
1

Mesh Optimization for Surface Approximation Using an Efficient Genetic
Algorithm with a novel 2-D Orthogonal Crossover

Hui-Ling Huang*, Shinn-Ying Ho, Tzu-Chien Wu, Fu-Sin Yau, and Yan-Fan Chen

(黃慧玲) (何信瑩) (吳子謙) (尤富新) (陳彥帆)

Department of Information Engineering, Feng Chia University,

100 Wen-hwa Road, Taichung, Taiwan 407, ROC

E-mail: hlhuang@plum.iecs.fcu.fcu.tw. FAX:886-4-4516101

Abstract

In this paper, the surface approximation using a
mesh optimization approach is investigated. The mesh
optimization problem is how to locate a limited number n
of grid points such that the established mesh of n grid
points approximates the digital surface of N points as
closely as possible. The resultant combinatorial problem
has an NP-hard search space of C(N, n) instances, i.e., the
number of ways of choosing n grid points out of N points.
A genetic-algorithm-based method has been proposed for
establishing optimal mesh surfaces. It was shown that the
GA-based method is effective in searching the
combinatorial space which is intractable when n and N are
in order of thousands. This paper proposes an efficient
genetic algorithm with a novel 2-D orthogonal crossover
for obtaining the optimal solution to the surface
approximation problem using a triangular mesh. It is
shown empirically that the proposed efficient genetic
algorithm outperforms the existing GA-based method in
solving the mesh optimization problem in terms of the
approximation quality and the convergence speed,
especially in solving large mesh optimization problems.

Keywords: Genetic algorithm; Evolutionary algorithm;
Optimization; Surface approximation; 2-D Orthogonal
array crossover; Mesh Optimization

1. INTRODUCTION

Surface representation plays an important role in a
variety of disciplines, including computer graphics,
computer-aided design, computer vision, and geographic
data processing. Surface approximation is one of the
popular approaches, which can provide good
representations of 3-D shapes at different resolutions.
Many surface approximation methods can be found in
literature such as bicubic [1], subdivision surface [2], a 3-
D finite element mesh generator [3], multilevel finite
element method [4], wavelets and quadtree data structures
[5], and spherical wavelets [6].

There are relatively few studies on mesh

optimization for surface approximation using the
evolutionary computation approach. A new optimization
method for surface approximation using an evolutionary
computation approach was proposed by Fujiwara and
Sawai [7]. The optimization problem of reconstructing the
approximating surface is to select n grid points out of N
sample points such that the resultant 2-D Delaunay
triangulation can determine a 3-D facial triangular mesh
which approximates the 3-D surface as closely as possible.
This problem may be viewed as a combinatorial problem
having an NP-hard search space of C(N, n) instances. In
the context of their problem, the original surface z = f(x, y)
is regarded as a manifold of data in R3 and a volume
difference in Euclidean R3 space of the volumn
sandwiched by the facial surface and the approximating 3-
D triangular mesh surface is regarded as the
approximation error. In the GA-based approach by
Fujiwara and Sawai [7], phenotype value is the same as
genotype simply representing the spatial position of each
point, a set of triangulations is a population and each
triangulation is subject to genetic operations. To minimize
the approximation error, the used GA has to avoid
unnecessarily locating the points on smooth portions and
to concentrate the distribution optimally on curved parts.
It was shown that the GA-based method is effective in
searching the combinatorial space, which is intractable
when n and N are in order of thousands.

The main power of GAs arises from crossover [8].
The crossover operator used in [7] randomly chooses a
horizontal or vertical grid line to separate the mesh of
each parent into two parts and exchanges information of
one part between parents. After performing this operator
on the parents of n grid points, the children may yield a
mesh with a number of grid points karger or smaller than
n. To cope with the combinatorial problem efficiently
using GAs, especially while n and N are large, a powerful
crossover operator is desirable.

