ADAPTIVE TWO-PHASE TREE-BASED
SPATIAL DATA STRUCTURES AND
THEIR APPLICATION TO IMAGE COMPRESSION

Kuo-Liang Chung®, Shou-Yi Tseng’, and I-Chien Chen"

“Department of Information Management Institute of Computer Science & Information Engineering
National Taiwan University of Science and Technology , Taipei, Taiwan, R.O.C.

klchun

cs.ntust.edu.tw

b Department of Computer & Information Science, Soochow University, Taipei, Taiwan, R.O.C.
tseng(@cis.scu.edu.tw

ABSTRACT

Given a binary image, this paper first observes that the
conventional tree-based spatial data structures (SDSs)
spend some amount of memory for storing the external
nodes and internal nodes near leaves. Next, we present
an adaptive two-phase (ATP) representation to reduce
the memory requirement. In addition, some geometric
operations, such as computing the area and centroid, on
the proposed ATP representation are also discussed.
Experimental results show that not only the proposed
ATP representation can reduce the memory requirement
when compared to the existing ones, but also can lead to
faster concerning geometrical operations. Finally, the
proposed results are extended to compress gray images.

1. INTRODUCTION

Quadtree is the best-known spatial data structure (SDS)
for representing the binary image and can reduce the
memory requirement through the use of aggregation of
homogeneous blocks [8]. Based on different kinds of
SDSs, Samet [7] gave an excellent survey on many
applications in computer graphics, image processing,
geographic information systems, image database, pattern
recognition, etc.

In order to reduce the storage requirement, some space-
saving representations have been proposed. Gargantini [3]
presented a pointerless SDS, called the linear quadtree.
The DF-expression [6] encodes each node of the
quadtree in depth first search (DFS) manner using the
symbol ‘G’,’B’, or ‘W’ to indicate the gray node, black
node or white node, respectively. Based on the bintree,
Jonge et al. [5] presented the S-tree representation.
Recently, Distasi et al. [2] presented an efficient bintree
triangular coding (BTTC) method for compressing gray
images and the method has shorter execution time when
compared to the JPEG [10], although the bit rates are
higher by a factor of about 2. Based on the modified S-
tree data structure and the Gouraud shading method,
Chung and Wu [1] presented the S-Tree Compression

(STC) method which improves the execution time of the
BTTC method in the ratio less than 1/2 while preserving
the same image quality and bits rates.

In this paper, we first observe that these conventional
SDSs mentioned above spend some amount of memory
for storing external nodes and internal nodes near leaves,
especially the image with some detailed texture. In order
to reduce the memory requirement, we present the
adaptive two-phase (ATP) representation to improve the
conventional tree-based SDSs, and it leads to better
compression performance on the most memory
consuming part. In the first phase, we follow the
conventional tree-based SDS from root to a specific level,
say s, of the tree. There are three kinds of leaves at level
s representing the entirely white subimages, the entirely
black subimages, and the gray subimages. The third kind
of leaf that we name it as the gray leaf is the memory
consuming part in the conventional SDSs. In the second
phase, each gray leaf obtained from the first phase is
coded by the connected component string (CCS) coding
scheme. The CCS is obtained by employing the
morphological technique [9] in the connected component
analysis and can efficiently represent the gray leaf.
Experimental results show that the proposed ATP
representation can reduce the memory requirement from
8% to 71% when compared to the linear quadtree [3],
DF-expression [6], and S-tree representation [5]. The
effect of memory reduction also leads to better
computing performance for the concerning geometric
operations such as computing the area and the centroid.
Besides the binary image, we extend the proposed ATP
representation to compress gray images. Experimental
results reveal that the proposed compression method for
gray images has better compression performance when
compared to the recent result [1] while preserving the
same image quality.

2. CONVENTIONAL TREE-BASED SDSs
In this section, we take a simple example to introduce

three existing tree-based SDSs. For a quadtree, if the
image is entirely black (white), then the root node is

labeled with 1 (0). Otherwise, the root node is further
divided into four equal-sized subimages. For the
quadrants, they are labeled sw (southwest), se (southeast),
nw(northwest), and ne(northeast), respectively. The
quadtree decomposition is based on repeatedly
subdividing the subimages until the subimage is entirely
black or white. Given a binary image with 8x8 as shown
in Fig. 1, the corresponding quadtree is shown in Fig. 2.

o

| . .

