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ABSTRACT 

The cyclographic maps and its relation to offset curve, the 
medial axis transform is introduced in this paper. We also 
modify the cyclographic maps into the weighted 
cyclographic maps and extracting the weighted offset curves 
and weighted medial axis transform from it. Algorithm to 
extract the cyclographic map from the boundary curve is 
introduced.  

1. Introduction – Offset Curve, Medial Axis Transform 

There are 4 sections in this paper. The first section gives 
definitions for the curve and the oriented curve, introduces 
r-offset of the (oriented) curve, medial axis and medial axis 
transform associated with “one side” of a curve, or a closed 
domain. The second section describes the cyclographic 
maps. The third section describes the algorithm of 
extracting cyclographics and weighted cyclographics for an 
oriented curve, and the final section describes the 
relationship between cyclographics and offset curve, medial 
axis transform, and blending curves.  

1.1 Curves 

Definition 1  A curve in the real Euclidean space R2 is a 
map α:[a,b]->R2, where α(t)=(x(t),y(t)) and x(t), y(t) are 
continuous functions. An oriented curve is a curve with 
orientation from α(a) to α(b).  

If is an oriented curve, we called the point α(a) and α(b) the 
start and end point of the oriented curve. If α is a curve, we 
called both α(a) and α(b) end points. 

Definition 2  A (oriented) curve α:[a,b]->R2 is: 

•  simple if α is one-to-one. 

•  differentiable if dα/dt is defined and not zero, for all 
t∈ [a,b], where dα/dt is the derivative of α by t. 

•   twice differentiable if d2α/d 2 is defined and not zero, 
for all t∈ [a,b], where d2α/d 2  is the second derivative 
of α at t. 

•  closed if α(a)=α(b). 

•  of bounded curvature variation if there are finitely 
many local extrema of the curvature. And, there are 
finitely many inflection points. 

We define the right tangent and the left tangent of α(t) as the 
vector from α(t+∆t) to α(t) and from α( t-∆t) to α(t) 

respectively, when the ∆t approaches to zero. Let p be a 
point on the oriented simple curve α, let θ be the angle 
measured counter-clockwise from p′s left tangent to its right 
tangent. If θ=0, the point p is a differentiable point. If 0<θ<π 
or π<θ<2π, the point is a convex or concave vertex 
respectively. There are two cases for θ=π. Consider the 
curve in Figure 1a and 1b, the point p separate the curve into 
two subcurves α1 and α2, α1 is from start point to p and α2 is 
from p to the end point. If α2 is locally in the “left-side” of 
α1 at p(Figure 1a), then p is a convex vertex. If α2 is locally 
in the “right-side” of α1 at p(Figure 1b), then p is a concave 
vertex. If α1 is locally equal to the α2, the curve α will not be 
simple. We only consider simple curve with bounded 
curvature variation in this paper. 
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            (a) Convex                            (b) Concave 

Figure 1 Convex/concave with opposite tangent direction 

 

The right normal vector and left normal vector are further 
defined as the right tangent and left tangent vectors which 
rotated 90 degree counter-clockwise. The negative left 
normal of α at p is the left normal with reverse direction. 
The negative right normal and the negative normal are 
defined similarly. There is no left and right normal for the 
start and end points of α respectively. 

Notice that for the differentiable point p, its left tangent is 
equal to its right tangent, and its left normal is equal to its 
right normal. We simply call them the tangent of p or the 
normal of p. We treat the start and end point are 
differentiable points. Their tangents (normals) are right 
tangent (normal) and left tangent (normal) respectively. 

The left(right) side of the oriented simple curve α at p is 
defined as follows: 

• If the point p is differentiable, the left(right) side of α at 
p is the normal(negative normal) of α at p.  

• If the point p is a convex point, the left(right) side of α 
at p is the area span by the vectors rotated 
counter-clockwise from the (negative) left normal at p 
to the (negative) right normal at p. 
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• If the point p is a concave point, the left side of α at p is 
the area span by the vectors rotated clockwise from the 
(negative) left normal at p to the (negative) right normal 
at p.   

• The left(right) side of an oriented simple curve α is the 
union of the left(right) side of α at all points on α.  