 In this paper, we solve the mesh optimization
problem using an efficient genetic algorithm with a novel
2-D orthogonal crossover (OAX). OAX is based on the
systematic reasoning ability of orthogonal arrays (OAs).
Theoretical analysis and experimental studies for the
superiority of the crossover using OAs, called 1-D

2

orthogonal crossover, can be found in our recent work [9].
The random repair operator may disrupt the good genes
collected by the crossover operator. The proposed 2-D
OAX can always produce feasible solutions such that no
repair operator is needed. Furthermore, the 2-D OAX
separates the mesh of each parent into many parts and the
meshes of the children are formed from the best
combinations of the better parts from the parents rather
than the conventional random combinations. The choice
of the better parts is derived by way of a systematic
reasoning approach for evaluating the contribution of the
individual parts based on OA. It will be shown that the
proposed efficient genetic algorithm outperforms the
existing GA-based method
[7] in solving the mesh optimization problem in terms of
the approximation quality and the convergence speed,
especially in solving large mesh optimization problem.

2. Problem formulation

2.1 Surface representation

Let us view the 3-D surface image as a function
f:(x, y)�Rn→z�R. Thus, we can yield a rectangular grid
on the (x, y) plane, where each grid point’s height z
represents the depth of the surface. Let Nx and Ny be the
numbers of grid points in the x and y axes, respectively.
The total number N of grid points is equal to Nx•Ny

This generic surface representation is also available
for representing the surface of the cylindrical coordinate
system. For example, facial image data are generally
represented using the standard cylindrical coordinate
system (ρ, θ, ζ) where the ρ = 0 axis runs vertically
through the middle of the head, θ is the yaw angle, and ζ
axis is the vertical axis. The point on the facial surface can
be represented by a triplet (ρ, θ , ζ). It is easy to spread out
the facial surface over R2 as x = θ, y = ζ, and z = ρ, as
shown in Fig. 1.

2.2 Approximation Error

We follow the definition of the approximation error
used in [7] in order to compare the performance. In the
mesh optimization, Delauay triangulation for a polygonal
mesh is employed. A certain configuration of points on R2

is denoted by Pn and the corresponding Delanay
triangulation is denoted by D(Pn). Each Delaunay triangle
Ti∈D(Pn) contains a certain number of grid points (x, y).
The Euclidean distance di at each such grid point (x, y) is

defined as follows: di ≅ y)(x,zy)z(x, i

~

−

where
~

iz (x,y) is the linearly interpolated value of height

at (x, y) determined by the triplet of hights for the three
vertices of triangle Ti. The error ei for Ti is the sum of
squares of these Eulidean differences over all the grid

pints P inside T i: ei ∑
∈

≡
iTP

2
id . The total error is then

defined by

 e = ∑
∈)D(PT

i

ni

e (1)

Since n is fixed, it is obvious that the total error becomes
larger if too many points are located on relatively smooth
parts of the face such as the forehead, or if too few points
are placed on highly curved parts such as the ridge of the
nose. Therefore, to reduce the error in approximation, we
have to balance the number of points in low curvature
regions with these in high curvature regions, because we
use a linear interplant, namely a plane, for each unit of the
triangular mesh.

3. Preliminary of crossover operators

Genetic algorithms (GAs) are commonly used
evolutionary algorithms that employ parallel search to
explore poorly understood, irregular spaces. Since GAs
have good performance in solving optimization problems
[7], they can also be used to solve the mesh optimization
problem for surface approximation. The crossovers, main
power of GAs, without and with maintaining feasibility
for the constrained mesh optimization problems are
described in Sections 3.1 and 3.2, respectively.

3.1 Crossover without maintaining feasibility

Because crossover produces new solutions by
recombining the encoded solutions from a population,
maintaining feasibility is difficult for many constrained
problems. Generally, a penalty function approach and a
repair operator approach are used to cope with the
infeasible children problems.