4 5 6 7 8

~

2}

S =N W

Fig. 1. A binary image example.

Level
0
Td 2 1 ¢
a a
b 2 5
3
cde 1&g h

Fig. 2. The quadtree representation of Fig. 1.
2.1 Linear Quadtree

Without using pointers, a linear quadtree [6] represents
the quadtree by a set of codes, and each code is obtained
by encoding a path from the root to the black node, i.e.
external node, in the quadtree. Let the sw quadrant, the
se quadrant, the nw quadrant, and the ne quadrant be
encoded with 0, 1, 2, and 3, respectively. Fig. 3
illustrates the assigned codes on each quadrant. The node
c in Fig. 3 is encoded by 030; the node d is encoded by
031, and the node « is encoded by /.X, where X is a don't-
care symbol. The don't-care symbol ‘X’ denotes this
node is not at the bottom level of the tree and its code is
ended at ‘X’. By traversing the quadtree in depth-first
search (DFS) manner to code the black nodes, the
quadtree in Fig. 3 is coded as 030 031 032 1X 31X 330
331 333.

3
c d e 8 h

Fig. 3 The assigned digits of the linear quadtree.

2.2 DF-expression

Given a quadtree, the DF-expression [6] is obtained by
traversing the quadtree in DFS manner. The DF-
expression is a sequence consisting of three symbols
'G','W", and 'B', which denote the gray node, white node,
and black node, respectively. During the traversal, if a
gray node is encountered, the symbol 'G' is appended to
the DF-expression; if a white node is encountered, the
symbol 'W" is appended to the DF-expression, and the
symbol 'B' is appended if a black node is encountered.
For example, the DF-expression of Fig. 2 is
GGWWWGBBBWBWGWBWGBBWAB.

2.3 S-tree

The S-tree is based on the bintree [8] structure. Given an
image, the corresponding bintree is obtained by
recursively subdividing the image into two equal-sized
subimages until the subimage is totally black or white.
At each step, the partition is alternated between the x-
and y- axes. The corresponding bintree of Fig. 1 is
shown in the right side of Fig. 4 and the partitioned
subimages are shown in the left side of Fig. 4.

y
1 Level

0
6] “)
. :
b 4
2 5
d| 6

Fig. 4. The bintree representation of Fig. 1.

The S-tree representation is obtained by traversing the
bintree in breadth-first search (BFS) manner and the
traversed result is stored in two array tables, namely, the
linear-tree table and the color table. While traversing the
bintree, a '1' ('0") is emitted to the linear-tree table when
an external (internal) node is encountered. Meanwhile, a
'1' ('0") is emitted to the color table when a black (white)
leaf node is encountered. For example, the S-tree
representation for Fig. 4 is listed below:

linear-tree table: 0 00 0110 1010 1010 1001 1111
color table: 010001111010

3. PROPOSED ADAPTIVE TWO-PHASE (ATP)
REPRESENTATION

In this section, we first describe the idea of the proposed
ATP representation. Second, how to apply the
morphological dilation operator to the connected
component analysis is introduced. Then, the CCS coding
scheme for representing the connect components is
described.

3.1 The Idea of the Proposed ATP representation

In the first phase, we employ one of the conventional
SDSs to represent an image. Instead of subdividing each
subimage into an entirely black or white subimage, we
stop the tree decomposition to a specified level to obtain
an approximate quadtree (bintree) for the image. Fig. 5 is
an example of the approximate quadtree that is obtained
by stopping the decomposition at level 1. The
approximate tree has three kinds of leaves, namely, the
black leaves, the white leaves, and the gray leaves.
Each black leaf represents an entirely black subimage;
each white leaf represents an entirely white subimage,
and each gray leaf represents a gray subimage. The gray
leaf should be a subtree in the conventional SDS. As
described before, the gray leaves are the memory
consuming part in the conventional SDSs. To reduce the
memory requirement, in the second phase, we code the
gray leaves using the CCS coding scheme. A CCS is a
bit stream which can efficiently represent a connected
component in a subimage. The CCSs are obtained by
employing the morphological technique in the connected
component analysis for the subimages represented by
gray leaves.

