
Morphing on Clustering-Based Hierarchical Level-of-Detail

with Bounded Error

Chih-Hao Hsu, Kuo-Chou Tseng, and Chin-Ho Cheng

Department of Computer Science and Information Engineering

Fu Jen Catholic University, Hsinchchuang, Taipei 24205, Taiwan, R. O. C.

E-mail: {konica86, alf85, chcheng}@csie.fju.edu.tw

Abstract

In this paper, the goal of morphing is to find
intermediate models between two models corresponding
to two consecutive levels of a level-of-detail (LOD)
structure. By using the data structure of this LOD
structure, we can easily find the correspondence between
the source model and the destination model, and have a
method to solve this 3D morphing problem. This method
is tested, and our experimental results show that it is fast
and efficient. In addition, the intermediate models
generated by our morphing algorithm is also simplified.
Keywords: computer graphics, level of detail, morphing,
simplified model, mesh

1. Introduction

In this paper, the purpose of morphing is to find the
intermediate models between two models corresponding
to two consecutive levels of a level-of-detail (LOD)
structure, respectively. This LOD structure is constructed
from the clustering-based algorithm shown in [12]. This
LOD algorithm repeatedly executes the following three
steps: clustering, boundary straightening, and
triangulation. Each iteration corresponds to a pass and
generates a one-level object. Initially, the first level object
is the original model of input data. The first iteration of
this LOD algorithm performs on the original model, and
we can get a simplified model with smaller boundary
information. Then, this simplified model is used as the
input of the second iteration of this LOD algorithm, and
another simplified model with smaller boundary
information is generated. In general, any iteration takes as
input data the simplified model generated by its previous
one iteration, and generates a new simplified model with
smaller boundary information, which will be used as the
input data of its next iteration. Then, we can have a

series of model data, and each level object preserves the
feature of the original input model. Objects in this series
of models are from the most detailed object to the least
detailed object. Because of the behavior of this LOD
algorithm, showing two consecutive models
(corresponding to two consecutive levels in the LOD tree
structure) has popping conditions. That is, the transition
between two consecutive models is not enough smooth.
Hence, in this paper, we propose a method to insert
intermediate models into any two consecutive models so
as to make smooth transition between these two
consecutive models.

This paper is organized as follows. In Section 2, we
describe the related work. In Section 3, our morphing
method is described. In Section 4, mesh morphing is
discussed. Experimental results are illustrated in Section
5. Finally, conclusions are given in Section 6.

2. Related Work

Lazarus and Verroust [6] give an excellent survey of
previous work on the 3D morphing problem. Most
methods for morphing 3D objects use either discrete or
combinatoric representations for the objects themselves.
Discrete representations typically voxelize objects or their
distance functions and aim to extend 2D morphing
algorithms to 3D. Lerious et at. [8] used fields of
influence of 3D primitives to warp-volumes. Hughes [3]
proposed a method working in the Fourier domain.
Payne [11] described a distance-field volumetric
cross-dissolving technique. The alternative is to work
directly on boundary representations such as polygonal
meshes or patch complexes [5, 9, 10, 1, 4, 2, 7].

3. Our Morphing Method

The morphing method presented in this paper is to

find intermediate models between two consecutive level
models in an LOD tree structure. The LOD tree structure
is constructed from the Tseng and Cheng’s
clustering-based LOD algorithm [12]. In this LOD
algorithm, it repeatedly produces simplified models.
Each iteration of this algorithm performs three steps:
clustering, border straightening, and triangulation. For
each iteration, our morphing method works on two
models, which are the input and output models of the
boundary straightening process, respectively. Suppose
that the input model is M and that the output model is M’.
Our morphing method is based on the following
properties:

(1) The number of meshes in M is equal to that of

meshes in M’.
(2) For any mesh m in M, there is a corresponding

mesh m’ in M’, which is the result of the
boundary straightening process.

