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ABSTRACT

This paper presents two families of new functions for
implicit surface modeling. The first family is
superhyperbolic distance functions that can produce
smooth  deformable shapes bounded by some
superhyperbolic surfaces, folded planes, square planes, or
planes. The second family is spherical cross product
functions that can generate an implicit sweep object. The
latter can be viewed as an extended model to superquadrics,
since not only parametric curves but also any implicit
curve defined using a ray linear function can be used to
perform a spherical cross product. Hence, it can generate a
greater variety of shapes than superquadrics. Both
functions have a number of advantages. They can be (1)
parameterized, (2) further constructed to generate a
complex object via set operations, (3) used as a field
function for soft objects, and (4) applied to Blinn' s blobby
model and F-rep. Besides, some theorems are proposed to
help users identify whether a function or a spherical cross
product function is suitable as afield function.

Key words: Implicit surfaces; Soft objects; Superquadrics;
Field functions; Sweep objects

1. INTRODUCTION

In implicit surface modeling, a complex object is defined
by the blending or the set operations of some basic
modeling primitives, such as superellipsoids, cylinders,
and spheres, etc. To make implicit surface modeling more
powerful, it is necessary to make the shapes in the basic
modeling primitives more diverse. For this reason, a
variety of basic modeling primitives have been proposed in
the literatures, such as superquadrics [1], superquadric
distance metrics [2], hyperquadrics [3], star-solid [4],
generalized distance functions [5], and L, distance metrics
[6, 9]. Most of their shapes are superelliptic, bounded by a
set of symmetrical and paralel plane-pairs via an
intersection approximation operation [7].

To make these basic modeling primitive shapes even more

diverse, we propose two new families of functions in this
paper. The first family is superhyperbolic distance
functions. Their shapes are bounded by a set of unbounded

building blocks including superhyperbolic surface patches,
folded planes, sgquare planes, or parallel planes, via an
intersection approximation operation. These functions can
produce superelliptic, superhyperbolic, polyhedral, star-
shaped, or rose-shaped objects.

The second family is spherical cross product functions that
can generate an implicit sweep object and can be viewed as
an extended model to Barrs superquadrics [1].
Superquadrics are created by performing spherical cross
product on only two kinds of parametrically defined curves,
superellipses and  superhyperbolas. Instead  of
parametrically defined curves, any implicit curve defined
using a 2D ray-linear function can be applied to the
spherical cross product function for generating an implicit
sweep object. For instance, we applied 2D superhyperbolic
distance functions into the spherical cross product function,
and developed a new family of functions, hyper-
superquadrics.

Since hyper-superquadrics and superhyperbolic distance
functions are inside-outside functions, they can be further
constructed to generate an even more complex object via
set operations. In addition, a user is alowed to adjust their
parameter values to smoothly deform their shapes.

Since a field function must provide a means to calculate
the influential scope [8], some theorems are proposed to
help users identify whether a function is suitable as afield
function, and to help users understand how to make the
spherical cross product function suitable as afield function.
We verify that superhyperbolic distance functions and
hyper-superquadrics are suitable as field functions through
these theorems.

To increase the rendering efficiency, we propose methods
to parameterize superhyperbolic distance functions,
spherical cross product functions, and hyper-superquadrics.
In other words, the functions mentioned above have dual
representations, in both implicit and parametric forms.

The remainder of this paper is organized as follows. Some
basic knowledge about implicit surface modeling and soft
objects is introduced in Section 2. Superhyperbolic
distance functions and some theorems about ray-linear
functions are discussed in Section 3. Section 4 presents
spherical cross product functions, some related theorems,
and the development of hyper-superquadrics. Conclusions
are given in Section 5.



1.2 Notations

Before going to the next section, some notations are given
asfollows:

X : Positionsin 2D or 3D space.

V,U: Vectors which are interchangeable with v, U .
R":{x3 0, xI R}.

f ()2) :Real-valued functions.

f1: Theinverseof f(X).

f o g The composition of functions f and g.
A, - V: Inner product of A, and V.

