (such as digital 
camera, printer and scanner) and image sharing across 
heterogeneous, distributed multimedia systems [1]. As the 
reverse process of image down-sampling, a common 
means to reduce the spatial resolution of images for 
display, storage and transmission purposes, image 
interpolation aims to produce high-resolution images 
from their down-sampled versions. 
We present in this paper a new and improved method for 
interpolating color images to higher spatial resolution. 
The proposed method manages to generate interpolated 
images that can better preserve the sharpness of image 
edges and contain less interpolation artifacts, such as 
color bleeding. The method involves two main steps: 
interpolating the green image plane solely based on the 
local spatial correlation and interpolating the red and blue 
color planes based on the spectral (inter-color plane) 
correlation. Although we present our method in this paper 
using RGB (red-green-blue) color images, each of which 
consists of red, blue, and green image planes, it can be 
readily applied to color images recorded in different color 

spaces or color components, such as YCbCr color space or 
Yellow-Cyan-Magenta color components. 
The rest of the paper is organized as follows. Section 2 
provides a review of background theories and prior work 
on image interpolation. The overview of the proposed 
image interpolation algorithm is presented in Section 3. 
Section 4 describes the local spatial correlation based 
method for interpolating green image plane. Section 5 
addresses the inter-color plane correlation-based method 
for interpolating red and blue image planes. The 
experimental results and their comparison with images 
produced by other interpolation methods are reported in 
Section 6. In Section 7, we conclude the paper. 

2. REVIEW OF BACKGROUND THEORIES 
AND PREVIOUS WORK 
Image interpolation, also known as image enlargement or 
image magnification, is normally used to increase the size 
or spatial resolution of images. Owing to its wide uses in 
many imaging applications, many linear and nonlinear 
image interpolation techniques have been proposed in the 
literature. Roughly, these techniques can be grouped into 
the following five main categories: 
1. Single kernel based techniques that involve a 

convolution between low-resolution images and a 2D 
interpolation kernel, for example [1]. 

2. Multiple kernel based techniques that work with a set 
of pre-defined interpolation kernels, for example [2]. 

3. Transform based techniques that interpolate images 
in a transform domain using transform such as 
discrete cosine transform (DCT) or wavelet 
transform, for example [3]. 

4. Optimization based techniques that formulate image 
interpolation as a constrained optimization problem 
minimizing a specific cost function, for example [4]. 

5. Edge adaptive techniques that examine local image 
edge content and interpolate images in low frequency 
direction (along the edge), rather than in high 
frequency direction (across the edge), for  
example [5][6]. 

Brief summaries of these five categories of image 
interpolation techniques are provided in the following to 
serve as the literature review of our work. 



2.1 Single kernel based image interpolation 
This type of interpolation involves a convolution between 
the observed image samples and a 2D kernel. The three 
most commonly used convolution kernels for image 
interpolation care the zero-order-hold, bilinear and 
bicubic kernels respectively. 
Zero-order-hold kernel is the simplest. Interpolation with 
this kernel is commonly referred to as nearest neighbor 
interpolation or pixel replication. Using this kernel, each 
unknown pixel is filled with the existing image pixel 
closest to its location. Due to this pixel replication, the 
zero-order-hold kernel usually produces images with a 
very ‘blocky’ image appearance. However, it is 
computationally simple and easy to be implemented. 
Bilinear interpolation kernel is composed of two 1D 
linear interpolation kernels. The kernel involves the four 
image pixels nearest to the pixel to be interpolated. It 
gives smoother image appearance compared to that of 
zero-order interpolation and demands moderate 
computational cost. 
Bicubic interpolation kernel locally fits a separable third-
degree polynomial through sixteen adjacent image pixels. 
The fitting constraints tend to limit the amount of 
oscillation across an image edge. It gives smooth image 
appearance and maintains some sharp details. However, it 
is the most computational expensive among these three 
common kernels. 

2.2 Multiple kernels based image interpolation 
Multiple kernels based schemes examine local image 
structures in order to select an appropriate interpolation 
kernel for the pixel to be interpolated [2]. One set of 
kernels is usually pre-defined for the image interpolation, 
and the intensity structure of a local image neighborhood 
around the unknown pixel under consideration is 
analyzed to determine the most suitable interpolation 
kernel to be used.  