Level
0

1
Fig. 5 The approximate tree of Fig. 1.

For example, the binary image shown in Fig. 1 should be
represented by the quadtree in Fig. 2 using the
conventional SDSs. In stead of decomposition the tree to
level 3, we stop the decomposition at level 1 and obtain
the approximate quadtree as in Fig. 5. The nodes marked
as A's in Fig. 5 are the gray leaves those will be coded
using the CCS coding scheme in the second phase.

3.2 Connected Component Analysis

To find a connected component for the subimage
represented by a gray leaf, we employ the morphological
dilation operation [4,9]. Consider a set 4 to which the
dilation operation will be associated with by the
structuring element B. Let [J denote the morphological
dilation operator. The dilated set AL1B is defined to be
the union of all pixels under the support of the
structuring element B. An example of the dilation
operation is shown in Fig. 6 where each square box in 4
and B is a pixel of the binary image.

Let Y represent a connected component contained in the
subimage G. Scanning G in a raster manner, we get a
starting point of Y, say p. Then the following iterative
expression yields all the pixels of V-

X=(X,,0B)nG for k=1,2,3,... (1)

where X, = p, and n is the pixel-wise intersection. For
each iteration, X ; extends to its connected neighbors by
the shape of structuring element B within the subimage
G. The iterations will stop at X, when all the neighbors
of X, within the G are visited. Here, the set X, is indeed
the connected component Y contained in the subimage G.
Since there may be more than one connected component
in the subimage G, we can easily continue the raster
scanning to find the starting point of the next connected
component. Each connected component in the subimage
G is represented by a starting point following by a
connected component string (CCS). The next subsection
describe how to generate the bit stream CCS from Eq.

(1).

Dilated set ADB

Fig. 6. The morphological dilation operation.
3.3 The CCS coding scheme

The subimage G is corresponding to one gray leaf on the
approximate tree. For preserving better geometric
connectivity, the structuring element B we used is 8-
connected as shown in Fig. 6. When applying the
dilation operation X, ;,[JB in Eq. (1) for each pixel in
X,.;, there are eight neighbors of that pixel to be checked.

Initially, the set X, contains only one pixel, say p. To find
its connected pixels, we start from the east neighbor of p
and go clockwise to visit its eight neighbors. On visiting
one neighbor, if this neighbor is not a black pixel, that
means it is not a connected pixel, then we emit the bit ‘0’
to the CCS. On the other hand, if this neighbor is a black
pixel, that means it is a connected pixel, then the bit ‘1’
is emitted to the CCS and then recursively go through
the eight neighbors of this connected pixel.

An example of CCS coding simulation is illustrated in
Fig. 7. In Fig. 7, the subimage G is of size 4 x 4 and its
CCS is obtained by using five iterations. It is observed
that the CCS needs only 11 bits in addition 4 bits for the
location of starting point, so totally 15 bits are required
in this example. If this subimage is represented by a
quadtree, there are 10 leaf nodes to be encoded. No
matter how efficient the conventional tree-based SDS is,
the memory required in these leaf nodes is relatively
larger than that of the CCS coding scheme. This is the
main reason why the proposed ATP method can improve
the conventional tree-based SDSs.

(1) CCs=101. (2) CCs=1011. (3) CCS-10111.

(4) CCS=10111001. (5) CCS=10111001000.

Fig. 7. CCS coding example.

As described above, the proposed ATP representation
follows the conventional SDSs in the first phase to a
specific tree level, then in the second phase, the CCS
coding scheme is applied and has the memory-saving
advantage when compared to the conventional tree-based
SDSs. However, the concerning dilation operation in our
method is time consuming for small subimages, such as
for size 2x2 and 2xI. In order to improve the encoding
and decoding time, the bit pattern of such a small
subimage is recorded directly. For example, in Fig. 2, the
most right subtree at level 2 represents a subimage of
size 2x2. This small subimage has three black pixels,
e.g. f, g, and h, and one white pixel. We record the bit
pattern ‘1101' instead of iteratively performing the
dilation operation. This improvement leads to faster
encoding, decoding, and the concerning geometric
operations.