2. PRELIMINARIES

An implicit surface can be defined as a point set
P:{(x,y,z)| f(x,y,2)=c,(xYy,2)1 R3},where f:R®R
is called the defining function for the surface P, and
cl R™. The defining function f(x,y,z) can generate a
scalar field for every position p =(x,y,z) in 3D space.

The implicit surface P is an isosurface of the defining
function f .

As stated in [6, 8, 9, 10], we know that field functions for
soft objects are one kind of defining functions for implicit

surfaces. Asillustrated in Figure 1, afield function can be
defined as

Influential scope
i

=

Figure 1. Influential scope of afield function.
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where f is called the potential function., d(x,y,z) is

called the distance function defined by an influential scope,
called the front surface in [10], r=(x*+y?+2z%)%, and

R= ||6i | . Generally speaking, ainfluential scope must be a
closed, continuous and star-shaped surface. The definition
of a star-shaped surface is a surface that has at most one
intersecting point with any vector from the origin. Since
F(z,y,2 isdecreasing from 1 to O, primitive soft objects
F, (x, y,2) =0.5 can be smoothly blended by calculating the

isosurface a4 F(xY,2=05 without complex

computations.

Many distance or defining functions have been developed
to generate basic modeling primitives. They include:

(). Lpdistance metrics:
DL(x,Y,2) = ((x/ A™ +|y/B|™ +|z/C|™ /™. (3)
(2). Superquadrics distance metrics:

Ds (%, Y, 2 = ((x/ A™ +|y/ B™)™™ +|z/C|™)V "™ (4)

(3). Generalized distance functions [5]:
r —

Dy (x.y,2)= (& I7i - [x %, 2] . )
| =

For the ease of reading, “ distance function” is used as the

abbreviation for “distance function for soft object field
function” in the following sections.

3. SUPERHYPERBOLIC DISTANCE FUNCTIONS

In contrast to the defining functions mentioned in Egs. (3),
(4), and (5), whose shapes are bounded by a set of
symmetrical and parallel planes, this section introduces
superhyperbolic distance functions, whose shapes are
bounded by some superhyperbolic surface-pairs.

3.1 Superhyperbolic surface stripe functions

Let Vv and G be unit vectors in R®, V-U=0, A,
B>0, and m>01 R. A superhyperbolic surface stripe
function, denoted by h()z): R®* ® R", canbewritten as

i " " 1
(m(X)™ - (b(X)™ )
fo it (m(X)™<(b(X)™,

m(X) =|>€ : \7|/A,b(>2)=|>2 : G|/B.

h(X) = i

P

©®)

Geometrically, the shape of the inequality h()A() £c isa
stripe bounded by two superhyperbolic , unbounded, and
symmetrical surface branches h()A() =c. V and U

control the orientation of the surface branches. Figure 2
illustrates some possible 2D-shape changes when the
parameter valuesin h(X) £ ¢ are changed as follows:

(). When m=1and c£1, it defines a stripe bounded
by two folded planes, both of which pass through “points f,
e andg” and“pointsf ,e ,andg ", respectively.

(2. When m>1 and c£1, it defines a stripe bounded
by two superhyperbolic surface branches, both of which
pass through “ points a, e, and b’ or “pointsd, é,and b ",
respectively.

(3). When m=¥ and c£1, it defines a stripe bounded

by two square planes, both of which pass through*“ points a,
c, ¢ d and b” and “points &, ¢, €, d, and B ",
respectively.

(4). When B=|oi|=¥ and c£1, it defines a stripe



bounded by two near parallel planes, m()Z) =1.
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Figure 2. The shapes of the 2D superhyperbolic
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surface stripe functions. A :||a9|| and B :||<§ .