2.3 Orthogonal transform based image interpolation 
Orthogonal transforms, such as discrete cosine transform 
(DCT) and wavelet transform, have often been used for 
image interpolation. Image interpolation using wavelet 
transform exploits the fact that the signal evolution across 
different resolution scales can be used to predict the 
image detail at finer scales. For DCT based interpolation, 
previous work has implemented digital filters to perform 
the required spatial domain filtering in the DCT domain. 
For example, Hong [3] uses the local DCT coefficients to 
identify five different types of image edges. Once the 
edge type is determined, a single linear kernel 
corresponding to the detected edge type is used to 
interpolate the image. 
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Figure 1: Overview of the proposed interpolation scheme. 

2.4 Optimization based image interpolation 
Optimization techniques formulate image interpolation as 
a constrained optimization problem minimizing a specific 
cost function. The choice of the cost function to be 
minimized is based on a combination of the restrictions 
imposed by certain considerations corresponding to the 
physical problem. 
One representative work done by Ruderman and Bialek 
[4] shows that if the statistical property of a signal is 
known a priori, the observed signal samples can be used 
to estimate information beyond the Nyquist limit. They 
consider the interpolation a process of finding the “best” 
estimate of the original signal given the original signal 
statistics and the observed signal samples. They show that 
the optimal interpolation procedure for a Gaussian signal 
results in a convolution of the signal samples with an 



interpolation kernel that is a function of the noise 
variance, the power spectrum, and the sampling rate of 
the original signal. 

2.5 Edge adaptive image interpolation 
Edge adaptive interpolation techniques recognize the fact 
that it is desirable to interpolate image along the edge 
instead of across it. Jensen and Anastassiou [5] propose a 
method that detects the presence of high contrast edges 
and then interpolate the image along the edges. Bayrakeri 
and Mersereau propose a weighted directional 
interpolation scheme [6], where the values interpolated 
along various directions are combined with appropriate 
weightings based on the variations in different directions. 

2.6 Remarks 
Due to their computational simplicity, image interpolation 
techniques with the use of a single linear interpolation 
kernel have been widely engaged in many imaging 
applications. However, natural images consist of 
multifold objects. The intensity of an image often changes 
abruptly across objects’ boundaries. Thus, applying 
convolution with a linear interpolation kernel 
indiscriminately throughout an image irrevocably blurs 
the image edges and introduces artifacts around them. 
To resolve this problem, many nonlinear interpolation 
techniques that perform interpolation adapted to local 
image structures have been proposed. Although some of 
them are well established for grayscale images, a direct 
extension of these techniques to color images may lead to 
undesirable interpolation artifacts, such as color bleeding. 
Besides, this also incurs unnecessary high computational 
cost, as the inherent correlation between different color 
image planes is not exploited [7]. With these 
considerations in mind, we have developed a new method 
for color image interpolation. 

3. ALGORITHM OVERVIEW 
Figure 1 shows the overview of the proposed algorithm 
for interpolating low-resolution color images. It consists 
of two steps. First, the green image plane of a low-
resolution color image is interpolated to the desired 
spatial resolution by exploiting the local spatial 
correlation within the green image plane. The fully 
interpolated green image plane is subject to gradient 
analysis in order to identify local image regions that are 
suitable for interpolating the red and blue pixel values. 
Second, within the selected image regions, the unknown 
red and blue values are interpolated based on the spectral 
correlation between different color image planes. The 
details of the proposed algorithm are presented in the 
following two sections. 

