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Abstract 

In this paper, the goal of morphing is to find 
intermediate models between two models corresponding 
to two consecutive levels of a level-of-detail (LOD) 
structure. By using the data structure of this LOD 
structure, we can easily find the correspondence between 
the source model and the destination model, and have a 
method to solve this 3D morphing problem. This method 
is tested, and our experimental results show that it is fast 
and efficient. In addition, the intermediate models 
generated by our morphing algorithm is also simplified. 
Keywords: computer graphics, level of detail, morphing, 
simplified model, mesh 
 
1. Introduction 

In this paper, the purpose of morphing is to find the 
intermediate models between two models corresponding 
to two consecutive levels of a level-of-detail (LOD) 
structure, respectively. This LOD structure is constructed 
from the clustering-based algorithm shown in [12]. This 
LOD algorithm repeatedly executes the following three 
steps: clustering, boundary straightening, and 
triangulation. Each iteration corresponds to a pass and 
generates a one-level object. Initially, the first level object 
is the original model of input data. The first iteration of 
this LOD algorithm performs on the original model, and 
we can get a simplified model with smaller boundary 
information. Then, this simplified model is used as the 
input of the second iteration of this LOD algorithm, and 
another simplified model with smaller boundary 
information is generated. In general, any iteration takes as 
input data the simplified model generated by its previous 
one iteration, and generates a new simplified model with 
smaller boundary information, which will be used as the 
input data of its next iteration.  Then, we can have a 

series of model data, and each level object preserves the 
feature of the original input model. Objects in this series 
of models are from the most detailed object to the least 
detailed object. Because of the behavior of this LOD 
algorithm, showing two consecutive models 
(corresponding to two consecutive levels in the LOD tree 
structure) has popping conditions. That is, the transition 
between two consecutive models is not enough smooth. 
Hence, in this paper, we propose a method to insert 
intermediate models into any two consecutive models so 
as to make smooth transition between these two 
consecutive models. 

This paper is organized as follows. In Section 2, we 
describe the related work. In Section 3, our morphing 
method is described. In Section 4, mesh morphing is 
discussed. Experimental results are illustrated in Section 
5. Finally, conclusions are given in Section 6. 

 
2. Related Work 

Lazarus and Verroust [6] give an excellent survey of 
previous work on the 3D morphing problem. Most 
methods for morphing 3D objects use either discrete or 
combinatoric representations for the objects themselves. 
Discrete representations typically voxelize objects or their 
distance functions and aim to extend 2D morphing 
algorithms to 3D. Lerious et at. [8] used fields of 
influence of 3D primitives to warp-volumes. Hughes [3] 
proposed a method working in the Fourier domain. 
Payne [11] described a distance-field volumetric 
cross-dissolving technique. The alternative is to work 
directly on boundary representations such as polygonal 
meshes or patch complexes [5, 9, 10, 1, 4, 2, 7]. 
 
3. Our Morphing Method 

The morphing method presented in this paper is to 



find intermediate models between two consecutive level 
models in an LOD tree structure. The LOD tree structure 
is constructed from the Tseng and Cheng’s 
clustering-based LOD algorithm [12]. In this LOD 
algorithm, it repeatedly produces simplified models. 
Each iteration of this algorithm performs three steps: 
clustering, border straightening, and triangulation. For 
each iteration, our morphing method works on two 
models, which are the input and output models of the 
boundary straightening process, respectively. Suppose 
that the input model is M and that the output model is M’. 
Our morphing method is based on the following 
properties: 

 
(1) The number of meshes in M is equal to that of 

meshes in M’. 
(2) For any mesh m in M, there is a corresponding 

mesh m’ in M’, which is the result of the 
boundary straightening process. 

 
Therefore, the kernel of our morphing method in this 
paper really performs mesh morphing between m and m’. 
That is, it is to find intermediate meshes from m to m’. 
Because of the behavior of our morphing algorithm, all 
intermediate meshes between any mesh and its 
corresponding border-straightened mesh have the same 
number of vertices, i.e., they have the same topology. If 
we perform the triangulation process on these 
intermediate meshes, each intermediate mesh will be 
triangulated into the same number of triangles. In such a 
way, these intermediate meshes have no simplification 
effect. In order to have simplification effect on these 
intermediate meshes, we apply the border straightening 
process to each intermediate mesh, and take the output of 
the border straightening process as the input of the 
triangulation process. Finally, we have got a set of 
triangles for each intermediate mesh.  In the next section, 
we will describe the mesh morphing. 
 
4. Mesh Morphing 

Before describing the meshing morphing method, we 
first discuss border transition in the following section. 
Then, we use this border transition technique to develop 
our mesh morphing method. 

 
4.1 Border Transition 

Suppose that we are given two borders Bs  and Be, 
where border Bs  has the vertex sequence b1, b2, ⋯, bn with 
b1 and bn being the start and end vertices, respectively, and 
border Be  is the border connecting the start and end 
vertices of border Bs. (That is, border Be is the line 

segment nbb1 .) See Fig. 1. In this section, we will 

show how to find the intermediate transition from the 
border Bs to the border Be.  