3.2 Basic superhyperbolic distance functions

Le V be a set of wunit vector pairs, V =
{(v,,G0,) |V, -G, =0,V,,0,1 R®,a=12--,p}, X=
(x,y,2) beapositionin 3D space, and n>01 R. Then

every vector pair (V,,t,) TV can be used to define a

superhyperbolic surface stripe function ha()A() , as in Eq
(6). One aso can use al of them to define a basic
superhyperbolic distance function, denoted by H(X), as

V = {3 Up), (v, U5) 0% (VU )} 0
H(X) = (& b, () ).

From Ricci’ s intersection approximation operation [7], the
shape of the inequality H(X)£c is bounded by the
intersecting part of all of the superhyperbolic surface strips
h,(X)Ec,a=12---,p. In Figure 3, we used two
different h()A() to define a basic superhyperbolic distance

function H()A(). Let H()A():c, it can be a closed or
non-closed surface as shown in Figure 3.

S
TN o\

(a) closed (b) not closed

Figure 3. The shapes of the basic superhyperbolic
distance functions.

If the surface, H()Z) =c, isclosed, thenit can produce an

object bounded by a set of superhyperbolic surfaces, folded
planes, square planes, or parallel planes.

3.3 Basic superhyperbolic distance functions for soft

objects

In fact, not every closed implicit surface is suitable as the

influential scope of a field function. As stated in [9], it
depends on the complexity of the r/R calculation in Eq.
(2). In order to help users identify whether a function is
suitable as a distance function for point source field
functions without worrying about the r/R calculation,

some theorems are proposed. Through these theorems,
superhyperbolic distance functions are proved to be
distance functions for soft objects.

3.3.1 Ray-linear function versus distance function

Definition 3.1 Non-negative ray-linear function [5]

“Let V be a vector space. Then a function f:V® R*

is called non-negative ray-linear, if it satisfies the ray-
linear property f(av)=af(v) for any VI V and

al R

For the ease of reading, “ray-linear function” is used to
stand for “ non-negative ray-linear function” .

Theorem 3.2
“Let. f(X):RE®R*  be
f ()2) =c, ¢l R" beaclosed and continuous surface, then

ray-linear and

f()Z) =r / R isadistance function for a point sourcefield
function when the surface f()A()Zl is used as the
influential scope.”

From this theorem, one can directly use any ray-linear
function as a distance function and need not to worry about
the d =r /R caculation and check if the influential scope
is star-shaped. Hence, Egs. (3), (4), and (5) are all distance
functions because they are ray-linear.

3.3.2 Intersection of ray-linear functions

Performing an intersection operation on objects is very
important to implicit surface modeling. So the following
theorem is used to help identify whether the intersection
approximation of ray-linear functionsisray-linear and is a
distance function for soft objects.

Theorem 3.3

“Let f, (X):R*® R*,i=123,...,p, be ray-linear, then
(IR @R, () = (4 (1,4 )" isa ray
linear function and alsoisa dils;:t;nce function.”

3.3.3 Basic superhyperbolic distance functions for soft
objects

Because every ha()A() in H()A() is ray-linear, from
Theorem 3.2 and 3.3 the basic superhyperbolic distance
function H()A() is adistance function for soft object if the
surface (H()A())n =lor H()Z) =1 isclosed and used as
the influential scope. Generally speaking, if the condition:
“for any XT R®, $ h(X) in H(X) such that



(M, (X)™ - (0,(X)™) >0 * is satisfied, then
H()Z):l is closed because there exists at least one

intersecting point between ha()A() =1 and the vector X.

3.4. Moadified superhyperbolic distance functions

We also observed that the basic superhyperbolic distance
function H(X) in Eqg. (7) has another modified form,

denoted by M p()A() , called the modified superhyperbolic
distance function, which can be written as

M (0 = (M, 2™+l )2y @®
Ml(x\):hl(k)- Ny, N, Ny >0l R.

M p()2) is also a distance function because M ID()2) is
ray-linear.

