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Abstract

A trimmed surface is defined to be a parametric surface to-
gether with trimming curves lying in the parametric space
D of the surface. This paper investigates the interrelation
between surface tessellation and trimming curve approxima-
tion, and shows that existing trimmed surface tessellation al-
gorithms have some problems on trimming curve approxi-
mation. Several examples are proposed to show that a valid
approximation of trimming curves in D together with the re-
finement imposed by surface tessellation does not necessar-
ily generate a valid linear approximation in 3D space. Then
we propose a novel step-length estimation method such that
a piecewise linear interpolant of the trimming curve based on
proposed step length will assure the 3D derivation tolerance.
In this method, we exploit the triangle inequality and take
the derivation tolerance in 3D space into account to compute
the effective step length. Moreover, several empirical tests
are given to demonstrate the correctness of our step length
estimation.
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1 Introduction

Parametric surfaces, such as non-uniform rational B-spline
surfaces (NURBs), have been widely used in geometric mod-
eling and also been proposed as one of standard primitives
for computer aided design(CAD) systems. Moreover, as al-
gorithms in computer aided geometric design are incorpo-
rated in various design systems, the trimmed parametric sur-
faces have become a fundamental building block for surface
modeling [3, 4].

A trimmed surface is composed of two major components,
namely, a tensor product parametric surface and a set of
properly oriented trimming curves. In order to accommodate
various CAD processes such as model visualization, cut-
ter path generation and area computations, the trimmed sur-
face is commonly discretized and approximated by triangu-
lar facets through tessellation algorithms. These tessellation
algorithms involve choosing step lengths along each param-
eter to control the closeness between the resultant tessellants
and the surface. In general, the step lengths are derived from
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approximation criteria such as chordal length [1, 7, 8, 10, 11]
and chordal derivation [1, 8, 9, 12] .

The chordal length criterion requires that the length of
each edge of the tessellant is less than the given tolerance.
Usually it is used for the purpose of real time rendering. The
chordal derivation criterion is to ensure the distance between
the tessellants (traingles or other polygons) and the surface is
less than the given tolerance. Besides, it requires a tessella-
tion that can produce a minimum number of approximation
polygons. As we are interested mainly in the approximation
of trimming surface, we confine ourselves to the step length
determination problems subjected to chordal derivation.

The remainder of this paper is organized as follows. Sec-
tion 2 addresses the problems of approximating the trimming
curve in existing trimmed surface tessellation algorithms.
Then Section 3 proposes a step length estimation method
respectively such that the trimming curve approximation to-
gether with the surface tessellation in D will result in valid
linear approximation in 3D space. Moreover, in the Section
4, empirical results are given to demonstrate the feasibility
and the correctness of our estimation. A final conclusion
will be given in Section 5.

2 The Problems

Since the tessellation of 3D models is of great interest for
many applications such as rendering, machining and finite
element computations, several tessellation algorithms for
trimmed surfaces have been proposed [2, 6, 7, 8, 9, 11, 12].
However, most existing tessellation algorithms concentrate
on controlling the chordal derivation between the surface and
the approximated triangles. In this study, we will point out
that the criterion based on controlling 2D derivation error of
trimming curves and 3D derivation error of surface approxi-
mation does not imply the error of trimming curve approxi-
mation is under control in 3D space. Besides, we propose a
novel step length estimation for trimming curve tessellation
to remedy this flaw.

2.1 Step Length for Surface Tessellation

Suppose S(u; v) is an order m � n degree tensor prod-
uct rational parametric surface, defined in the domain D=



[0; 1]� [0; 1], such that

S(u; v) = (x(u; v); y(u; v); z(u; v))

=

Pm

i=0

Pn

j=0 wi;jri;j�j(u)'i(v)Pm
i=0

Pn
j=0 wi;j�j(u)'i(v)

(1)

where ri;j = (xi;j ; yi;j ; zi;j) are the control points, wi;j are
associated weights, and �j(u) and 'i(v) can be Bernstein-
Bézier polynomials or B-spline basis functions.

If we triangulate the domain D with triangles, then the set
of all 3D triangles obtained by mapping the 2D ones onto the
surface forms a linear interpolant of S(u; v). The step length
problem is to seek a threshold � such that if the edge length
of any 2D triangle is less than �, then the corresponding 3D
triangle deviates from the surface is less than given tolerance.