Notice that under these definitions, the left(right) side of an 
open oriented curve is not necessary bounded.  

1.2 Offset Curves 

We introduce the notions of local distance, global distance, 
local offset and global offset in this section.  

Given a plane curve C, its offset by a distance r is a curve 
Off(C,r) such that the points of Off(C,r) are at distance r 
from C. These informal definitions can be made more 
precise in one of two ways, depending on whether the 
distance is measured locally or globally. Denote the 
Euclidean distance of two points p and q with d(p,q). Let C 
be a curve in R2, and p any point. Define the global distance 
of p to C by  

distg(p,C) = {d(p,q) | q ∈  C and d(p,q) has global minimal}  

where d(p,q) is the Euclidean distance of two points. For a 
smooth curve C, a local distance can be defined as 

distl (p,C) =  {d(p,q) | q ∈  C and d(p,q) has extreme value} 

Notice that distg (p,C) = min { distl (p,C)}  

From [1], we know that if q is not end point of the curve C, 
and C is differential at q, then pq  is perpendicular to the 
tangent of C at q. For most reasonable curves C these 
definitions make sense. Notice that distg (p,C) is a singleton 
and distl (p,C) may have more than one element. 

Given a parametric or implicit representation of the curve. 
the local and global offsets can be defined as follows2, 3,4]. 
In the global offset, the global distance is used, so that 

Offg(C,r) = { p∈  R2 | r ∈  distg(p,C) } 

Local offsets are simple to define analytically, That is,  

Offl(C,r) = { p∈  R2 | r ∈  distl(p,C) } 

Moreover, the local offset of an algebraic curve or surface 
again is an algebraic curve. Notice that the offset of a curve 
has two components for a curve, each one on the different 
side of the curve. We restricted the offset of an oriented 
curve to be the offset on its left side.  

1.3 Offsets for an oriented simple curve 

Let us consider the offset for the oriented curve α. We give 
distance with sign on the oriented curve. For the point at the 
left(right) side of α at p, its distance to p is 
positive(negative). Notice that there exist points on both 
sides of α, as the point q in Figure 2. We call that p1 is q′s 
footpoint on α from q′s right side, and p2 is q′s footpoint on 
α from q′s left side. Or, q is on left side of α at p1, and q is on 
right side of α at p2. 

The local and global distance for point to oriented curve are 
defined as:  

distl
+(q,α)={d(p,q) | p∈α ; d(p,q) has exreme value; and q is 

on the left side of α at p} 

distl
-(q,α)={-d(p,q)|p∈α ; d(p,q) has exreme value; and q is 

on the right side of α at p} 

distg
+(q,α) = min { distl

+(q,α)} 

distg
-(q,α) = max { distl

-(q,α)} 

 

 

p2 

p1 q 

r2<0 

r1>0 
 

Figure 2 points on both sides of α 

 

Let’s consider the r-offset for an oriented simple curve now. 
If r>0(r<0), the r-offset of α is the trace of points that is in 
the left(right) side of the curve, and its distance to the curve 
is equal to r. This r-offset can be global or local, depend on 
the local global distance or local distance we use. Under this 
definition, if β is the same as α except that β is not oriented, 
the union for the r-offset and –r-offset of α is not equal to the 
r-offset of β. The only difference is at the start and end point 
of the curve α. The offset of contains circular arc at the start 
and end point, the r-offset of α is the intersection of r-offset 
of β and the left side of α. Similarly, the –r-offset of α is the 
intersection of r-offset of β and the right side of α. 

The local and global offsets of an oriented curve are defined 
as:  

Offg(α,r) = { p∈  R2 | r∈ distg
+(p,α) or r∈ distg

-(p,α) } 

Offl(α,r) = { p∈  R2 | r∈ distl
+(p,α) or r∈ distl

-(p,α) } 

In the above definition, if the point p is not on the left side 
and right side of α, we defined distl

+(p,α) and distl
-(p,α) are 

equal to ∞ and -∞ respectively. 

It is possible that a point is both on the positive and negative 
offset of α, as the point p in Figure 2. The point q is on both 
+r-offset and –r-offset of α. when r=r1=-r2. 