Similar to H()A():c, geometrically Mp()A() =c can
produce a surface bounded by the intersecting part of all of
the h,(X)£c, pl 12,---,p in M(X). The shape of
M, (X) =c is constructed from a set of superhyperbolic
surfaces, parallel planes, folded planes, or square planes.
The major difference between H(X) and Mp(f() is that

Mp()Z) has more controlling parameters, from n, to

Np.1, to generate more deformed shapes than H()A(),

which has only one parameter n, asin Eq. (7).

Here, some special shapesof M p(>A<) = 0.5 defined using
the vector set D= {d;|d, =(v[xy,.2Z] A ,m,
ulxy,z] ,B,n_),i=12..,p} ae illustrated, where
every d. T D generates an h()A(), and n, is ignored.
Lettheset D for MS()Z) be given as

{([1,0,0], 25,m,[0,1,0], 25,1), ([0,1,0], 25, m,,[1,0,0],
251 nl)l ([J/'\IE,]/'\IE,O], 251 m3 ![' ]/'\IE,]/'\IE,O], 25* nz)’ (['
]/’JE!]/"IE!O]y 251 m41[]/"/§1]/"/§10]1 251 n3)1 ([11010]1 25131
[00,0], 25,n,) }, then some special shapes by changing
the parameter m and n, values in MS()A() ae
demonstrated as follows:

(1. Let m =2i=12345,
n, =n, =N, vary from 100, 16, 6, 2, 1, to 0.7, then it
can generate objects from the top left to the bottom right in
Figure 4(a). These objects are bounded by superhyperbolic
surface-pairs.

(2. Let m=1i=1,2345, and n, =1, and let
n, =n, =ng vary from 100, 8, 2, 1.5, 1, to 0.7, then it can
generate objects from the top left to the bottom right in
Figure 4(b). These objects are bounded by folded plane-

and n,=2, and let

pairs. Thus, we know that M p()A() can produce star-
shaped, rose-shaped, or polyhedral objects.

®00
o n »

Figure 4(&. m =2,i=12345, n,=2, and
n, =n, =n; vary from 100, 16, 6, 2, 1, t0 0.7.
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Figure 4(b). m =1i=12345, n, =1, and
n, =n, =ng vary from100, 8, 2, 1.5, 1,t0 0.7.

3.5 Parameterization of superhyperbolic distance

functions

As stated in [5], the generation of parametrically defined
shapes is fast since it is simply a polynomial computation.
The parametric formulas for all of the functions introduced
in Subsections 3.1-2, 3.4 now is presented. As stated by
Akleman [5], a surface defined using a ray-linear function
can be parameterized as

V(@a,b,R) =g@,b)R+6, ©)

where g(a,b) is an arbitrary unit vector staring from 06

to a point on the sphere x*+y?+z?=1. R is the
distance from 6 to the intersecting point between the
vector g(@,b) and the parameterized surface. a and
bi [0,1] are the parameters in the sphere-coordinate.

From thisidea, we determined that any star-shaped surface,

f(X)=c or (f(X))"=c, where f(X) is ray-linear,
can be parameterized in the same way, because R can be
solved by substituting Rg(a, b) into the parameterized
equation. For instance, the surface H()A() =c in Eq. (7)
can be parameterized, denoted by V, (a, b), asfollows:

H(X)=c P H(Rg@,b))=c FromEq. (9)

P R=c/H(g(@,b)), (20)
éos@pa)cospb - p/ 2y

whereg(@,b) = g%inepa)cospb -p/2 t’l
g sinpb-p/2) g

Substituting Eq. (10) into Eq. (9) yields



V, (@, b) = (c/H (g, b)))g(ab)+6 .

Similarly, the superhyperbolic surface (H()A())n =cC can be
denoted by Vn@,b), as
V,.@,b)=(""/H(g@, b))g@,b)+6.

parameterized,

Thus, the surfaces defined using modified superhyperbolic

functions in Eq. (8) or superhyperbolic surface stripe
functionsin Eg. (6) can be parameterized in the same way.