(1) Bit string representation: Let α and β be
parent pairs and each have a specific number n of 1’s in a
bit string chromosome with a bit string length N before
performing crossover operations. Assume that the feasible
solution has a number n of 1’s in a chromosome. The
crossover operation may generate infeasible children,
described as follows: An integer number s between [1, N-
1] is randomly generated. The children α’ and β’ are
obtained by swapping all the bits of α and β after
position s using a traditional one-cut-point crossover. For
example, feasible parents α and β with N = 16, n=4
and s = 7 can generate infeasible children α’ and β’ as
follows:

α = 0 1 0 0 0 10 1 0 0 0 0 0 1 0
α’ = 0 1 0 0 0 1 0 0 0 0 1 1 1 0
β = 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0

 β’ = 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
(2) Bit matrix representation: A bit matrix mij with 0

≤ i < Nx and 0 j< Ny |, for representing the 2-D mesh plane
is encoded as a chromosome, where mij = 1 means that
there exists a grid point at position (i, j) and otherwise, mij

= 0 means that no grid point at position (i, j). Letαandβ
be feasible parent pairs and each have a specific number n
of 1’s in a bit matrix chromosome with size N = Nx x Ny

before performing crossover operations. The crossover
operation may generate infeasible children, described as
follows: The crossover is done by randomly choosing a

3

horizontal or vertical line on the mesh plane that the line
separates the plane into two parts. The childrenα’ and
β’are obtained by swapping all the bits of one part
between parents. An illustration for explaining that
feasible parentsαandβwith Nx = 4, Ny = 4 and n = 4 can
generate infeasible childrenα’ and β’ is shown in Fig.
2.

3.2 Crossover with maintaining feasibility

One solution for preserving feasibility of children is
to increase the complexity of the crossover. Therefore,
some application-dependent crossovers have been
proposed [10]. A generally used repair operator of GAs,
used by Fujiwara and Sawai [7] for maintaining the
feasibility of crossover is described as follows:

This operation incorporates random deletion and
addition of grid points, which can always produce feasible
offspring. An example is illustrated in Fig. 3. Feasible
parentsαandβcan generate feasible childrenα’ and β’
using crossovers with a repair operator.

4. Proposed Efficient Genetic Algorithm
The proposed efficient genetic algorithm (EGA)

uses a novel 2-D orthogonal crossover OAX based on the
ability of OAs which are described in Section 4.1. Section
4.2 presents the chromosome representation. Section 4.3
introduces OAX. The illustration of 2-D OAX using a
concise example is given in Section 4.4. The complete
EGA is provided in Section 4.5.

4.1 Orthogonal arrays and factor analysis

Orthogonal array (OA) and factor analysis, which
are representative methods of quality control [11], also
work to improve the crossover more efficiently. The
superiority of OA to achieve an intelligent crossover on
obtaining the optimal solution has been demonstrated in
our recent work [9]. The definition of OA used in OAX is
as described follows. Let there be F factors and each
factor have two levels. The number of total combination is
2F. The columns of two factors are orthogonal when the
four pairs, (1,1), (1,2), (2,1), and (2,2), occur equally over
all experiments. When any two factors in an experimental
set are orthogonal, the set is called an OA. To establish an
OA of F factors of two levels, we obtain an integer

() 1Flog 22f += , build an orthogonal array Lf(2 f-1) with f
rows and (f-1) columns, and select the first F columns.
For instance, Table 1 shows the used nine columns of an
orthogonal array L16 (2

15). Generally, level1 and level2 of a
factor represent the selected genes coming from parent1
and parent2, respectively. Factor analysis can evaluate the
effects of factors on the evaluation function, rank the most
effective factors, and determine the best level for each
factor such that the evaluation is optimized. Orthogonal
experiment design can reduce the number of experiments
for the factor analysis. The number of OA experiments for
single factor analysis is only f. Let yt be the positive
function evaluation value of experiment no. t. Define the
main effect of factor j with level k to be Sj k ,

where

and

 (2)

Note that the main effect reveals the individual
effect of a factor. The most effective factor j has the
largest main effect difference (MED)∣Sj1 – Sj2∣. If Sj1 >
Sj2 , the level 1 of factor j is better than the level 2 on the
contribution for the optimization function. Otherwise,
level 2 is better.