If C is the curve α without orientation, we have  

Offg(α,r)∈  Offg(C,|r|) 

Offl(α,r)∈  Offl(C,|r|) 

The proof is base on the fact that there are more restriction 
to define distg and distl for oriented curve than curve.  

Consider the curve C with the implicit equation f(x,y)=0. 
Let (u1,v1) be a point on f and (x,y) be a point on the normal 
of f at (u1,v1). Let fx denote the differential of f with respect 
to x. In 2D, the system of equation for the local offsets with 
distance d to the boundary in the dimensionality paradigm is 
6]: 

f(u,v) = 0 

fx(y-v) - fy(x-u) = 0 

(x-u)2 + (y-v) 2 = d2 
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The first equation states that the point (u1,v1) is on f. The 
second equation assures the fact that (x,y) is on the normal 
of f at (u1,v1). And, the third equation asserts that the 
distance from the boundary curve to offset curve is equal to 
d. Notice that in the general case, the degree of freedom is 1, 
so that the offset of the curve should be a curve in 2D. 

With similar approach, we can generate the system of 
equation for the curve with parametric form. Consider the 
curve C(t)=((X(t),Y(t)), we have the following system of 
equation: 

(x-X(t))*Xt(t)+(y-Y(t))*Yt (t)=0 

(x-X(t))2+(y-Y(t))2=d2 

We can eliminate the variable to find the implicit form for 
the offset curve [22]. 

The properties of the 2D offset curves is well introduced in 
[24,25]. There are also many algorithms to extract 2D 
offsets, such as [26,27].  

1.4 Medial Axis and Medial Axis Transform 

Consider a compact region in R2. There are two equivalent 
definitions for the medial axis (MA) of such region, namely: 

Definition 3 (Blum) The internal medial axis (or skeleton) 
of a 2D compact region is the closure of the locus of the 
centers of all maximal disks which are contained in the 
shape. 

Definition 4 Let a footpoint of p be a point p' on the 
boundary of a 2D region that has minimum distance to p. 
The interior medial axis of a 2D closed region is the closure 
of the locus of the points inside the region which have more 
than one footpoint. 

Let’s extend the definition 4 into noncompact 2D region. 
Consider an oriented curve with it left side as the 2D region, 
the medial axis of this 2D region is the closure of the locus 
of the points inside the region which have more than one 
footpoint. Notice that under this definition, the line connect 
the point p with it footpoint p′ will perpendicular the the 
tangent of the boundary curve at p′.  

 

We can define the MAT+ and MAT- for oriented curve. The 
MAT+ of the oriented curve α is the closure of the set of 
points which located on right (left) of α and have two or 
more footpoints on α from their left (right). Consider the 
point q on Figure 2. Although q is on the left side of α (and 
also the right side of α), there are only one footpoint p1 on 
α from its right, so the point q is not belong to MAT+ of α. 
More formally, we have: 

MAT+(α)=closure{q | q is on the left side of α; q has more 
than one footpoints on α from q′s right side } 

MAT-(α)=closure{q | q is on the right side of α; q has more 
than one footpoints on α from q′s left side of α } 

The function which maps an MA point to the distance 
between the MA point and its footpoints is called the radius 
function. The medial axis and the associated radius function 
define the medial axis transform (MAT). The definition 

extends naturally to the concept of an left(right) MAT 
associated to the left(right) side of an oriented curve.  

There are many applications of the MAT of 2D regions. The 
interior MAT can be used in shape representation and shape 
recognition [7,8,9,10,11,12], especially for objects whose 
width is relatively unimportant such as characters in 
character recognition, or chromosomes in microbiology. 
The medial axis has also been used in finite-element mesh 
generation [13,14,15,16]. Many global shape characteristics 
can be extracted from the internal MAT of the shape, as 
explained in [13]. The external MAT can be used in motion 
planning [17]. For example, the external MAT of n obstacles 
can be used to define a collision-free path for robots that 
maximizes clearance from the obstacles. The MAT is also 
useful in casting design [18] and has potential applications 
in geometric tolerancing [19]. 