4. GEOMETRIC OPERATIONS

In this section, the geometric operations for calculation
the area and centroid on the ATP representation are
described. Since the first phase is the same as the
conventional SDSs, we only discuss the remaining
operations for the CCS coded subimage. Each CCS
coded subimage, say G, is corresponding to a gray leaf in
the approximate tree from the first phase.

4.1 Area

The area of a binary image is defined as the number of
black pixels of the whole image. As described in
Section 3, we emit a bit ‘1’ whenever a black pixel is
encountered in encoding the CCS. Therefore, the number
of ‘I’s in a CCS is the area of its corresponding
connected component. Given a CCS of the subimage G,
we can easily obtain the area of G by counting the
number of ‘1’s in the CCS. If there exists any other
connected components in the subimage, the area of each
connected component can be computed from its CCS
and they are added together to obtain the area of the
subimage G.

For example, the subimage in Fig. 7, its CCS s

‘10111001000'. The number of ‘1's in the CCS is 5, so
the area of this subimage is 5.

4.2 Centroid

Assume a binary image is of size 2V x2". The origin of
the image is at the top-left corner and the coordinate of
the bottom-right pixel is (2"-1, 2"-1). The centroid is

defined by
0_ X,
EX = L

A
Vi

O

g 4
where (x,y,), is the coordinate of each black pixel and 4
is the area of the given image.

Given a CCS, the recursive decoding procedure as
describe in last section must be performed first to get the
coordinate of each black pixel. In addition, the action of
summation x-coordinate and summation y-coordinate is
performed to obtain the subtotal of all the x and all the y
of the subimage G.

5. EXPERIMENTAL RESULTS

In this section, some experiments are included to
demonstrate the compression ratio among the proposed
ATP representation, the linear quadtree (LQ), the DF-
expression, and the S-tree. Three real binary images,
namely, the butterfly, the floodmap, and the cup are used
and shown in Fig. 8 (a), (b), and (c), respectively. Each
image is of size 256 x 256 and requires 65536 bits. The
experiments are performed on the IBM compatible
personal computer Pentium III microprocessor with 500
MHz and 128MB RAM. The operation system is MS-
Windows 98 and the program developing environment is
Borland C++ Builder 4.0.

(a) Butterfly. (b) Floodmap. (c) Cup.

Fig. 8 Three testing real images.

Table 1 demonstrates the compression results on the
three real images using the conventional DSDs and the
proposed ATP representation. First, the image is encoded
using the methods of linear quadtree (LQ), DF-
expression, and S-tree representation. The conventional
methods are one-phase when processing the image. Their
compression results in bits are shown in the second
column of Table 1. Applying the CCS to the gray leaves
from the first phase at a specific level, a better
compression ratio is obtained. The third column denotes
the results in bits for the proposed ATP representation.

The size of the subimage corresponding to the gray leaf
is shown in the next column. Finally, the improvement
ratio is shown in the last column.

The height of the approximate tree decides the size of the
CCS coded subimage. For example, a 256 x 256 image
represented by a quadtree has nine levels in the one-
phase LQ representation. Applying the ATP LQ
representation, its approximate quadtree has six levels
and the CCS coded subimage size is & x 8. In other
words, cutting the conventional LQ at the sixth level and
coding the 8 x 8 subimage using CCS coding scheme can
obtain the optimal compression ratio. That's why we list
the CCS coded subimage size for every testing case.

Table 2 lists the computation time improvement for
geometric operations using the same three testing images.
The first column indicates the SDS method used; the
second column shows the improvement for computing
the area; and the third column shows the improvement
for computing the centroid. The improvement ratio is
computed by the time required by the conventional one-
phase method (fa) subtracting from the time required by
the proposed ATP representation (¢b) and then divided by
the value of ta, e.g. (ta-tb)/ta.The experimental results
demonstrate that the proposed ATP representation can
improve both the memory size and the computation time
for geometric operations. It is observed that the more
memory size is improved, the more computation time is
improved.