4.2 Chromosome Representation

A configuration Pn on the 2-D grid plane is encoded
as a chromosome. Let the size of the grid plane be N = Nx

x Ny . Construct a Mx x My matrix M of Pn where each
element mij of M represents the number of grid points in

a l x l block Mij and Mx = 





l
xN

and My = 







l

yN
. A

chromosome is denoted

as)(MyMx211Mx1211 mmmmm ⋅⋅⋅⋅⋅⋅⋅⋅ . It is noted

that mij∈[0, l2]. An example for the chromosome
representation of a parent pair C1 and C2 is illustrated in
Fig.4.

4.3 2-D orthogonal crossover OAX

Let the size of the grid plane be Nx x Ny and the
number of grid points be n. The newly produced offspring
after OAX are forced to contain the same number of grid
points as their parents. The OAX procedure is as follows:
1.)Determine the maximal number α of segments using
α -1 cut points such that the numbers of grid points in
any two corresponding segments of the parents are
identical and every segment has at least one grid points.
Furthermore, no any two-segment pair from the parents
has the same configuration on the grid plane. If α = 1,
OAX will not be applied before performing the mutation
operation. For example, let parents C1 and C2 are as
follows. It can be determined that α = 8.
 C1 : (1120 10 1 1 10 100 10 1)
 C2 : (2101 01 1 1 10 100 10 1)
2.) Select the first α columns of an OA Lβ(2β-1) where

() 1log 22 += ββ . Note that one segment in a chromosome

is regarded as a factor in OA. Let level 1 and level 2 of
factor j represent the jth segments coming from C1 and C2,
respectively. 3.) Evaluate the function value yt for
experiment no. t where t = 1, 2, … , β . 4.) Compute the
main effect Sj k where j = 1, 2, … , α and k = 1, 2. 5.)
Determine the best level for each segment. Select level 1

for the jth segment if 21 jj SS > . Otherwise, select level 2.

6.) The chromosome string of the first child is formed

∑
=









×=

f

t
tjk kisjfactorof

tnoExpoflevelthe
YS

1

2 ..







=
.

1

.max

mixtobeisfunctiontheify

betoisfunctiontheify
Y

t

t

t

[]




=
,0

1

otherwise

trueisconditiontheif
condition

4

from the best combinations of the better segment derived
from the corresponding parents. 7.) Rank the most
effective factors from rank 1 to rank α . The factor with
large MED has higher rank. 8.) The chromosome string of
the second child is formed similarly as the first child
except that the segment with the lowest rank adopts the
other level.

4.4 Efficient genetic algorithm

In this section, solving surface approximation
problems using an efficient genetic algorithm (EGA) is
described in detail.

EGA can be written as follows:
Step 1: Initiation: Randomly generate an initial

population consisting of individuals I i i =1, 2, … ,
Npop.

Step 2: Elitist strategy : Repeat the following steps for
i=2 to Npop :

2a: Select I1 and I i as the parents and produce
two children Ic1 and Ic2 using 2-D OAX.

2b: Replace I1 and Ii with the best and the
second best individuals according to fitness
performance among I1, Ii, Ic1 and Ic2,
respectively.

Step 3: Evaluation: Evaluate the fitness function values
for all individuals.

Step 4: Selection: Use the rank selection that replaces the
worst Ps * Npop individuals with the best Ps * Npop

individuals to form the new population, where Ps is
the selection probability.

Step 5: Crossover: Select Pc * Npop parents for 2-D OAX,
where Pc is the crossover probability. Apply 2-D
OAX to the selected pairs of parents. Replace the
two children with two individuals having the best
fitness function values among the parents and
children for the elitist strategy.

Step 6: Mutation: Each located grid point coded in each
chromosome, is randomly moved to one of the
nearest neighbors on the grid with a probability Pm ,
called the mutation probability [7]. To prevent the
fitness value from decreasing, mutation is not
applied to the best individual.

Step 7: Termination test: If a prespecified termination
condition is satisfied, end the algorithm. Otherwise,
go to Step 3.