The properties of 2D MAT can be find in [28, 30]. There are 
also many algorithms to extract 2D MAT, such as [28, 29]. 

2. Cyclographics and Weighted Cyclographics 

Cyclographic maps has been introduced in [20] and used in 
computer science[19]. Every point in (x,y,z)-space is 
associated with an oriented circle in the (x,y)-plane by 
making the point the vertex of a double right cone whose 
axis is parallel to the z-axis and intersecting the cone with 
the (x,y)-plane. If the point has a z-coordinate grater than 0, 
the orientation of the circle is counterclockwise, otherwise, 
the orientation of the circle is clockwise. Consider an 
oriented curve C in 2D, and rotate all of its normals 45 
degrees about the tangent. Then we obtained a ruled surface 
called the cyclographic map S(C) of C. The projection of the 
self-intersection points of the surface onto the (x,y)-plane 
contains the MA of the curve. The internal MA is produced 
on one side (the side with z value greater than 0) and the 
external MA on the other side(z<0). If we do not care about 
the orientation of the circles, we can think of the 
cyclographic maps in another way. Let D be a closed simple 
domain, and consider the single cones whose apex is on the 
boundary and whose axis is parallel to the z axis where the 
interior of the cone is in the z>0 region. Then, the envelope 
of the cones in the region z≥0 is a different new 
cyclographic map. The only difference is that the new map 
is in the positive z-half space. The MAT is obtained in the 
set of the self-intersection points of the envelope. The 
internal MAT and the external MAT are all on the same side 
of the (x,y)-plane. Consider all cones whose apex is on the 
MATand whose axis is parallel to z-axis. The union of all the 
circles that are the intersection of the cones with the 
(x,y)-plane are then the original domain D. The plane z=r 
intersections with the maps produce the local r-offset of the 
original domain. Notice that every point in the half space 
z≥0 corresponds to a right cone in 3D or a circle on 
(x,y)-plane, which means that three dimensional half-space 
can be representing by the set of circles in the plane. This 
notion that space could be treated as a collection of elements 
other than points was proposed by Plucker over 100 years 
ago 21]. 

We can restrict the surface S(C) such that it is the graph of a 
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function with the (x,y)-plane its domain. With each point 
(x,y), we associate the minimum |r|, so that the point (x,y,r) 
is on S(C). Let us call this surface the trimmed cyclographic 
map of C. The surface so defined is then the distance surface 
of Blum 7]. It follows, that the trimmed cyclographic map of 
C can be determined approximately with the Euclidean 
distance transform. 

Notice the trimmed cyclographic map of C can be obtained 
from the cyclographic map of C . The cyclographic map can 
be easily extended to any closed domain with an oriented 
curve as its boundary, such as domains with holes. Figure 
3(b)(c) shown examples of the  cyclographic map and the 
trimmed (modified) cyclographic of the boundary curve of 
Figure 3(a). 

Notice that the rotated normal of a differentiable point q∈ C 
is a line for the cyclographic map of C and could be a line, 
half-line, or line segment for the trimmed cyclographic map 
of C.  

 
            (a)                            (b)                       (c) 

Figure 3 (a) The Curve  (b) Cyclographic (c) Trimmed 
Cyclographic 

 

In the cyclographic map, every rotated normal has 45 degree 
with z=0 plane. The weighted cyclographic map is defined 
similar to cyclographic except that the degree between the 
rotated normal and z=0 are varied. We define the degree 
function w(t) be the degree of the rotated normal along the 
oriented curve with z=0 plane. We use the similar way to 
define the trimmed weighted Cyclographic maps. The 
weighted local (global) r-offset curve is defined as the 
intersection of z=r plane with weighted (trimmed weighted) 
cyclographic maps. The weighted MAT of the left region of 
an oriented curve is obtained in the self-intersection of its 
rotated normals. 

2.Algorithm for extracting Cyclographic maps of 
oriented curve 

We describe the algorithm which extracting cyclographic 
maps of oriented curve in this section.  