4. GREEN IMAGE PLANE INTERPOLATION 
USING SPATIAL CORRELATION 
The first step of the proposed algorithm is to fully 
interpolate a high-resolution green plane. As the green 
plane of a RGB image contains most of the spatial details 
of the captured scene, it should be interpolated with 
closer attention in order to reconstruct as many image 
details as possible. This step is an extension of Li’s 
method [8], which is able to produce interpolated images 
with attractive perceptual quality. 
The step is based on the classical Wiener filtering that is 
well known to be capable of obtaining the optimal 
estimate of unknown data from a Gaussian random 
process [9]. Although it is computationally easier to 
assume that image intensities of a local spatial 
neighborhood tend to be stationary and can be well 
modeled with Gaussian distribution, this is often not the 
case for natural images. Natural images are usually 
populated with edges that can be better characterized by 
abrupt changes of local statistics. In other words, the 
classical Wiener filtering may not be able to produce 
optimal results around or across image edges. To cope 
with this problem, the proposed algorithm interpolates the 
high-resolution pixel from a group of pre-selected 
neighboring pixels, which and the pixel to be interpolated 
(also referred to as the unknown pixel) can be well 
modeled with a stationary Gaussian process. By 
performing edge detection within a local neighborhood, 
only the pixels residing at the same side of the edge as the 
pixel to be interpolated are engaged in the interpolation 
process. This is the main difference from Li’s method, 
which directly applies a covariance-based interpolator 
using all the available pixels around the pixels to be 
interpolated.  
Let us illustrate the idea with an example. In Figure 2, the 
low-resolution green image plane jiG ,  and the 

interpolated green image plane jiG ,
~  of the image under 

consideration are living on an H × W lattice and an  
mH × nW lattice respectively, where m and n are the up-
scaling factors in the vertical and the horizontal image 
dimensions, respectively. Although our algorithm can be 
used to up-sample images by arbitrary integer factors, we 
shall describe the algorithm using the case of m = n = 2 
and jiji GG ,2,2

~ = . The low-resolution green pixels, denoted 
by filled circles, are separated by an edge as illustrated in 
Figure 2. By examining the locations of the unknown 
pixel and the neighboring low-resolution pixels around 
the image edge detected, our proposed algorithm 
determines the side of the edge at which the unknown 
pixel lies. (Note that the diameters of the filled circles are 
altered to represent the values of the green pixels.)  



The unknown green pixel value at 12,12
~

++ jiG  is linearly 
estimated from its four nearest neighboring pixels  
(Figure 3: case 1) with equation 
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where T],,,[ 4321 ααααα =v  are proper weightings for the 
neighboring pixels. By using Wiener filter, the weightings 
αv  can be optimally estimated, in the sense of minimum 
mean-square error. It is equivalent to solving the 
following over-constrained linear equations: 

αvv ×= TCg                     (2) 

rR vv ×= −1α              (3) 

where TCCR =  is the local covariance matrix and gCr vv =  
is the covariance vector for the low-resolution pixels 
selected. The vector T

kgg ...][...=v contains the green 
values of the low-resolution pixels, which locate at the 
same side of the edge as the high-resolution pixel 

12,12
~

++ jiG  to be interpolated.  From this, the matrix C  
whose kth column consists of the green values of four 
nearest low-resolution interpolating neighbors of kg  can 
hence be constructed. 
To obtain the complete high-resolution green plane, we 
apply the same algorithm to construct pixel jiG 2,12

~
+  of 

the partially filled lattice. The only difference is that a 
diamond-shaped local window, as shown in Figure 3: 
case 2, is used to estimate the unknown pixel value. 
When no edge is found within a local image 
neighborhood, we revert to bilinear interpolation for the 
sake of simplicity. 
In comparison to Li’s method, the proposed technique can 
better preserve the fine details of image, such as short 
edges and isolated dots. Li applied a template of fixed 
size throughout the whole image and used all the low-
resolution pixels inside the local windows to reconstruct 
the high-resolution images. It works fine for the long 
curved edges by smoothing along them. However, Li’s 
method will over-smooth the fine image details. Inside 
the local windows around these fine image details, most 
of the neighboring pixels, which dominate the 
interpolation process, possess the statistical properties 
different from that of the pixel to be interpolated. As a 
result, those fine image details are lost in the 
reconstructed images. On the contrary, our proposed 
method avoids this problem by pre-selecting similar 
neighboring pixels. Not only is the smoothness of the 
long curved edges ensured, but also the sharpness of the 
short edges is preserved. This can be clearly seen from 
Figure 4, where interpolation result generated by Li’s 
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Figure 2: Lattices for image interpolation. 
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Figure 3: Pixel to be interpolated and its four nearest 
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(a) Result produced by the proposed method (b) Result produced by Li's method

Figure 4: The images interpolated by (a) the proposed 
method and (b) Li’s method. 
method (posted on the web site of signal processing 
laboratory at Cornell University [11]) and the result 
generated by our proposed method are presented for 
visual comparison.  
Although the adaptive selection of neighboring pixels and 
linear estimation based on Wiener filtering incur 
relatively expensive computational cost, the interpolation 
results give superior edge preservation, which is critical 
to the following interpolation of red and blue image 
planes. 