5. Experimental results and performance comparisons

In order to demonstrate the superiority of the
proposed algorithm, we compare the performance of our
method with that of Fujiwara’s genetic algorithm (FGA)
[7], which has been shown to be an effective method for
surface approximation problems using an evolutionary
computation approach.

In Section 5.1, we illustrate the efficiency of the
proposed 2-D OAX using a simple mesh optimization
problem. Next, in Sections 5.2 and 5.3, we will show that
EGA outperforms FGA using a 2-D mesh and a 3-D
image, respectively.

The parameters of EGA and FGA are as follows:

Npop = 100, Ps = 0.04, Pc = 0.5, Pm = 0.18 and l=2.

5.1 Efficiency of 2-D OAX

We use an artificial 2-D binary array opt with Nx =
16 and Ny = 16 to generate a search space of C(256, 34)
instances for the mesh optimization problem. The given
binary array is served as an optimal solution of a mesh
optimization problem, as shown in Fig. 5. In this case, the
mesh optimization problem is how to efficiently select n =
34 right positions of 1’s in the array such that the
matching error E2 can be minimized. The matching-error
E2 of a mesh p is equal to a fitness function value f(p) for
a encoded chromosome p . The fitness function value of P
is defined as f(p) = the number of mismatched points
between p and opt. To illustrate the use of 2-D OAX, a
concise instance of OAX is given as follows. Assume that
two chromosome C1 and C2 of configuration P1 and P2 are
give in Fig. 6. Let D1 and D2 be children of parents C1 and
C2. The maximal number α of segments for C1 and C2 is
9. Therefore, the first 9 columns of OA ()15

16 2L are used.

The results of performing a 2-D OAX on C1 and C2 are
shown in Table 1 and Table 2.

The performance comparisons of EGA and FGA
are shown in Fig. 7. It can be seen that EGA outperforms
FGA in term of convergence speed and solution quality
under the same number of function evolution, Fits, and
generation G, as shown in Fig. 7(a) and 7(b), respectively.

5.2 Performance evolution using a simple function

In this experiment, we demonstrate the superiority
of our algorithm using a simple function, f(x, y) = x*exp(-
(x2+y2))*-0.5, where –2.5≦x≦2.5, y = x, and z = f(x, y),
as shown in Fig. 8. In the surface, there is two height
curvature on the ridge and in the valley. The data set is
given on a grid plane with Nx = 30 and Ny = 30 and served
as a 3-D image. The optimization problem for surface
approximation is given with N = 900 and n = 160. Four
points are located in the corners of the grid plane which
are not subject to genetic operations. This maintains the
boundary edges of the region during the two evolution
processing.

Comparing the performance of EGA and FGA
using Equ. (1), the convergence speed and accuracy are
reported in Fig. 9. It shows that EGA outperforms FGA.
Fig. 10 and Fig. 11 show the results of Delaunay
triangulation and the reconstructed 3-D surface using
triangular meshes after 50 generations. It is clear from the
figures that the unnecessary locations of points in relative
flat regions is avoided more points are on the ridge and
valley.

Mesh optimization is an effective approach for
surface approximation, as illustrated in the following
aspects:
(1) While the fitness value e is quickly improved, a more

accurate approximation surface can be obtained.
(2) More grid points are located in highly curved parts

such as the ridge (top) and the valley

5

Fig. 1. Spreading he face over R2 in [7].

5.3 Performance evolution using a 3-D image

In this experiment, we examine the effectiveness of
the proposed algorithm using a 3-D image, as shown in
Fig. 12. The mesh optimization problem is the same as
Section 5.2. The problem has a search space of C(N, n)
instances with N = 40 X40 and n = 200 for FGA and EGA.
The evolution results are shown in Figs. 13 – 15. From the
simulation results, EGA is more superior to FGA in
solving the large mesh optimization problem,

6. Conclusions

In this paper, the surface approximation using a
mesh optimization approach is investigated. A GA-based
method has been shown to be effective in solving the
mesh optimization problems for surface approximation.
This paper proposes an efficient genetic algorithm with a
novel 2-D orthogonal crossover for obtaining the optimal
solution to the surface approximation problem using a
triangular mesh. It was shown empirically that the
proposed efficient genetic algorithm outperforms the
existing GA-based method in solving the mesh
optimization problem in terms of the approximation
quality and the convergence speed, especially in solving
large mesh optimization problems.