4. SPHERICAL CROSS PRODUCT FUNCTIONS
AND HYPER-SUPERQUADRICS

As stated in [1], superquadrics are defined by performing
spherical cross product on two parametrically defined
curves in 2D space. The spherical cross product V. (a, b)

=V, (b)AV, (@) of two curves, V, (b) and V, @),
can produce asurface V (a, b) defined as

ét, (a)ts(b)u
. é u
Ve(@.,b) =Vy (b)AVy @) = gty @)ts(b)g

&.(b) 4
é.(b)u dé, (@u
where Vv(b):%s((biéand Vi, (a):gt ((:)); may be
z y u

superellipses and superhyperbol as.

In fact, the spherical cross product can generate a variety
of shapes, if curves other than superellipses and
superhyperbolas are available. We therefore extend that
idea to define a spherical cross product function based on
two 2D functions instead of two parametrically defined
curves. Not only superellipses and superhyperbolas,
adopted by superquadrics, but also any other ray-linear
functions can be applied into the spherical cross product
function to generate a surface. Therefore, we developed a
new family of functions, called hyper-superquadrics.

4.1 Spherical cross product functions

A spherical cross product function F(x,y,2):RE® R is
written as

F(XY,2) =V(s,2)AH(X,y) =V(H(x,Y),2) ,(11a)
where H(X,y) isray-linear.

Simialr to superquadrics, the spherical cross product surface
F(X, Y, Z) = C can be parameterized as

&, (@)ts(b)u
Ve (@,b) =V (0)AV, (a) = &, (a)t(b)g - (11b)
g.(b) 4§
é.(b)u d,@u
where  V,(b)=5g° 7 and V, @) =¢ ¥
T &, (b)a HET R @)

bl (-p/2p/2),al [0,2p), are the parametric formulas
of V(s,z)=c and H(xYy) =1, respectively.

The spherical cross product function is based on two
functions described below:

(1). Contour function H(x,y):R*® R":

The equation H(x,y) =1 , called a contour curve, must

be a continuous and closed curve centered at (0,0) in the x-
y plane. In addition, the contour function H(X,y) has to

be ray-linear. The reasons will be explained in the next
paragraph.

(2. Modulating function V(s,2) :R* ® R :

The equation V(s,z) = ¢, called a modulating curve, must
be a continuous curve in the x-z plane. Note that the
variable S isviewed asthe x-coordinate in the x-z plane.

Geometrically, the shape of the spherical cross product
surface V(s,z)A H(x,y) =c is like the contour curve
H(x,y) =1 scaled (by s,) and translated (by [0,0,z,])
simultaneously by every point (sa, za), s, % 0, on the

modulating curve V(s,z)=c. Since H(xy)T R, only

the point (sa,za)T V() ,s, ? 0 can generate a curve

H(x,y)=s,,Z=Z, in 3D space (see Figure 5). In other
words, V(s,z) A H(x,y) =c can generate a sweep object.

Z arvelHxy)=08ad z
t{g L.
Eon Y -
:‘: 5
o /{' T
T | IN 7 >
—\ -
arve2Hy)=ladz0
V(s
@ (b) f(x,y,2)=c

Figure 5. (@) The point M(0.8,6) on V(s,2 =1
generatescurve-1 H(x,y) =0.8,z =6, and the point
N@LO) on V(s,2=1 (generates curve-2
H(x,y) =0.8,z=0. (b) Illustration of the real shape
of V(s,2A H(x,y)=1.

Making the profile on the x-z plane of the surface
V(s,2)AH(x,y) =c similar to the shape of the
modulating curve V(s,z)=c important to

geometric modeling. To attain this, the contour function
H (X, y) must be aray-linear function. The reasons are:

is very

(1). If H(xy) isray-linear, thenthecurve H(x,y)=s
islikethe contour curve H(x,y) =1 scaled linearly by the
value S from the modulating curve V(s,z) =c.