Given a closed bounded domain, we would like to produce 
its trimmed cyclographic maps, so that the global weighted 
offsets of the boundary curve, weighted MAT of this closed 
domains, etc., can be easy extract from the cyclographic 
maps. The boundary curve is represented by a list of the 
boundary point with its associated rotated normals. We 
generated the cyclographic maps via two algorithms. The 
first one produce the cyclographic map and the second one 
produce the trimmed cyclographic map. 

Algorhthm 1: Cyclotraphic map 

1. Input the boundary curve using the piecewise cubic 
Bezier curve Ci(t), 1≤ i ≤m. 

2. Find n intermediate points pi,j,1≤j≤n+2, for each curve 
Ci(t) and each concave and concex vertex. Further, find the 
rotated normal for all of the point pi,j. Reorder the boundary 
point into a list Q=[qi]. 

The above algorithm produce the rotated normal of all 
boundary points, we can display the cyclographic maps 
easily from the boundary curve points associated with its 
rotated normal, as shown in Figure 3b. 

In order to find the trimmed cyclographic map, we have to 
find its self-intersection curve, and trim the cyclographic 
map. We use the divided and conquer strategy as the 
following:  

Algorithm 2: Trimmed Cyclograhpic Maps 

1. Input the boundary curve using the piecewise cubic 
Bezier curve Ci(t) , 1≤ i ≤m. 

2. Find n intermediate points pi,j for each curve Ci(t) and 
each concave and concave vertex. Furthermore, find the 
rotated normal for all of the point pi,j. Reorder all of the 
boundary points into a list Q=[qi]. 

3. Let q2 as the starting boundary point, find its associated 
MAT point q and q′s other footpoints. If the other footpoints 
is not one of qj, j≠i, and between qi and qi+1, then we insert 
one more boundary point qk between qi and qi+1 with its 
rotated normal in the list of points Q. 

4. Separate the list Q into two (or more, if the first MAT 
points we find is a branch point) lists via the MAT point q 
and its footpoints q2 and qk.  

5. Push all of the lists into a queue. 

6. If the queue is empty, go to 9. Otherwise, pop a list from 
queue. March along the MAT curve via the lists of points 
and associated MAT curve. Mark the boundary points after 
visit the boundary point. 

7. If the MAT curve hit a branch point, subdivide the domain 
(point list) into three or more subdomains (point lists). Go to 
5.  

8. If the MAT curve hit an end point, go to 6.  

9. Stop.  

After the above algorithm, every rotated normal is bounded 
by an MAT point. The trimmed cyclographic maps is also 
easy to display, as shown in Figure 3c. Notice that the 
trimmed cyclographic maps produce extra boundary points 
in the third step in Algorithm 2, as we can see in the figure. 
Notice also that if we modify the algorithm, so that the 
rotated normal is a line instead of vector, and trim the 
rotated normal on both side, we can produce not only the 
internal MAT but also external MAT. 

We answer the following questions steps by steps: 

1. How to find the associated MAT and other footpoints 
(Step 3)? 

Let q2 as the starting boundary point, We would like to find 
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its associated MAT point q and other footpoints. Consider 
the rotated normal of q2 and other rotated nromals. Two 
consequence points with its rotated normal produce a 
bilinear surface. Because this two points are closed to each 
other, we can use a plane P to approximate the bilinear 
surface. If the rotated normal of q2 intersect the plane P, then 
there is a MAT point on the plane P, we would like to find 
the intersection of the rotated normal of q2 and the plane P. 
Sometimes there are more one such plane, we would like to 
find the plane whose  intersection point is near than others. 
That is, its z-value is smaller. 

The intersection points are found by: 

1. Do coordinated transformation so that q2 is the original, 
Tangent of q2(T(q2)) is along the X-axis, and the rotated 
normal of q2(RN(q2)) is along the Y-axis. Now the 
original curve on XY plane becomes on the Y=-Z plane.  

2. Find the intersection points of other ordered rotated 
normals with the new XY plane, call them ri. If the sign 
of the x-coordinates of the intersection points varies from 
the point qi to qi+1, then the MAT points must bounded by 
the plane with RN(qi), RN(qi+1) as its two boundaries. 
The points ri, and ri+1 are two intersection points of 
RN(qi), RN(qi+1) with the new XY-plane. 