 
Fig. 1 

First, we define the projection of vertex bi, for i=2, 
3, …, n-1, onto the line segment connecting the start and 

end vertices of border Bs , the line segment nbb1 . Let it 

be denoted by Pr(bi). The projection point Pr(bi) is a point 

on the line segment nbb1 which is nearest to vertex bi. 

Then, according to the geometric properties, one of the 
following cases about the projection point Pr(bi) should 

occur: (1) the line segment )Pr( ii bb  is perpendicular 

to the line segment nbb1  ; (2) the point Pr(bi) is either 

b1 or bn. By simple computation, we can easily get the 
projection point Pr(bi). 

Then, for any line segment )Pr( ii bb , for i=2, 

3,…,n-1, we choose m partition points to partition the line 

segment )Pr( ii bb  into m+1 pieces, each of which 

has equal length. Let these m partition points be bi,1, 
bi,2, …bi,m which are ordered such that point bi,1 is nearest 
to b1 and point bi,m is nearest to Pr(bi). (See Fig. 1.) Hence, 
we can get m new borders, say B1, B2, … ,Bm,, where the 
border Bj has the vertex sequence b1, b1,j, b2,j, …,bn-1,j, bn , 
for j=1,2,…,m. Border Bj also has vertices  b1 and bn to be 
its start and end vertices, respectively. We call these m 
borders B1, B2, … Bm the m intermediate borders 
transition from the border Bs  to the border Be . These m 
borders are what we want. When m is large enough, 
showing borders Bs, B1, B2, … Bm, Be has smooth transition 
from the border Bs  to the border Be. 

 

4.2 Our Mesh Morphing Method 
Now, our mesh morphing method is presented. 

Suppose that the mesh before the boundary straightening 

process woks on is M and that the mesh after the 

boundary straightening process works on is M’. In this 

section, we will show how to find the smooth transition 

from the mesh M to the mesh M’. That is, we will find 

some intermediate meshes whose shapes change from M 

to M’ smoothly. Assume that the mesh M’ consists of n 



edges e1 , e2 , …, en , which are ordered in clockwise (or 

counterclockwise) sequence. For each edge of the border 

on M’, it has a corresponding border piece on M which is 

straightened into this edge (on M’). Now, let us give some 

notations. For each edge ei (i= 1,2,…,n) of the mesh M’, 

its corresponding border on M is denoted by Ei. We note 

that Ei may be the edge ei. In general, the border Ei is part 

of the boundary of the mesh M and contains one or more 

consecutive boundary edges of the mesh M. Then the 

border sequence E1, E2, …  En forms the boundary of the 

mesh M. By taking advantage of the relationship 

between border Ei and edge ei, we can find intermediate 

meshes from mesh M to mesh M’ as follows.  

If the number of intermediate meshes from mesh M 

to mesh M’ that we need is m, let these intermediate 

meshes from mesh M to mesh M’  be M1, M2, … Mm. In 

this paper, the boundary of any intermediate mesh is 

constructed from the m intermediate borders from Ei to ei 

(described in Section 4.1), for i=1,2,…,n. Assume that 

the m intermediate borders from Ei to ei , for i=1,2,…,n, 

are Bi,1, Bi,2, …., Bi,m. The boundary of any intermediate 

mesh Mi, for i=1,2,…,m, is formed by n intermediate 

borders B1,i, B2,i, …., Bn,i, which are in clockwise (or 

counterclockwise) sequence. Once we have the 

boundaries of all the m intermediate meshes from mesh 

M to mesh M’, smooth transition effect from M to M’ can 

be obtained.  

 

5. Experimental Results 
We use two test models for experiment. The platform 

is Sun UltraSparc 350MHz with one CPU installed. The 

experimental results are illustrated in Sections 5.1 and 

5.2. 

 

5.1 Experiment 1 
The input model is a cow model composed of 5804 

triangles (Fig. 2). In this experiment, we run our 

morphing algorithm to find 10 intermediate models from 

the original (cow) model to a simplified model, which is 

obtained from the result of the first iteration (or pass) of 

running the Tseng and Cheng’s LOD algorithm [12]. We 

note that the tolerance rate used in this Tseng and 

Cheng’s LOD algorithm is π/5. In this experiment, we 

call this simplified model the destination model. This 

experimental result is shown in Table 1. 

 

Fig.2.The original cow model with 5804 

triangles. 