(2. The parametric formula H () of H(x,y)=s is



the parametric formula H (1) of H(x,y) =1 multiplied
by S, that satisfies the parametric formula defined in Eq.
(11b).

These reasons lead to the following Theorem 4.1.

Theorem 4.1

“H(x,y):R* ® R* isaray-linear function if and only if
H (9 =sH @) forany si R*.”

The spherical cross product function V(s,z) A H(x,y)
can be more powerful, if it is an inside-outside function
V(s,2)AH(xY): R®®® R". Thus, V(s,2)AH(X,Y)
=c can be further constructed to generate a complex
object via set operations [7]. To attain this aim, one can let
V(s,z) map R? to R" and let curve V(s,z) =c be
closed on the positive side of the x-z plane.

To conveniently control the size of the surface
V(s,z) A H(x,y) =c, weintroduce three alternatives:

(). Alternative 1:

Let the size of the contour curve H(x,y)=1 and the
modulating curve V(s,z)=c both be about unit

hypercircles individually. The spherical cross product
surface V(s,z) A H(x,y) =c is scaled using an arbitrary

vector [a,,by,c,], yielding the following function by
substituting [x/ay,y/by,z/c,] into Eq. (11a):

F(xy,2)=V(s,7/c,)A H(x/a,,y/by), (12

where [a,,by,C,] is used to control the length along the
x-axis, y-axis, and z-axis, respectively. In fact, Eq. (12) is
equivalent to scaling the modulating curve by [1,¢,] and
to scaling the contour curve by [a,,b,] simultaneously.

(2). Alternative 2:
Let the size of the contour curve H(X,y) =1 be about a

unit hypercircle, (x" +y")¥" =1, and the size of the
modulating curve V(s,z) =c be viewed as the exact size

of the object's profile on the x-z plane. Its shape is then
similar to a rotational sweep object generated using
V(s,z) = ¢ asthe profile to rotate around the z-axis along

thecurve H(x,y)=1.

(3). Alternative 3:

Let the size of the contour curve H(Xx,y) =1 be the exact

size of the object's profile on the x-y plane, and let the
height of the modulating curve V(s,z) =c be the exact

height of the object. To do this, the s-axis length of
V(s,z) = ¢ must be normalized or scaled to be 1. If the s-

axislength of V(s,z) =c is n>01 R, then the s-axis of
V(s,z) = ¢ must be scaled by 1/n, in order to make the

s-axislength 1. Similar to Eq. (12), it thus yields

F(x,y,2)=V(ns,z) A H(x,y)=V(nH (x,y), )

=V(H(nx,ny),z) =V (s,z)A H(nx,ny). (13

From the discussions above, we conclude that any ray-
linear function can be used as the contour function and the
modulating function in Eq. (11a), (12), or (13), to produce
a 3D closed surface. Generally speaking, not only
superellipses and superhyperbolas, which are adopted by
superquadrics, but also D, (x,y) inEq. (3), Dg(x ) in
Eg. (5), and superhyperbolic distance functions H (x, y)
in Eq. (7) and M ,(x,y) in Eq. (8) can be used as the
contour and modulating functions since they are all ray-
linear. Hence, the spherical cross product function is the
generalized form of superquadrics. Since the modulating
function does not have to be ray-linear, (D, (X, V)",
(Dg ()", (My(x,y)", and 2D hyper-quadrics [3]

also can be used as a modul ating function because they can
produce aclosed curve.

4.2 Hyper-superquadrics

As mentioned in Section 4.1, the 2D Modified
superhyperbolic distance functions, Mp(>2):R2 ® R*

in Eqg. (8), can be used as the contour and the modulating
functions in Egs. (1l1a), (12), and (13), respectively.
Consequently, a new family of functions called hyper-
superquadrics is developed. They can be written as
follows:

F(Xy,2)=M (s 2)A M ,(xy), (14a)
F(x,y,2) =M ,(s,z/c,)AM ,(x/a,,y/b,), (14b)
F(xY,2)=M,(s,2)A M ,(nx,ny) . (14c)

4,21 Hyper-superellipsoids

If ba()A() in every ha()z),a:lzm,p,of Mp()A() in

Eq. (6), are omitted from Eqgs. (14a), (14b), and (14c), then
it generates a family of functions called hyper-

superellipsoids. Thus ha()ﬂ(),a:lzm, p can be written
as h (X)=m,(X)=|X - V,|/A.