References

[1] T. Ueshiba and G Roth, “Generating Smooth Surfaces
with Bicubic Splines over Triangular Meshes: Toward
Automatic Model Building from Unorganized 3D
Points,” Second International Conference on 3-D
Digital Imaging and Modeling, pp. 302–311, 1999.

[2] H. Suzuki, S. Takeuchi, and T. Kanai, “Subdivision
Surface Fitting to a Range of Points,” Seventh Pacific
Conference on Computer Graphics and Applications,
vol. 322, pp. 158–167, 1999.

[3] F. G. Uler and O. A. Mohammed, “A 3-D Finite
Element Mesh Generator for Complex Volumes,”

IEEE Transactions on Magnetics, vol. 3052, pp.
3539–3542, 1994.

[4] W. I. Gross, O. G. Staadt, and R. Gatti, “Efficient
Triangular Surface Approximations Using Wavelets
and Quadtree Data Structures,” IEEE Transactions on
Visualization and Computer Graphics, vol. 22, pp.
130–143, 1996.

[5] L. P. Rodriguez, “Surface Approximation of 3D
Objects from Irregularly Sampled Clouds of 3D
Points Using Spherical Wavelets,” International
Conference on Image Analysis and Processing, pp.
70–75, 1999.

[6] R. Grosso, C. Lurig, and T. Ertl, “The Multilevel
Finite Element Method for Adaptive Mesh
Optimization and Visualization of Volume Data,”
Visualization, vol. 563, pp. 387–394, 1997.

[7] Y. Fujiwara and H. Sawai, “Evolutionary Computation
Applied to Mesh Optimization of a 3-D Facial
Image,” IEEE Transactions on Evolutionary
Computation, vol. 32, pp. 113–123, 1999.

[8] M. Hrinivas and L. M. Patnaik, “Adaptive
Probabilities of Crossover and Mutation in Genetic
Algorithms,” IEEE Transactions on System, Man and
Cybernetics, vol. 24, no. 4, pp. 656–667, 1994.

[9] Shinn-Ying Ho, L.-S. Shu, and H.-M. Chen,
“Intelligent Genetic Algorithm with a New Intelligent
Crossover Using Orthogonal Arrays,” Genetic and
Evolutionary Computation Conference, pp. 289–296,
1999.

[10] N. R. Pal, S. Nandi, and M. K. Kundu, “Self
Crossover: a New Genetic Operator and Its
Application to Feature Selection,” International
Journal of Systems Science, vol. 29, pp. 207–212,
1998.

[11] S. Taguchi and S. Konishi, Orthogonal Arrays and
Linear Graphs. Dearbon MI: America Supplier
Institute, 1987.

 α’ β’
 (a)
Fig.3. (a) Crossover with maintaining
feasibility uses a repair operator. (b) The
chromosomes correspond to (a).

6

•
•

•
•

•
•

•

•

•
•

•

Fig. 2. (a) Crossover swaps points of two parents over a
chosen gridline.and (b) The chromosomes correspond to (a).

L1: 1120 10 1 1 10 100 10 1 L2: 2101 01 1 1 10 100 10 1

 (a) (b)
Fig. 4 A configuration of a 8x8 gird plane with l = 2. (a) L1: 1120101110100101 (b) L2:2101011110100101.

Table 1. OA ()9
16 2L and factor analysis.