There has been several different solutions to the step
length problem [1, 8, 9, 12]. For exposition purpose, we
choice the one proposed in [1, 5]. According to [5], if D
is uniformly tessellated with step lengths �u and �v along
parameters u and v respectively, then the derivation between
the surface and the tessellant is bounded by the following
estimation,
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whereMuu, Muv andM vv are the sup-norms for the second
order partial derivative of surface. We can set E(�u;�v) =
� and try to solve the step lengths �u and �v in equation (2).
However, there is only one equation for two unknowns. To
cope with this problem, we follow the suggestion in [1] by
requiring the function 2 1
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(the number of triangles) to be
minimized. Then, by introducing the Lagrange’s multiplier
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It is known that the extreme value occurs when
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From (2) and (3), we have three unknowns and three equa-

tions. By eliminating � from (3), we have �v =
q

Muu

Mvv �u,
which is then substituted into (2) to obtain,
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2.2 Step Length for Trimming Curve Ap-
proximation

In general,a trimming curve is obtained either by solving sur-
face/surface intersection problem or being specified directly

as a piecewise parametric curve in D. In this study, a trim-
ming curve segment is described by its parametric form as
follows,

c(t) = (u(t); v(t))

=

Pn
i=0 wipi�i(t)Pn
i=0 wi�i(t)

; t 2 [0; 1] (5)

where pi = (ui; vi) are the control points and n is the de-
gree of curve. Note that, the weight and basis functions of
trimming curve are of the same type as that of the surface.
That is, if the surface is a Bézier or B-spline surface, then
the trimming curve is also of Bézier or B-spline type.

In most existing tessellation algorithms [1, 9, 12], the trim-
ming curve c(t) is usually further approximated by a piece-
wise linear function. A typical approach to tessellate c(t)
into piecewise linear functions is briefly described in the fol-
lowing paragraph. Then we show by counter examples that
this tessellation does not assure the chordal derivation error
in 3D modeling space.

Without loss of generality, we assume the trimming curve
is a single curve segment c(t) hereafter. This is because
each curve segment can be approximated separately. Let
� > 0 be the given tolerance. According to the estima-
tion of chordal derivation given in [5], we uniformly par-
tition I0 = [0; 1] into n subintervals by tessellation points

fti = i
n
j i = 0; :::; ng where n = d

q
supt2I0

kc"(t)k
8� e.

Then, the piecewise linear function l(t) = fPi�1Pi j Pi =
c(ti); i = 1; :::; ng satisfies kc(t)� l(t)k1 < � [1, 5, 12]. In
other words, l(t) is a valid approximation to c(t) in D within
�. However, if we lift each vertex Pi in D to P �

i = S(Pi) in
R
3 and form the polygon L(t) = fP �

i�1P
�
i g called lifted

polygon for brevity, then L(t) may not be a valid linear
approximation of the 3D trimming curve �(t) = S(c(t))
within �. Example in Table 1 shows that L(t) fails to ap-
proximate �(t) within given tolerance. In this example,
kl(t) � c(t)k1 = :008295, which is less than the tolerance
� = :01, but kL(t)� �(t)k1 = :012213, which exceeds the
tolerance �. Therefore, the tessellation based on c(t) only
is not sufficient to yield a valid tessellation for 3D trimming
curve �(t).

There is another problem which is overlooked by existing
algorithms in computing the tessellation of trimming curves.
Suppose the trimming curve c(t) is approximated by a lin-
ear interpolant l(t) = fPi�1Pig, where Pi = c(ti), such
that the lifted polygon L(t) do approximate �(t) correctly
within given tolerance. It is known that the tessellation of
a trimmed parametric surface is accomplished by triangulat-
ing the corresponding region in D [1, 7, 9, 12]. In order
to triangulate the desired region along the curve c(t) prop-
erly, the surface tessellation algorithm has to find intersec-
tion points of surface tessellation lines and l(t) to serve as
vertices of triangles mesh (see Figure 4). Intuitively, l(t)
is further tessellated by superimposing the surface tessel-
lation lines on l(t). Let fQjg be the set of intersection
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Fig. 1: Chordal derivations of the trimming curve in D do-
main and 3D space

points of l(t) and surface tessellation lines. Then the su-
per set fRkg = fPig

SfQjg induces a refined polygon
l�(t) = fRj�1Rjg of l(t), and the corresponding lifted
polygon L�(t) = fR�j�1R�j j R�j = S(Rj) 2 R3g becomes
the final linear approximation to �(t). However, example in
of Table 2 shows that L�(t) does not yield a valid approxi-
mation to �(t). In this example, the tolerance � is :087 and
kl(t) � c(t)k1 = :0661, but kL�(t) � �(t)k1 = :091997
which exceeds the tolerance �. Therefore, we also need a
linear approximation of the trimming curve, which is robust
against triangulation.