Then the shapes M (X, y)=1 and M, (s,2) =c both are

constructed from some parallel line-pairs nL()A(). So

hyper-superellipsoids are hyper-superelliptic and have
smoothing polyhedral profilesin the x-y or the x-z planes.
Some hyper-superellipsoids are demonstrated in Figure 6.
Let the set D of M, (x,y) be {([1,0],1,1,[0,0],1,1),

([04],1,3,[00,1, ny), ([942,9+2].1L [00,1,Nn,), (-
142,9421,1.1,[0,0],1, ny)}, and the set D of M ,(s,2)
be {([1,0],1,1,[0,0],1,1), ([0,1],1,1,[0,0],1,Nn)), ([]/1/5,
]/—\IE],l,l,[0,0],l, n2 )1 ([' ]/ﬁ,]/ﬁ],l,l,[0,0],l, n3)}



From the top left to the bottom right in Figure 6, the first
four  surfaces show the shape changes of
M, (s, z/30)A Mp(>g/30,y/30) =05 as n,i= 123
in M,(s,2 aresetto 100 and n,,i =123 in M,(X,Y)

vary from 100,10,6, to 2; the last two surfaces show the
shape changes of M, (s,2/30) AM, (30, y/30) = 0.5

as n;,i=123 inM,(s,2vay from 6 to 2 and
n,i=123in M,(x y) aresetto6.
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Figure 6. Hyper-superellipsoids.

4.2.2 Hyper-superhyperboloids

If every h,(X),a=12---,p in M,(X), in Egs. (14a),

(14b), and (14c), is defined as

~ ~ /
(maxy™ - pa(xy™f'"
in Eqg. (6), then it generates hyper-superhyperboloids. As
mentioned in Subsection 3.1, every h(X) =c can produce
a unbounded superhyperbolic curve, folded lines, square
lines, or paralel lines. Users can view every h(X)
M p()Z) as a building block to construct their contour and

modulating curves freely. This characteristic is very useful,
especially when it isimplemented in interactive graphics.

Figure 7(a) shows some special contour and modulating
curves defined using m ,(X) , where folded-lines can be

defined using h()A() and straight lines can be defined

using m()A(). They can be further deformed by adjusting
the values of parameters m and n in M ,(X).
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Figure 7(a). Contour Curves or modulating curves,
each of which can be defined using M ,(X) .
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Figure 7(b) shows the objects defined using the curves
from the first three rows in Figure 7(a) as the modulating
curves, where the curve (k) in Figure 7(a) is used as the
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Figure 7(b).

Hyper-superhyperboloids, where the

curve (K) in Figure 7(a) is used as the contour curves.

4.3. Spherical cross product distance functions

In this section, some theorems are proposed to help the
user identify whether the spherical cross product function
isadistance function.

Theorem 4.2

“Let F(X,y,2)=V(s, A H(x,y) be a spherical cross
product function, then it is a ray-linear function if the
V(s,z) isaray-linear function.”

Theorem 4.3

“Let F(x,v,2)=V(s,2)AH(x,y) be a spherical cross
product function. Let V(s,z): R ® R" be ray-linear,
then F(x,y,z) can be a distance function of the point-

source field function for soft objects if the surface
F(x,y,z) =1 is used as the influential scope and

V (s, 2) =1 isclosed on the positive side of the x-z plane”

From Theorems 4.2 and 4.3, one can conclude that hyper-
superquadrics are distance functions for point-source field
functions, because M, (s,2) and M (X,y) inEgs. (14a),

(14b), and (14c) are ray-linear.