3 1 1 1 2 2 2 2 1 1 y3 58

 4 1 1 1 2 2 2 2 2 2 y4 56
5 1 2 2 1 1 2 2 1 1 y5 60
6 1 2 2 1 1 2 2 2 2 y6 58
7 1 2 2 2 2 1 1 1 1 y7 58
8 1 2 2 2 2 1 1 2 2 y 8 56
9 2 1 2 1 2 1 2 1 2 y 9 60
10 2 1 2 1 2 1 2 2 1 y 10 58
11 2 1 2 2 1 2 1 1 2 y 11 58
12 2 1 2 2 1 2 1 2 1 y 12 56
13 2 2 1 1 2 2 1 1 2 y 13 60
14 2 2 1 1 2 2 1 2 1 y 14 58
15 2 2 1 2 1 1 2 1 2 y 15 54
16 2 2 1 2 1 1 2 2 1 y 16 52

Table 2. Results of OAX

1 2 3 4 5 6 7 8 9 E2

C1 010 1 001 0011 100001210010 010200100 1011211002000100121000 010101 1010 56
C2 001 1 001 0200 000000102102 000011011 0000000101121011110221 020100 0002 58
D1 001 1 001 0200 100001210010 010200100 0000000101121011110221 020100 1010 52
D2 001 1 001 0200 000000102102 010200100 0000000101121011110221 020100 1010 54

Factors

Exp. No. 1 2 3 4 5 6 7 8 9 yt(E2)

1 1 1 1 1 1 1 1 1 1 y1 56

2 1 1 1 1 1 1 1 2 2 y2 54

S j1(10-3) 2.469 2.469 2.566 2.387 2.566 2.566 2.469 2.387 2.474
S j2(10-3) 2.479 2.479 2.382 2.561 2.382 2.382 2.479 2.561 2.474

MED(10-6) 9.844979.84497183.385174.2441183.3853183.38539.845215174.24410.704102

Rank 3 2 7 6 9 8 4 5 1

•
•

•
•

•

•
••

•

••

7

00100001 00001000
00000000 00000000
0000000000000000
0001101000000000
1010000000000000
0010100000100000
0100000000010000
0000110000000000
0000000110100000
1000100001001000
0001000000100000
0010000000000000
0010000000000001
0101010000000000
0000000000001000
0001000101000000

0000000100000100
0000010000000000
1000000000000000
1000000000000000
0010000000000100
0000001101001000
0000001000000000
0000000001001001
0000000000000010
0000000000000000
0000001100000000
0010000001001001
0000000100000000
1001000111010011
0000000000000010
0001000000000001

 Fig. 5. A given 16x16 (a) (b)

C1=(010 1 001 0011 100001210010 010200100 1011211002000100121000 010101 1010)
C2=(001 1 001 0200 000000102102 000011011 0000000101121011110221 020100 0002)

 Fig. 6. Two configurations. (a) p1 (b) p2 (c) Chromosomes C1 and C2

 (a) (b)

Fig. 7. Comparison results of EGA and FGA.

Fig. 8. A simple function mesh with a Fig. 9. The convergence speed and accuracy

search space.(900,160) of EGA and FGA for fig.8.

(a) (b)

Fig. 10. The Delaunay triangulation after 50 generations using by (a) FGA and (b) EGA.

0000000100000100
0000010000000000
1000000000000000
1000000000000000
0010000000000100
0000001101001000
0000001000000000
0000000001001001
0000000000000010
0000000000000000
0000001100000000
0010000001001001
0000000100000000
1001000111010011
0000000000000010
0001000000000001

8

(a) (b)
Fig. 11. Reconstructed surfaces using trianglar meshes for approximating the surface of fig. 8, (a) FGA and (b) EGA.

Fig. 12. A 3-D image in two different poses.

(a) (b) (c) (d)
Fig. 14. Location of points: (a) after 1 generation by EGA, (b) after 50 generation by EGA, (c) after 1 generation by FGA,

and (e) after 50 generation by FGA.

(a) (b) (c) (d)

Fig. 15. The reconstructed 3-D images: (a) after 1 generation by EGA, (b) after 50 generation by EGA, (c) after 1

generation by FGA, and (e) after 50 generation by FGA corresponding to Fig. 14.

Fig. 13. The convergence speed and the

accuracy of EGA and FGA. For