6. APPLICATION TO COMPRESS GRAY
IMAGES

Based on the modified S-tree data-structure and the
Gourand shading method, the STC method [1] is an
efficient bintree-based SDS for compressing gray images.
In this section, we demonstrate the application to
compress the gray images by applying the ATP
representation to the STC method and it leads to a better
compression ratio while preserving the image quality. In
order to enhance the ATP compression effect, we apply
the quadtree version of the STC method, namely the
QSC.

6.1 The QSC Compression Method

In the QSC method, the original gray image is
partitioned into several subimages based on the quadtree
decomposition principle. For a subimage, suppose the
coordinates of the four corners are (x,,y,), (x,,V;) »(x,)>),
and (x,y,); their gray levels are g, g, g; , and g,
respectively. Using the Gouraud shading method, the
estimated gray level g,,of the pixel at (x,y) in the block is
calculated as:

Given a specified error tolerance €, the image quality

- y-y
e (X, 0) = 85 +(86 —&5) X fy‘,where

2~ N
X=X

g =g +(g,~g)x and

2 T X
X=X,

86 =& t(gy — g% (2)

2 1
condition is

lg(x,)~ g (x,»|se. ()

If all the pixels in the subimage, x, 2x =2x,and y,2y >
y,;, hold the above quality condition, then this subimage
is a leaf node in the quadtree, otherwise the subimage
will be recursively divided into four equal sized square
subimages until it holds the quality condition.

The QSC method represents the gray image using a
linear-tree table and a color table like the S-tree
mentioned in Section 2.3. The linear-tree table stores the
geometric relationship of the divided subimages and the
color table stores the graylevels on the four corner of all
the leaf nodes.

6.2 The ATP QSC Representation

In the first phase, in stead of subdividing all the
subimages into the ones each holding the image quality
condition (see Eq. (3)), we stop the decomposition at a
specified level to obtain an approximate quadtree for the
image. In the second phase, the gray leaves those do not
hold the image quality condition are coded using the
CCS coding scheme.

To convert the CCS coding scheme from binary images
to gray images, the pixel in the gray image to be coded
to ‘1' in the CCS is determined by its estimated error.
The estimated error is the difference between the the
original graylevel and the estimated graylevel, e.g. e(x,y)
=g(x,y)-g..; (x,y). If the absolute value of e(x,y) is greater
than the specified error tolerance &, then this pixel is
coded by ‘1' in the CCS and the error value e(x,y) is
recorded in the color table. In other words, conceptually
the pixel in the gray image with absolute estimated error
greater than € is treated as a black pixel in the binary
image. Then, the encoding and decoding algorithm for
CCS can be modified slightly to the gray images.

An example of the CCS coding for a 4 x 4 gray subimage
is shown in Fig. 9. Fig. 9 (a) is the original subimage.
Using the four corners' graylevels, those are marked by
gray background in Fig. 9 (a), the estimated graylevels
are computed by Eq. (2) and shown in Fig. 9 (b). The
difference between the original graylevel and the
estimated graylevel is the estimated errors e(x,y) and is
shown in Fig. 9 (c). Suppose € is 10, then the pixels,
each with absolute error over 10, are coded by CCS.

Consequently, the CCS is represented by 10110001000,
and the corresponding graylevels recorded in the color
table are 45, 11, 12, and 24.

On decoding a gray leaf, first the four corners' graylevels
are obtained from the color table, then the estimated
graylevels of the decoded subimage is computed by Eq.
(2). The CCS for this subimage is decoded in the same
way as CCS decoding algorithm described in Section 3.3.
Whenever a bit ‘1' is decoded, the corresponding error
value in the color table is added to its estimated
graylevel. After decoding the whole CCS, we can obtain
the decoded subimage as shown in Fig. 9 (e).

e I
137|145 1) 171 5131210
s 190166
i o 6] 10175180

(a) Original graylevels. (b) Estimated graylevels.

1] 3[@]0 o[1]o0
2|2 @ 1D 011]1
411191 0]10]1
018 510 0]0

(c) Estir;l(;ated Errors (d) CCS=10110001000.
£ = .
120|130 185 150
135) 143|176 171
190] 156|163 182
165|170 175] 1%
(e) Decoded graylevels.