Therefore, the kernel of our morphing method in this
paper really performs mesh morphing between m and m’.
That is, it is to find intermediate meshes from m to m’.
Because of the behavior of our morphing algorithm, all
intermediate meshes between any mesh and its
corresponding border-straightened mesh have the same
number of vertices, i.e., they have the same topology. If
we perform the triangulation process on these
intermediate meshes, each intermediate mesh will be
triangulated into the same number of triangles. In such a
way, these intermediate meshes have no simplification
effect. In order to have simplification effect on these
intermediate meshes, we apply the border straightening
process to each intermediate mesh, and take the output of
the border straightening process as the input of the
triangulation process. Finally, we have got a set of
triangles for each intermediate mesh. In the next section,
we will describe the mesh morphing.

4. Mesh Morphing

Before describing the meshing morphing method, we
first discuss border transition in the following section.
Then, we use this border transition technique to develop
our mesh morphing method.

4.1 Border Transition

Suppose that we are given two borders Bs and Be,
where border Bs has the vertex sequence b1, b2, ⋯, bn with
b1 and bn being the start and end vertices, respectively, and
border Be is the border connecting the start and end
vertices of border Bs. (That is, border Be is the line

segment nbb1 .) See Fig. 1. In this section, we will

show how to find the intermediate transition from the
border Bs to the border Be.

Fig. 1

First, we define the projection of vertex bi, for i=2,
3, …, n-1, onto the line segment connecting the start and

end vertices of border Bs , the line segment nbb1 . Let it

be denoted by Pr(bi). The projection point Pr(bi) is a point

on the line segment nbb1 which is nearest to vertex bi.

Then, according to the geometric properties, one of the
following cases about the projection point Pr(bi) should

occur: (1) the line segment)Pr(ii bb is perpendicular

to the line segment nbb1 ; (2) the point Pr(bi) is either

b1 or bn. By simple computation, we can easily get the
projection point Pr(bi).

Then, for any line segment)Pr(ii bb , for i=2,

3,…,n-1, we choose m partition points to partition the line

segment)Pr(ii bb into m+1 pieces, each of which

has equal length. Let these m partition points be bi,1,
bi,2, …bi,m which are ordered such that point bi,1 is nearest
to b1 and point bi,m is nearest to Pr(bi). (See Fig. 1.) Hence,
we can get m new borders, say B1, B2, … ,Bm,, where the
border Bj has the vertex sequence b1, b1,j, b2,j, …,bn-1,j, bn ,
for j=1,2,…,m. Border Bj also has vertices b1 and bn to be
its start and end vertices, respectively. We call these m
borders B1, B2, … Bm the m intermediate borders
transition from the border Bs to the border Be . These m
borders are what we want. When m is large enough,
showing borders Bs, B1, B2, … Bm, Be has smooth transition
from the border Bs to the border Be.

4.2 Our Mesh Morphing Method
Now, our mesh morphing method is presented.

Suppose that the mesh before the boundary straightening

process woks on is M and that the mesh after the

boundary straightening process works on is M’. In this

section, we will show how to find the smooth transition

from the mesh M to the mesh M’. That is, we will find

some intermediate meshes whose shapes change from M

to M’ smoothly. Assume that the mesh M’ consists of n

edges e1 , e2 , …, en , which are ordered in clockwise (or

counterclockwise) sequence. For each edge of the border

on M’, it has a corresponding border piece on M which is

straightened into this edge (on M’). Now, let us give some

notations. For each edge ei (i= 1,2,…,n) of the mesh M’,

its corresponding border on M is denoted by Ei. We note

that Ei may be the edge ei. In general, the border Ei is part

of the boundary of the mesh M and contains one or more

consecutive boundary edges of the mesh M. Then the

border sequence E1, E2, … En forms the boundary of the

mesh M. By taking advantage of the relationship

between border Ei and edge ei, we can find intermediate

meshes from mesh M to mesh M’ as follows.

If the number of intermediate meshes from mesh M

to mesh M’ that we need is m, let these intermediate

meshes from mesh M to mesh M’ be M1, M2, … Mm. In

this paper, the boundary of any intermediate mesh is

constructed from the m intermediate borders from Ei to ei

(described in Section 4.1), for i=1,2,…,n. Assume that

the m intermediate borders from Ei to ei , for i=1,2,…,n,

are Bi,1, Bi,2, …., Bi,m. The boundary of any intermediate

mesh Mi, for i=1,2,…,m, is formed by n intermediate

borders B1,i, B2,i, …., Bn,i, which are in clockwise (or

counterclockwise) sequence. Once we have the

boundaries of all the m intermediate meshes from mesh

M to mesh M’, smooth transition effect from M to M’ can

be obtained.