3. Find the z-value of the MAT points by calculating the 
intersection point of the line segment 1+iirr  and 
theY-axis. After that, we can find a intermediate point 
between qi and qi+1, call it q′ i, by linear interpolation.   

Let’s introduce the idea more details, consider the point q2 
as one of the points in an ellipse, as shown in Figure4. The 
point q2 has local maximal curvature (Figure 4a), local 
minimal curvature (Figure 4c) or monotone increasing 
curvature from one side and monotone decreasing curvature 
from the other side (Figure 4c). After coordinated 
transformation, q2 ,T(q2) and RN(q2) become the origin, the 
X-axis and the Y-axis. The rotated normal vectors of other 
point of the ellipse intersects the new XY-plane are display 
in Figure 4d, Figure 4e, and Figure 4f, respectively. Notice 
that in Figure 4a and Figure 4d, we find an end MAT point 
because we cannot find any other rotated normal vectors 
intersect the XY-plane with smaller z-value. In Figure 4b, 
Figure 4c, Figure 4e and Figure 4f, an normal MAT point is 
found.  

2. How to march along the MAT curves (Step 6)? 

After we subdivide the domain, we have subdomains 
represented by lists of boundary points with its rotated 
normal vectors. Assume the half domain are represented by 
points [pi], and the first MAT point q and it footpoints are p1 
and pn, we would like to march along the MAT curves. 
Consider the neighbor points of p1 and pn, there are three 
case it may happen (Figure 5) 

• RN(p2) passing through the plane bounded by RN(pn) 
and RN(pn-1) (Figure 5a). 

• RN(pn-1) passing through the plane bounded by RN(p1) 
and RN(p2) (Figure 5b). 

• RN(p2) intersects RN(pn-1) (Figure 5c). 

       
               (a)                (b)                           (c) 

   

             (d)                     (e)                              (f) 
Figure 4 Finding the MAT point associated with a boundary 
point of an ellipse (a) maximal curvature point (b) 
intersection points (c) minimal curvature point (d) 
intersection points (e) normal point (f) intersection points 
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          (a)                           (b)                            (c) 

Figure 5 Marching along the MAT curve 

 

We can find a new MAT point q′, new boundary points p′n-1 
between pn-1 and pn in the first case. After that, we mark the 
boundary points p2 and p′n-1, and continue the steps of 
marching from the new MAT point q′ and its footpoints p2 
and pn-1. We can process similarly for the second case. In the 
third case, we can find the intersection points q′ as the MAT 
points, mark the boundary point p2 and pn-1, and continue the 
marching start from the MAT points q′ with its footpoints p2 
and pn-1.  

3. How to judge the MAT curve hit the branch points (Step 
7)? 

After a few step of marching, we can do the step 1 again, and 
find all of the other points intersected by the remainder 
ordered rotated normal, generate the line segment connected 
the points. If there is a line segment intersect the Y-axis at q′, 
and the z-value of q′ is less than the z-value of current MAT 
point, than we know we have been go too far for the MAT 
curve. In this case, we have to go back a few steps, unmark 
the boundary points and MAT points, find the MAT branch 
point, and subdivide the subdomain.  

4. How to find the MAT branch points? 
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In the previous question, we find the MAT curve goes too far, 
we will do backtracking. For each backtracking, we do the 
coordinate transformation and find all the intersection point 
by the rotated normal vectors of the point in the list and the 
XY-plane. In the process, we may find the Y-axis intersect 
two or more bilinear surface generated by consequence 
rotated normal of boundary points. If the minimum two 
points whose z-value is near (say its distance less than or 
equal to a epsilon value)(shown in Figure 6(a)(b)), the 
branch points can be bounded by the intersection of three 
bilinear surface, one bilinear is bounded by RN(pi),RN(pi+1), 
another bilinear surface is bounded by RN(pj),RN(pj+1). The 
third bilinear surface may be bounded by RN(p1), RN(p2) or 
RN(p2), RN(p3), assume the current boundary point we are 
working with is p2. 