Fig. 9 CCS coding for gray image.
6.3 The Experimental Results

We use four 5/2 x 512 gray images, Lena, Pepper, F16,
and Baboo to compare the memory improvement of the
original one-phase QSC representation and the proposed
ATP QSC representation. Given the error tolerance &,
Table 3 is arranged in the same way as Table 1 except in
terms of bytes. We observe that the compression
improvement ratios ranges from 20% to 31% while
preserving the same specified error tolerance &=10.
However, there is about 10% extra time to be paid.

7. CONCLUSION

We have presented the ATP representation to reduce the
memory requirement required in the conventional tree-
based SDSs. Experimental results show that the
proposed ATP representation can reduce the memory
requirement from 8% to 71% when compared to the
linear quadtree [3], DF-expression [6], and S-tree

representation [5]. Also, the proposed ATP can lead to
faster concerning geometrical operations. In addition, we
extend the proposed ATP representation to be a good
candidate for compressing gray image which leads to
wider applications for the tree-based SDSs.

8. REFERENCES

[1] K. L. Chung, and J. G. Wu, “Improved image
compression using S-tree and shading approach,” IEEE
Trans. On Communications, Vol. 48, No. 5, pp. 748-751,
2000.

[2] R. Distasi, M. Nappi, and S. Vitulano, “Image
compression by B-tree triangular coding,” IEEE Trans.
on Communications, Vol. 45, No. 9, pp. 1095-1100,
1997.

[3] 1. Gargantini, “An effective way to represent
quadtrees,” Communications of the ACM, Vol. 25, No.
12, pp. 905-910, 1982.

[4] R. C. Gonzalez, and R. E. Woods, Digital Image
Processing, Chapter 8, pp. 518-560, Addison Wesley,
NewYork, 1992.

[5] W. D. Jonge, P. Scheuermann, and A. Schijf, “S*-
Trees: An structure for the representation of large
pictures,” Computer Vision and Image Understanding,
Vol. 59, pp. 265-280, 1994.

[6] E. Kawaguchi, and T. Endo, “On a method of binary
picture representation and its application to data
compression,” [EEE Trans. on Pattern Analysis and
Machine Intelligence, Vol. 2, No. 1, pp. 27-35, 1980.

[7]1 H. Samet, Applications of Spatial Data Structures,
Addison-Wesley, New York, 1990.

[8] H. Samet, The Design and Analysis of Spatial Data
Structures, Addison-Wesley, New York, 1990.

[91 J. P. Serra, Image Analysis and Mathematical
Morphology, Acdemic Press, NewYork, 1982.

[10] G. K. Wallace, “The JPEG still picture compression
standard,” Communications of the ACM, Vol. 34, No. 4,
pp. 30-44, 1991.

Table 1. The Compressing Results.

Method One-phase ATP CCS coded Improvement ratio
Ma bits Mb bits Subimage size (Ma-Mb)/Ma
LQ 42192 12558 8x8 70.24%
butterfly DF 7582 6536 2x2 13.80%
S-tree 7933 6889 1x2 13.16%
LQ 18672 7819 8x8 58.12%
floodmap DF 3767 3460 2x2 8.15%
S-tree 4093 3717 1x2 9.18%
LQ 38016 10848 8x8 71.46%
cup DF 7443 6459 2x2 13.22%
S-tree 7417 6649 1x2 10.35%
Table 2. The Computation Time Improvement for Geometric Operations.
Method |{Improvement ratio| Improvement ratio
on area on centroid
LQ 80.10% 35.04%
butterfly DF 3.29% 18.76%
S-tree 10.61% 22.42%
LQ 70.53% 23.15%
floodmap DF 8.22% -15.08%
S-tree 9.04% 34.07%
LQ 80.67% 45.28%
cup DF 7.53% 16.32%
S-tree 8.19% 12.94%
Table 3. The Compression Results for Gray Images.
&=10 One-phase QSC ATP QSC CCS coded Improvement ratio
Ma bytes Mb bytes subimage size (Ma-Mb)/Ma
Lena 140754 96924 4x4 31.14%
Pepper 164579 100568 8x8 38.89%
111354 88456 4x4 20.56%
Baboo 254616 202587 8x8 20.43%