5. Experimental Results
We use two test models for experiment. The platform

is Sun UltraSparc 350MHz with one CPU installed. The

experimental results are illustrated in Sections 5.1 and

5.2.

5.1 Experiment 1
The input model is a cow model composed of 5804

triangles (Fig. 2). In this experiment, we run our

morphing algorithm to find 10 intermediate models from

the original (cow) model to a simplified model, which is

obtained from the result of the first iteration (or pass) of

running the Tseng and Cheng’s LOD algorithm [12]. We

note that the tolerance rate used in this Tseng and

Cheng’s LOD algorithm is π/5. In this experiment, we

call this simplified model the destination model. This

experimental result is shown in Table 1.

Fig.2.The original cow model with 5804

triangles.

Fig. 3. The original cow model

Fig. 4. Intermediate model 1

Model No. of Triangles Reduction Rate Time

Original model 5804 0 0

Intermediate model 1 5664 97% 67

Intermediate model 2 5402 93% 70

Intermediate model 3 5248 90% 73

Intermediate model 4 5092 87% 77

Intermediate model 5 4872 83% 80

Intermediate model 6 4313 74% 83

Intermediate model 7 3880 67% 87

Intermediate model 8 3351 58% 89

Intermediate model 9 3024 52% 92

Intermediate model 10 2344 40% 96

Destination model 1750 30% 118

Table 1. (time unit: second)

Fig.5. Intermediate model 2 Fig. 6. Intermediate model 3

Fig. 7. Intermediate model 4 Fig. 8. Intermediate model 5

Table 1 shows that the Tseng and Cheng’s LOD

algorithm [12] is run at time 0, and at time 118, the

destination model is generated. At time 67, the

intermediate model 1 is generated, and, after 3 seconds,

the intermediate model 2 is generated at time 70. The last

intermediate model , the intermediate model 10, is

generated at time 96. It indicates that the time required

between two consecutive intermediate models generating

is about 2 ~ 4 seconds. From Table1, we know that the

reduction rates of the 10 intermediate models decrease

from 97% to 40 %, where the reduction rate of our

destination model is about 30%. Furthermore, it shows

that our morphing algorithm is fast and efficient. In order

to illustrate the shape changing from the original (cow)

model to the destination model, we show the original

model, 10 intermediate models, and destination model in

Fig. 3 ~ Fig. 14

Fig. 9. Intermediate model 6

Fig. 10. Intermediate model 7

Fig. 11. Intermediate model 8

Fig. 13. Intermediate model 10

Fig. 12. Intermediate model 9

Fig. 14.The destination model

Fig. 15. The Fandisk model

Fig. 16. The original Fandisk model

Fig. 17. Pass 1 Model

Fig. 18. The intermediate model

between pass 1 model and

pass 2 model

Fig. 19. Pass 2 model

Model No. of Triangles Reduction Rate Time

Original Model 3392 0 0

Pass 1 model 3254 96% 67

Pass 2 model 1755 52% 93

Table 2. (time unit: second)

Model No. of Triangles Reduction Rate Time

Original model 3392 0 0

Pass 1 model 3254 96% 67

Intermediate model 2369 70% 71

Pass 2 model 1755 52% 96

Table 3. (time unit: second)

5.2 Experiment 2
The second test model is called ‘Fandisk’ with

3392 triangles (Fig. 15). We run the Tseng and Cheng’s

LOD algorithm [12], and get two simplified models

obtained from pass 1 and pass 2, respectively. (See Table

2.) In this experiment, we find one intermediate model

between these two simplified models. The experimental

result is illustrated in Table 3.

Table 3 shows that this Tseng and Cheng’s LOD

algorithm [12] is run at time 0, pass 1 model is generated

at time 67, and the intermediate model is generated at

time 71. In other words, it takes 4 seconds to generate the

intermediate model after pass 1 model is generated. From

Table 3, the reduction rates of pass 1 model and pass 2

model are 96% and 52%, respectively. The reduction rate

of the intermediate model is 70% and lies between the

reduction rates of pass 1 model and pass 2 model. It also

shows that our morphing algorithm is fast and efficient.