X

Y

ε
ri

ri+1rj+1

rj

              p1 p2

pj+1

pj RN(p)

pi+1

pi

 

                  (a)                                               (b)  

Figure 6 Extract the branch from the intersection of three 
bilinear surface 

 

5. How to terminate at the end point (step 8)? 

We may check whether the list of points are marked or not. 
If all of the boundary points in the subdomain are marked, 
then we are probably near the end point. We may chcek the 
distances between the unmark point and its two neighbers, if 
the distance is less than ε, then we quit the process by 
connect the unmark points with the final MAT point. 
Otherwise, we insert more boundary between the unmark 
point and its two neighbors, and continue to march along the 
MAT curve.  

We have implemented the algorithms in PC using Visual 
C++ and OpenGl on Windows 98 and Windows NT. There 
are about 1,000 lines for the coding of GUI and another 
1,000 lines for the ideas of the algorithms. 

4. Application of the Cyclographic Maps 

We introduce the applications of the Cyclographic Maps in 
this section. We introduce its relationship with offset curve 
and with MAT in the first subsection. In the second 
subsection, we modify the algorithm a little bit on the 
convex and concave vertices, so that the algorithm extend to 
handle the curve with singular points. The example for the 
boundary curve which is closed curve with hole is shown in 
the third subsection. The fourth subsection introduce the 
idea that convert the MAT curve back to the origin boundary 
curve. The final subsection introduce the way we can use 
cyclographic maps to do corner blending on singular points 
of curves.  
4.1 The relationship between cyclographics and offsets, 
MAT, and blending curve. 

We summerize the relationship between cyclographic maps 

with offset curves, medial axis transform and blending in 
this section by the examples shown below.  

Using a Bezier curve generated by the control points (-2.0, 
1.0, 0.0),(-1.5, -2.5, 0.0),(1.5, -2.5, 0.0) and (2.0, 3.0, 0.0) as 
the oriented curve α we consider(shown in Figure 7a), we 
produce its cyclographic map (Figure 7b), trimmed 
cyclographic map (Figure 7c), and left local offsets Offl(α,r) 
(Figure 7d); left global offsets Offg(α,r) (Figure 7e); left 
medial axis transform MAT+(α)(Figure 7f). 

 
           (a)                    (b)                              (c) 

 

          (d)                     (e)                           (f) 

Figure 7 (a) The oriented curve (b) The cyclographic map (c) 
The trimmed cyclographic map (d) left local r-offset curves 
(e) left global r-offset curves (f) left MAT 

In the mean time, we give the weight function as ω(t)=(1 - 
t)* 30

o
+t*60

 o
, where ω(t) is the angle between the rotated 

normal and the z=0 plane, and produce the weighted 
cyclographic map (Figure 8a) and trimmed weighted 
cyclographic map (Figure 8b), local weighted r-offset curve 
( Figure 8c), global weighted r-offset curve (Figure 8d) and 
weighted medial axis transform (Figure 8e). 

 

     (a)                          (b)                              (c) 

 
                         (d)                               (e) 

Figure 8 (a) The weighted cyclographic maps (b) the 
trimmed weighted cyclographic maps (c) left weighted local 
r-offset curves (d) left weighted global r-offset curves (e) 
left weighted medial axis transform 
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4.2 Cyclographic Maps at the concave/convex vertex 

The cyclographic maps at the concave/convex vertex can be 
trivially produced. We can produce partial cone whose apex 
is on the convex/concave vertex from the left rotated normal 
to the right rotated normal. It is a little complex for the 
weighted cyclographic maps. We have to blend the normal 
from left rotated normal to the right rotated normal, which 
means we have to produce a smooth “cone-like” surface to 
connect two surface produce by two curve to and from the 
vertex. There are various ways to do the blending, and we 
select the simply one. That is, we try to do the linear 
interpolation with the weighted function between the left 
rotated normal and the right rotated normal. The 
cyclographic map for convex vertex can be observed from 
Figure 8 to Figure 9, start from the plane z=r to z=r′, where 
r′>r and r is the radius of the osculating circle in the point 
which has local maximal curvature [23]. The cyclograhpic 
map for the concave vertex is shown in Figure 9 (a) to (e). 
This concave vertex is the intersection point of two curve 
generated by two Bezier Curve with control points at (-3.5, 
-3.0, 0.0),( -3.0, -2.0, 0.0),( -2.0, 0.0, 0.0),( -1.0, 0.5, 0.0) 
and (-1.0, 0.5, 0.0),( 0.0, 0.0, 0.0),( 1.0, -2.0, 0.0),( 1.5, -3.0, 
0.0) respectively. For the weighted cyclographic map, the 
weighted function for the first and second curves are 
ω(t)=(1 - t)* 30o+t*40 o and ω(t)=(1 - t)* 50o+t*70 o 
respectively. The (weighted) cyclographic map, (weighted) 
local offset curve and (weighted) global offset curve, 
(weighted) medial axis transform are displayed. 