4.4 Parameterization of hyper-superquadrics

Here we present two methods to parameterize hyper-
superquadrics as follows:

(1). Since hyper-superquadrics are ray-linear, one can use
the method stated in Subsection 3.5 to parameterize them.

(2). Since the modulating curve V(s,z)=cand the
contour curve H(x,y) =1lare defined using a ray-linear

function M ,(X), they can be parameterized, respectively,



using the method stated in Subsection 3.5, and then
substitute them into Eq. (11b) to generate the parametric
formula

5. CONCLUSIONS

One of the problems of implicit surface modeling is that
basic modeling primitives are not diverse enough. To cope

with this problem, we have developed two families of
functions asfollows:

(2). Superhyperbolic distance functions:

These functions can produce objects bounded by a set of

square planes, folded-planes, superhyperbolic surfaces, or
planes.

(2). Spherical cross product functions:

These functions can produce a sweep object in implicit and
parametric forms. From Theorem 4.1, one can freely define
two ray-linear functions, and then substitute them into the

spherical cross product function to generate an implicit
sweep soft object.

In addition, these two families of functions have the
following important properties:

(2). They can be deformed smoothly by adjusting parameter
values.

(2). Each of them can be used directly as a distance function
for soft object field functions.

(3). They can be applied to F-rep [11] and Blinn' s blobby
model [12].

(4). They can be further constructed to create a complex
object viablending or set operations

(5). They have dua representations, in both implicit and
parametric forms.

Besides, we have proposed Theorems 3.2-4 to help users
easily identify and discover a new distance function for
soft objects without having to worry about the r/R
calculation. Through Theorems 4.1-3, one can define new
ray-linear functions, and then use them as the contour and

modulating functions for spherical cross product functions
to generate avariety of implicit sweep soft objects.

6. REFERENCES

[1] H. Barr, “ Superquadrics’, IEEE Computer Graphics and
Applications, 1(1), pp. 11-23, 1981.

[2] M. Tiggers, M. S. T. Carpendale, and B. Wyvill,
“Generalized distance metrics in implicit surface
modeling” , Proceedings of the Tenth Western Computer
Graphics Symposium, pp. 14-18, Banff, AB, March
1999.

[3] A. Hanson, “Hyperquadrics. smoothly deformable
shapes with convex polyhedral bounds’, Computer
Vision, Graphics and Images Processing, 44(1), pp.

191-210, 1988.

[4 E. Akleman, “Interactive construction of smoothly
blended star solids’, Proceedings of Graphical
Interface 96, May 1996.

[5] E. Akleman and J. Chen,
functions’,  Proceedings of
International 99, pp. 72-79, 1999.

[6] C. Blanc and C. Schlick, “ Extended field functions for

soft objects”, Implicit surfaces 95, pp. 21-32, April
1995.

“ Generalized distance
Shape  Modeling

[71 A. Ricii, “ A Constructive Geometry for Computer

Graphics”, The Computer Journal, 16(2), pp. 157-160,
May 1973.

[8] G. Wyvill, C. McPheeters, and B. Wyvill, “Data

structure for soft objects’, The Visual Computer, 2(4),
pp. 227-234, 1986.

[99 G. Wyvill and B. Wyvill, “Field functions for implicit

surfaces’, The Visua Computer, vol. 5, pp. 78-52,
1989.

[10] B. Crespin, C. Blanc, and C. Schlick, “Implicit sweep

objects”, EUROGRAPHICS 96, 15(3), pp. 165-175,
1996.

[11] A. Pasko, V. Adzhiev, A. Sourin, V. Savchenko,

“Function representation in geometrical modeling:
concepts, implementation and applications’, The Visual
Computer 11(8), pp. 429-446, 1996.

[12] J. F. Blinn, “A generalization of algebraic surface
drawing” , ACM transactions on graphics, 1(3), pp. 235-
256, 1982.