3 The Approach Based on Trian-
gle Inequality

This section looks for proper step length �t which tessel-
lates I0 = [0; 1] into n subintervals Ii = [ti�1; ti] (where
t0 = 0; ti = ti�1 +�t; i = 1; :::; n) such that the piecewise
linear function L(t) = fP �

i�1P
�
i jP �i = �(ti); i = 0; :::; ng

satisfies j�(t) � L(t)j < �. Moreover, the linear interpolant
l(t) of c(t) is robust against triangulation. In other words, if
l(t) is refined by the surface tessellation into l�(t) described
in the last section, then j�(t) � L�(t)j < �, where L�(t) is
the lifted polygon of l�(t).

First let us consider the following triangle inequality for
t 2 [ti�1; ti], (see Figure 1)

j�(t)� L(t)j = jS(c(t))� L(t)j
� jS(c(t))� S(l(t))j+ jS(l(t))� L(t)j (6)

According to Mean Value Theorem, the first term on the
right hand side of (6) is bounded by

jS(c(t))� S(l(t))j � jDc(t)�l(t)(S(a; b))j � jc(t)� l(t)j

for some point (a; b) in the line segment connecting c(t) and
l(t), and Dc(t)�l(t)(S(a; b)) is the directional derivative of S
along the vector c(t)� l(t) at (a; b). Since

jDc(t)�l(t)(S(a; b))j � j@S(a; b)
@u

j+ j@S(a; b)
@v

j

it follows that

jS(c(t))� S(l(t))j � (Mu +Mv)jc(t)� l(t)j
where Mu and M v are sup-norms of the first order partial
derivatives of S(u; v). Therefore, by applying the Filip’s es-
timation [5] to jc(t)� l(t)j with step length Æ1, we have

jS(c(t)) � S(l(t))j � 1

8
Æ21(M

u +Mv)M tt (7)

where M tt = kc"(t)k1.
Moreover, the second term on the right hand side of (6)

can also be bounded by
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is the Hessian matrix of

S, and D is the derivative of S. Since l(t) is a linear in-
terpolant of c(t) = (u(t); v(t)), l

0
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where Muu = k@2S(u;v)
@u2
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From (7) and (8), we have
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If we set

M1Æ
2
1 = �� and M2Æ

2
2 = (1� �)� (0 < � < 1); (10)

then from (9) the chordal derivation jS(c(t)) � L(t)j is
bounded by given �.

Now it remains to find an optimal � so that we have
the longest step length. By simply observing the graph of
two parabolas in (10), we know that the optimal tessella-
tion, that is �t = max�2(0;1)(min(Æ1; Æ2)), happens when

two parabolas intersect. That is ��
M1

= (1��)�
M2

, which gives

� = M1

M1+M2
. Substituting the value of � into (10), we have

the desired step length

�t =

r
�

M1 +M2
(11)
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Fig. 2: The refinement of surface tessellation on trimming
curve

The following paragraph will show that the proposed tes-
sellation algorithm is robust against triangulation process of
surface tessellation. Suppose l(t) is the linear interpolant of
c(t) according to �t in (11) and l�(t) is the refinement of
l(t) by adding to l(t) with the intersection points of l(t) and
surface tessellation lines. Then we show the chordal deriva-
tion between LL(t), the lifted polygon of l�(t), and �(t) is

still less than � > 0.