5. RED AND BLUE IMAGE PLANE 
INTERPOLATION USING SPECTRAL 
CORRELATION 
The red and blue image planes are interpolated by 
analyzing the fully interpolated green image plane. If the 
spatial correlation-based interpolator for the green plane 
is applied to up-sample the red and blue planes 
separately, very expensive computational cost will be 
incurred. Inspired by Chang’s color interpolation scheme 
for the Bayer’s CFA (Color Filter Array) pattern [10], we 
contrive an interpolator that exploits the spectral 
correlation between different color planes to construct the 
high-resolution red and blue image planes with less 
computation requirement and better color consistency. 
There are two underlying assumptions. First, the 
interpolated green plane contains sufficient gradient 
information for the complete color image. Second, within 
a given local image region, the differences between the 
red and green values of the neighboring image pixels are 
highly similar; this is also the case for the differences 
between the blue and green pixel values. The first 
assumption holds for most natural images, since the green 
image plane normally records the scene’s spectral energy 
in a way similar to the response of the human visual 
system. The second assumption is decent for most image 
regions and only fails with sharp image edges.  
To handle the exception due to sharp edges, only pixels in 
smooth image regions should be engaged in estimating 
the unknown red and blue pixel values. Specifically, the 
smooth image regions refer to those regions whose pixels 
have color values similar to the unknown pixel. These 
regions can be reasonably identified by using the local 
gradient information obtained from the interpolated green 
plane. Low gradient values indicate that the pixels have 
the similar color values, whereas high gradient values 
suggest that the pixels are from image regions with many 
details or sharp edges. 
The computation of local image gradients is performed 
within a 5-by-5 local window of the interpolated green 
image plane, as shown in Figure 4. The window is 
divided into eight regions corresponding to the eight 
directions (N, E, S, W, NE, SE, SW, NW). 

G1 G6 G11 G16 G21 

G2 G7 G12 G17 G22 

G3 G8 G13 G18 G23 

G4 G9 G14 G19 G24 

G5 G10 G15 G20 G25 

Figure 4: A 5-by-5 local window around pixel G13 of the 
interpolated green image plane. 
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Figure 5: Three types of locations where the pixel to be 
interpolated can reside. 

 

The local image gradient in each direction is computed by 
equations:  
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where the image gradient in each region is computed by 
accumulating the absolute differences of green pixel 
values in the respective region. Instead of using two 
adjacent pixels, the difference between two alternate 
neighboring green pixels is computed to better capture the 
scene variation. The absolute differences are also properly 
weighted with weighting 1 or 0.5 according to their 
distances from the pixel under consideration. 
Once we have obtained the local image gradient in each 
direction, we identify the smooth image regions by 
comparing each gradient magnitude to a threshold defined 
as ts}al_gradienmedian{locT = , where gradients_local  
is the set of gradient magnitudes in the eight directions. 
Those regions with gradient magnitudes below this 
threshold are considered smooth. The pixels inside these 
smooth regions, which have complete RGB color values, 
are used to estimate the differences between the green 
pixel value and the unknown red/blue pixel value. 
Since the red and blue image planes are to be interpolated 
by a factor of two in each image dimension, there are 
three different cases, which depend on the location of the 
pixel to be interpolated, for estimating the differences 
between color values.  The three types of locations are 
shown in Figure 5, where the red and blue color values of 

13G  are to estimated.  

Let us use an example to illustrate how to compute the 
unknown color values 13R  and 13B . For instance, if the 
image local gradients computed from regions {S, W, SE, 
SW} are less than the threshold 

}_{ gradientslocalmedianT = , the pixels which have 
complete RGB color values and locate inside the regions 
{S, W, SE, SW} will be used to estimate 13R and 13B .  