 

             (a)                           (b)                          (c) 

 

                               (d)                            (e) 

Figure 9 (a) The concave vertex of an oriented curve (b) 
Concave vertex in Cyclographic map (c) local (global) 
offset (d) concave vertex in Weighted cyclographic maps (e) 
weighted local (global) offset in the concave vertex. 

 

4.3 Cyclograhpic Maps for closed simple curve 

Consider the cyclographic maps for the closed simple curve. 
The left side of the closed simple curve is bounded, so the 
medial axis transform is connected with or without 
loops[28]. But the weighted medial axis transform for 
closed region is not necessary connected without loop. We 
may use the same algorithm we mentioned before for 
weighted medial axis transform, the only difference is the 
part we calculated at the rotated normal of the boundary 

points. The output cyclographic maps for a domain with 
loop is displayed in Figure 10. 

       
Figure 10 The cyclographic map for a closed domain with 
loop (a) boundary curve with MAT (b) Cyclographic Map 

 

4.4 From MAT Curves to its original closed boundary 
curve 

As mention in the first section, the footpoint of the MAT 
point may be found from its MAT curve. We may find all of 
the boundary points via the MAT curve and generated the 
original closed boundary curve. We use a queue and a stack 
to store two parts of the boundary curves. Notice that for the 
end point on the MAT curve, we have to produce the 
(weighted) partial cone to connect two boundary points, 
after connect the boundary points, a list of points has to pop 
from the stack so that the boundary points are in order. The 
weighted partial cone is produced by linear interpolation by 
the angle of the cone, and angle between the line connect the 
MA point to its two boundary points.  

4.5 Blending at the vertex 

The blending at the concave/convex vertex fix radius 
blending is produced by truncating the medial axis 
transform in the cyclographic map below z=r plane, and 
generated the region of the truncated medial axis transform 
(as Figure 11) The input boundary curve is generated by two 
Bezier  curves whose  control points are  (-1.5,1.0,0.0),  
(-1.5,0.5,0.0),(-1.0,-1.5,0.0), (0.0,-2.0,0.0) and (0.0,-2.0,0.0), 
(1.0,-1.5,0.0),  (1.5,0.5,0.0),  (1.5,1.0,0.0) respectively. 
Notice that in this process, we generated a cone for the end 
points (cut by z=r plane), so that when we generate the 
region for the truncated medial axis transform, the corner is 
smooth. The blending at the concave vertex is similar. 
Notice that process is only work on vertices. It is not work 
for the case that z=r cut the medial axis transform in the 
cyclographic map at a branch without any end point.  

The various radius blending is produced by truncating the 
weighted medial axis transform in the weighted 
cyclographic map below z=r plane, and generated the region 
of the truncated medial axis transform (as Figure 12). The 
control points for the boundary curve is the same as the on in 
Figure 11, except the weighted function for the first curve is 
ω(t)=(1 - t)*45o+t*50 o and for the second curve is ω(t)=(1 - 
t)* 55o+t*60 o. 

 

       (a)                              (b)                        (c)    
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         (d)                                                 (e) 

Figure 11 The blending at the convex vertex(a) Original 
curve  (b) cyclographic map (c) cut by z=r  (d) produce the 
cone (e) back to z=0 plane 

 

  
(a) Original curve   (b) blending at the vertex 

Figure 12 The varius radius blending 
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