Let Ii = [ti�1; ti] where ti = ti�1 +�t, Pi�1 = c(ti�1)
and Pi = c(ti). Without loss of generality, we assume the
line segment Pi�1Pi is refined by a single point P after su-
perimposing the surface tessellation lines. (The following
explanation can be extended easily to the case with multiple
refinement points.) Then there exists an �i 2 Ii such that
�(t) is approximated by L1(t) = P �i�1P

�; t 2 [ti�1; �i] and
L2(t) = P �P �i ; t 2 [�i; ti], where P �

i�1 = S(Pi�1); P
�
i =

S(Pi) and P � = S(P ). (see Figure 2)

The chordal derivation between �(t) and L�(t) can be
estimated as follows.

j�(t)� L�(t)jt2[ti�1;ti]

= max(j�(t)� L1(t)jt2[ti�1;�i]; j�(t)� L2(t)jt2[�i;ti]) (12)

Again by triangle inequality,

j�(t)� L�(t)jt2[ti�1;�i]

� j�(t)� S(l(t))j+ jS(l(t))� L1(t)j; t 2 [ti�1; �i]

� max
t2[ti�1;ti]

j�(t)� S(l(t))j+ jS(l(t))� L1(t)jt2[ti�1;�i]: (13)

According to (7) and the choice of the � t in (10), we
have maxt2[ti�1;ti] j�(t) � S(l(t))j � M1

M1+M2
�, where M1

and M2 are defined in (9). Moreover, since the step length
�i � ti�1 is less than �t = ti � ti�1, the estimation of
(8) is hold. That is, jS(l(t)) � L(t)jt2[ti�1;�i] � M2

M1+M2
�.

Substitute these estimations back to (13), we have j�(t) �
L1(t)jt2[ti�1;�i] � �. Similarly j�(t) � L2(t)jt2[�i;ti] � �.
From (12), we have j�(t)� L�j � �, where t 2 [ti�1; ti].

Fig. 3: The control polygon and the testing surface

4 Counter Examples and Experi-
mental Results

We have developed a prototype system for modeling
trimmed surface interactively. The system provides users to
define surfaces and trimming curves, to view the trimmed
surfaces, and to report numerical results. The system are
implemented using Visual C++ on a desktop personal com-
puter. In this system, two trimming curve tessellation algo-
rithms are implemented. The counter examples discussed in
Section 2.2 is constructed with the help of this interactive
system.

The numerical tests given in Table 1 and Ta-
ble 2 are based on the same Bézier surface
with following 16 control points (Figure 3).
f(�1;�1;�1); (� 1

3 ;�1;� 1
5 ); (

1
3 ;�1;� 1

5 ),(1;�1;�1),
(�1;� 1

3 ;� 1
5 ), (� 1

3 ;� 1
3 ; 1), ( 13 ;� 1

3 ; 1), (1;� 1
3 ;� 1

5 ),
(�1; 13 ;� 1

5 ), (� 1
3 ;

1
3 ; 1), (

1
3 ;

1
3 ; 1), (1;

1
3 ;� 1

5 ), (�1; 1;�1),
(� 1

3 ; 1;� 1
5 ), ( 13 ; 1;� 1

5 ), (1; 1;�1)g. Further-
more, we use Bézier curves with control polygons
f (:35; 0:) ,(:8; :3) ,(:75; :9),(:3; 1:)g and f(:35; 0:);
(:95; :06); (:75; :9); (:32; 1:)g as trimming curves A and B
respectively.

Figure 4 shows the triangulation behavior of trimming
curve B in D. In addition to counter examples described in
Section 2.2, there are two empirical tests are also reported in
Table 1 and Table 2. The derivation errors of approximations
for all three examples are listed in the columns errorL(t)
and errorL�(t). The results indicate that the proposed algo-
rithms do control derivation errors in 3D space.

Approx. method errorl(t) errorL(t) errorL�(t)
Tessellation in D .008295 .012213 .010278
Triangle Inequality .000956 .001362 .001333

Table 1: Numerical results for trimming curve A as �=.01



Fig. 4: Triangulation for trimmed surface in D

Approx. method errorl(t) errorL(t) errorL�(t)
Tessellation in D .066100 .066341 .091997
Triangle Inequality .008141 .008488 .008997

Table 2: Numerical results for trimming curve B as �=.087

5 Conclusion

This study addresses the problem in the linear tessellation of
trimming curves. Counter examples are presented to show
that existing trimmed surface tessellation algorithms do not
assure the derivation error between 3D trimming curve and
its linear tessellants. In order to remedy this flaw, we present
a novel step length estimation method so that the trimming
curve tessellation based on proposed step length always yield
valid 3D approximation. The basic notion of our methods is
to control the derivation error of curve approximation in 3D
modeling space instead of in 2D parametric space. Besides,
some empirical examples are given to demonstrate that our
step length estimation result in correct approximation of 3D
trimming curve.
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