For Type A location shown in Figure 5, the following 
table indicates the pixels used for estimating 13R and 13B . 

 Red Green Blue 
S R14 G14 B14 

W (R2+ R4+ 
R12+ R14)/4 

(G2+ G4+ 
G12+ G14)/4 

(B2+ B4+ 
B12+ B14)/4 

SE (R14+ R24)/2 (G14+ G24)/2 (B14+ B24)/2 

SW (R4+ R14)/2 (G4+ G14)/2 (B4+ B14)/2 

The average color values for pixels in these four regions 
are computed as follows: 

;]/)/ B(B)/ B(B)/ B B B(B [BB
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For Type B location shown in Figure 5, the following 
table indicates the pixels used for estimating 13R and 13B . 

 Red Green Blue 
S (R9+R19)/2 (G9+G19)/2 (B9+B19)/2 
W (R7+R9)/2 (G7+G9)/2 (B7+B9)/2 

SE R9 G9 B9 
SW R19 G19 B19 

The average color values for pixels in these four regions 
are similarly computed as: 

;]/ B B)/B(B)/B [(BB
;]/ G G)/G(G)/G [(GG

;]/ R R)/R(R)/R [(RR

ave

ave

ave

422
422

422

19997199

19997199

19997199

+++++=
+++++=

+++++=  (6) 

For Type C location shown in Figure 5, the following 
table indicates the pixels used for estimating 13R and 13B . 

 Red Green Blue 

S (R8+R10 
+R18+R20)/4 

(G8+G10 
+G18+G20)/4 

(B8+B10 
+B18+B20)/4 

W R8 G8 B8 

SE (R18 +R20)/2 (G18 +G20)/2 (B18 +B20)/2 

SW (R8 +R10)/2 (G8 +G10)/2 (B8 +B10)/2 

The average color values for pixels in these four regions 
can be similarly computed as: 

;]/ BB )/B(BB)/BBB [(BB

;]/ GG )/G(GG)/GGG [(GG
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The unknown red and blue color values are estimated as: 

);-G(BGB
); -G(RGR

aveave

aveave

+=
+=

1313

1313    (8) 

Using different spatial information to interpolate each 
color value of the same pixel is one major source of color 
bleeding artifacts. By exploiting the spectral correlation 
between different color planes, we not only evade from 
the unnecessary heavy computations, but also ensure 
color consistency and hence reduce color-bleeding 
artifacts.  

6. RESULTS 
To gauge the efficacy of the proposed method, several 
color images were filtered and sub-sampled to one-
quarter spatial resolution and then interpolated back to 
their original resolutions. The particular strengths and 
weakness of each interpolation scheme can be judged by 
comparing the up-sampled result to the original full-
resolution image. Here we compare the results obtained 
from the proposed method with that of the two most 
widely used interpolation schemes -- bilinear and bicubic 
interpolation schemes.   



Figure 6 shows a flower test image and its interpolated 
images produced with different interpolation schemes. To 
show the differences in detail, Figure 7 presents the 
enlarged small portions from the original and the 
interpolated images. A natural scene image containing 
many high-frequency spatial details and its reconstructed 
images are shown in Figure 8. Although some high-
frequency details are lost in each of the interpolated 
images, the images produced by the proposed method can 
better preserve the edge sharpness and color consistency 
without introducing unpleasant interpolation artifacts.  

7. CONCLUSION  
We have presented a new and improved image 
interpolation method that can adapt to local image 
structure for constructing high-resolution color images 
from their down-sampled versions. Our main 
contributions include using image spatial correlation to 
form an edge directed interpolator for constructing a high-
resolution green image plane and exploiting spectral 
correlation between different color planes to up-sample 
the red and blue color planes. Both steps involve with the 
searching for neighboring pixels that possess similar 
statistical characteristics as the pixel to be interpolated. 
Simulation results show that the proposed method can 
generate more visually pleasing images compared to that 
produced by other commonly used interpolation schemes.  
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Figure 6: Original flower image and its interpolated results. 
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Figure 7: Portions of original and the interpolated images. 



Original

Bilinear

Proposed
Algorithm

 
Figure 8: Original scene image and its interpolated results. 
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