In order to show the shape changing form the original

(Fandisk) model to the model generated by pass 2, we

illustrate the original model, pass 1 model, this

intermediate model, and pass 2 model in Fig. 16 ~ Fig.

19.

6. Conclusions
We have proposed a method to solve a 3D morphing

problem on a LOD tree structure. This LOD structure is

constructed from the Tseng and Cheng’s LOD algorithm

[12]. This algorithm repeatedly executes three steps:

clustering, border straightening, and triangulation. Our

morphing algorithm really performs mesh morphing. It

is executed in the border straightening step of each

iteration of this LOD algorithm. In the border

straightening step, our morphing algorithm keeps all the

meshes of the input model, and all their corresponding

border-straightened meshes. Then, for each input mesh

kept by our morphing algorithm, find the intermediate

meshes between this input mesh and its corresponding

border-straightened mesh. Because of the behavior of our

morphing algorithm, all intermediate meshes between

any mesh and its corresponding border-straightened

mesh have the same number of vertices. That is, they

have the same topology. If we perform the triangulation

process on these intermediate meshes, each intermediate

mesh will be triangulated into the same number of

triangles. In such a way, these intermediate meshes have

no simplification effect. In order to have simplification

effect on these intermediate meshes, we apply the border

straightening process to each intermediate mesh, and take

the output of the border straightening process as the input

of the triangulation process. Finally, we have got a set of

triangles for each intermediate mesh. This effect can be

seen from the reduction rates of the intermediate models

in our experimental results. In other words, out morphing

algorithm not only gets a set of intermediate models, but

also has simplification effect. Our experimental result

also shows that our morphing algorithm is fast and

efficient.

References
[1] Eyal Carmel and Daniel Cohen-Or,

Warp-guided object-space morphing, The Visual

Computer, 13, 9-10 (1998), 46-478.

[2] Arthur Gregory, Andrei State, Ming C.

Lin,Dinesh Manocha, Mark A. Livingston,

Feature-based Surface Decomposition for

Correspondence and Morphing between

Polyhedra, Tech. Rep. TR98-014, Department

of Computer Science, University of North

Carolina at Chapel Hill, Apr. 14, 1998.

[3] Hughes, J. F., Scheduled Fourier volume

morphing, Computer Graphics (SIGGRAPH’92

Proceedings), 43-46, 1992.

[4] Kanai, T., Suzuki, H., and Kimura, F.,

Three-dimensional geometric metamorphosis

based on harmonic maps, The Visual Computer,

14, 4(1998), 144-176.

[5] J. Kent, W. Carlson, and R. Parent, Sharp

Transformation for Polyhedral Object,

SIGGRAPH 92 Conference Proceedings, pp.

47-54,1992.

[6] Lazarus, F., and Verroust, A., Three-dimensional

metamorphosis: a survey, The Visual Computer,

14 (1998), 373-389.

[7] Aaron W. F. Lee, David Dobkin, Wim Sweldens,

Peter Schroder, Multiresolution Mesh Morphing,

Computer Graphics (SIGGRAPH’99), pp.

343-350, 1999.

[8] A. Lerios, C. Garfinkle, and M. Levoy,

Feature-Based Volume Metamorphosis,

SIGGRAPH 95 Conferecce Proceedings,

pp.449 – 456, 1995.

[9] Sederberg, T. W., Gao, P., Wang, G., and Mu, H.,

2D shape blending: an intrinsic solution to the

vertex path problem, Computer Graphics

(SIGGRAPH’93 Proceedings), Vol.27, 15-18,

Aug. 1993.

[10] Shapira, M., and Rappoport, A., Shape Blending

Using the Star-Skeleton Representation, IEEE

Computer Graphics and Applications, 15, 2

(1995), 44-50.

[11] Payne, B. A., Toga, A. W., Distance field

manipulation of surface models, IEEE

Computer Graphics and Applications, 12, 1 (Jan.

1992), 65-71.

[12] K. C. Tseng and C. H. Cheng, Clustering Based

Hierarchical Level-of- Detail with Bounded

Error, Proceedings of 1998 International

Computer Symposium, Workshop on Computer

graphics and Virtual Reality, pp. 97-103, Dec.

1998, N.C.K.U. , Tainan, Taiwan, R.O.C.