Fig. 3. The original cow model  

Fig. 4. Intermediate model 1  



Model No. of Triangles Reduction Rate Time  

Original model 5804 0 0 

Intermediate model 1 5664 97% 67 

Intermediate model 2 5402 93% 70 

Intermediate model 3 5248 90% 73 

Intermediate model 4 5092 87% 77 

Intermediate model 5 4872 83% 80 

Intermediate model 6 4313 74% 83 

Intermediate model 7 3880 67% 87 

Intermediate model 8 3351 58% 89 

Intermediate model 9 3024 52% 92 

Intermediate model 10 2344 40% 96 

Destination model   1750 30% 118 

Table 1. (time unit: second) 

Fig.5. Intermediate model 2                           Fig. 6. Intermediate model 3 

Fig. 7. Intermediate model 4                          Fig. 8. Intermediate model 5 

 

 



Table 1 shows that the Tseng and Cheng’s LOD 

algorithm [12] is run at time 0, and at time 118, the 

destination model is generated. At time 67, the 

intermediate model 1 is generated, and, after 3 seconds, 

the intermediate model 2 is generated at time 70. The last 

intermediate model , the intermediate model 10, is 

generated at time 96. It indicates that the time required 

between two consecutive intermediate models generating 

is about 2 ~ 4 seconds. From Table1, we know that the 

reduction rates of the 10 intermediate models decrease 

from 97% to 40 %, where the reduction rate of our 

destination model is about 30%. Furthermore, it shows 

that our morphing algorithm is fast and efficient. In order 

to illustrate the shape changing from the original (cow) 

model to the destination model, we show the original 

model, 10 intermediate models, and destination model in 

Fig. 3 ~ Fig. 14 

 

Fig. 9. Intermediate model 6 

 
 

Fig. 10. Intermediate model 7 

 

Fig. 11. Intermediate model 8 

Fig. 13. Intermediate model 10 

Fig. 12. Intermediate model 9 

Fig. 14.The destination model 



  

 

                

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 15. The Fandisk model 

Fig. 16. The original Fandisk model 

Fig. 17. Pass 1 Model 

Fig. 18. The intermediate model  

between pass 1 model and 

pass 2 model 

Fig. 19. Pass 2 model 

Model No. of Triangles Reduction Rate Time 

Original Model 3392 0 0 

Pass 1 model 3254 96% 67 

Pass 2 model 1755 52% 93 

Table 2. (time unit: second) 

Model No. of Triangles Reduction Rate Time 

Original model 3392 0 0 

Pass 1 model 3254 96% 67 

Intermediate model 2369 70% 71 

Pass 2 model 1755 52% 96 

Table 3. (time unit: second) 



5.2 Experiment 2 
The second test model is called  ‘Fandisk’ with 

3392 triangles (Fig. 15). We run the Tseng and Cheng’s 

LOD algorithm [12], and get two simplified models 

obtained from pass 1 and pass 2, respectively. (See Table 

2.) In this experiment, we find one intermediate model 

between these two simplified models. The experimental 

result is illustrated in Table 3. 

Table 3 shows that this Tseng and Cheng’s LOD 

algorithm [12] is run at time 0, pass 1 model is generated 

at time 67, and the intermediate model is generated at 

time 71. In other words, it takes 4 seconds to generate the 

intermediate model after pass 1 model is generated. From 

Table 3, the reduction rates of pass 1 model and pass 2 

model are 96% and 52%, respectively. The reduction rate 

of the intermediate model is 70% and lies between the 

reduction rates of pass 1 model and pass 2 model. It also 

shows that our morphing algorithm is fast and efficient. 

In order to show the shape changing form the original 

(Fandisk) model to the model generated by pass 2, we 

illustrate the original model, pass 1 model, this 

intermediate model, and pass 2 model in Fig. 16 ~ Fig. 

19. 

 

6. Conclusions 
We have proposed a method to solve a 3D morphing 

problem on a LOD tree structure. This LOD structure is 

constructed from the Tseng and Cheng’s LOD algorithm 

[12]. This algorithm repeatedly executes three steps: 

clustering, border straightening, and triangulation. Our 

morphing algorithm really performs mesh morphing.  It 

is executed in the border straightening step of each 

iteration of this LOD algorithm. In the border 

straightening step, our morphing algorithm keeps all the 

meshes of the input model, and all their corresponding 

border-straightened meshes. Then, for each input mesh 

kept by our morphing algorithm, find the intermediate 

meshes between this input mesh and its corresponding 

border-straightened mesh. Because of the behavior of our 

morphing algorithm, all intermediate meshes between 

any mesh and its corresponding border-straightened 

mesh have the same number of vertices. That is, they 

have the same topology. If we perform the triangulation 

process on these intermediate meshes, each intermediate 

mesh will be triangulated into the same number of 

triangles. In such a way, these intermediate meshes have 

no simplification effect. In order to have simplification 

effect on these intermediate meshes, we apply the border 

straightening process to each intermediate mesh, and take 

the output of the border straightening process as the input 

of the triangulation process. Finally, we have got a set of 

triangles for each intermediate mesh. This effect can be 

seen from the reduction rates of the intermediate models 

in our experimental results. In other words, out morphing 

algorithm not only gets a set of intermediate models, but 

also has simplification effect. Our experimental result 

also shows that our morphing algorithm is fast and 

efficient. 
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