
1

SHRINKING LEVELS OF GENERIC PROGRESSIVE MESHES
WITH TRIANGLE BUDGET OR ERROR CONTROL

Shu-Kai Yang, Chin-Chen Chang, Ming-Fen Lin, Ding-Zhou Duan

Computer & Communications Research Laboratories
Industrial Technology Research Institute Hsinchu, Taiwan, R.O.C.

Email: sagitta@itri.org.tw, chinchen@itri.org.tw, mingfen@itri.org.tw, dwin@itri.org.tw

ABSTRACT

In modern virtual reality applications in electrical
commerce or virtual environments, triangular meshes are
often considered to be multi-resolutional for transmitting
and displaying complex models through Internet or
rendering large-scaled scenes in real-time. There are
already some mesh simplification algorithms developed to
generate progressive meshes that convert a single-
resolution triangular mesh into a base mesh with a
sequence of refinement operations. Sometimes the length
of sequence might be too long and the geometric
modification of a single refinement step might be too slight.
In this paper, we present a generic progressive mesh
representation so that we can convert progressive meshes
generated by different algorithms into the same
representation. We also present a series of post-processing
rules to shrink the refinement sequences of generic
progressive meshes with the triangle budget or error
controlled for each level. We call the procedure level
shrinking. It improves the efficiency of level-of-detail
modulation of progressive meshes if they are supposed to
be used in real-time rendering systems.

1. INTRODUCTION

The obvious integral trend of virtual reality is to build
virtual environments that may be integrated with
networking technology or several kinds of input device.
Scientists may perform simulations in virtual environments
rather than in the real world to reduce the cost and material
wastage. Home users may simulate actions in virtual
environments for consumption or entertainment. All these
functions described above require the ability of systems in
rendering large-scaled scenes in real-time. Most virtual
environment systems are integrated with visibility culling
techniques to avoid the unnecessary computations and
rendering cost of graphics hardware. During the screen
displaying for a user in an environment, systems may only
render visible portions of the scene. Sometimes the visible
objects are composed of complex models, so the cost of
rendering these objects is still too expensive and the frame
rate is still too slow. Level-of-detail technology is exploited
in virtual environment systems to solve such situations. It
is to use multi-resolutional models such as progressive
meshes instead of single-resolutional complex models in

the scene, to render visible objects near the user’s viewing
point in finer resolutions, and to render those far away
from the user’s viewing point in coarser resolutions.

After applying a simplification process to a triangle mesh,
we get a coarse mesh called base mesh in which the
features of the original mesh should be highly preserved.
We also get a sequence of refinement operations by
recording the modification of every simplification step.
The sequence can be used to convert the base mesh to the
original mesh. A base mesh together with a refinement
sequence is called a progressive mesh. If a progressive
mesh is composed of a base mesh and n refinement
operations, we say that the mesh has n+1 resolution levels.
Converting models into progressive meshes is a
preprocessing procedure, and virtual environment systems
decide the rendering resolutions of models in run-time. For
this usage, the data structure of progressive meshes should
be efficient for resolution modulation, so we have to be
able to control the amount of resolution level of
progressive meshes. Besides, systems may decide
resolutions of models according to their distances to the
user’s location and their errors to the original models.
System may also have to control triangle amounts of
models because of limitation of the rendering ability of
hardware. So we need to possess the triangle amount and
error of each level of every progressive mesh. Sometimes
the production of mesh simplification algorithms does not
match our requirements. Maybe the length of refinement
sequence of a progressive mesh is too long and it takes to
much time to modulate the level of details of the mesh. In
this paper, we present a generic progressive mesh
representation so we can convert progressive meshes
generated by different algorithms into the same
representation. For the generic progressive mesh
representation, we also present a procedure to reduce the
amount of levels of a mesh with the triangle amount or
error of each level possessed. By exploiting the procedure,
we can improve the efficiency of resolution modulation of
progressive meshes generated by any algorithm to fit our
uses in virtual environment systems.

2. RELATED WORKS

2.1. Vertex Clustering

As shown in Figure 1, the method uniformly divides the

mailto:sagitta@itri.org.tw
mailto:chinchen@itri.org.tw
mailto:mingfen@itri.org.tw
mailto:dwin@itri.org.tw

2

space occupied by a triangle mesh into cells, selects a
representative vertex with the highest visual importance for
each cell, and merges all vertices to these representative
vertices [4]. The method may eliminate lots of vertices in
single step, but the preservation of model features is not
good because it does not keep more vertices at these
characteristic portions.

Figure 1: Vertex clustering.

2.2. Edge Collapsing

For each edge of a model, the method evaluates the cost of
merging its two end vertices and sorts all edges according
to their cost values. Then it selects the edge with the lowest
cost and merges its two vertices repeatedly [10]. The
operation shown in Figure 2 is called an edge collapsing.
Its inverse operation is called vertex split. A simplified
mesh together with a sequence of vertex split operations is
the representation of progressive meshes generated by
edge-collapsing algorithms [8].

Figure 2: Edge collapsing and vertex split.

Edge-collapsing algorithms make good preservation for
model features but one edge collapsing removes two
triangles at most. If a mesh is composed of m triangles and
is simplified into a coarse mesh of m0 triangles, the
generated progressive mesh will have n=(m – m0)/2 vertex
splits at least because one vertex split increases two
triangles at most.

2.3. Error Estimation

The Euclidean distance between a point x and a set Y is
defined by

),(),(inf yxdYxd
Yy∈

= , (2.3.1)

where d(.,.) is the Euclidean distance between two points in
R3. We can define the distance dE(X,Y) from a set X to a set
Y by

),(),(sup YxdYX
Xx

Ed
∈

= . (2.3.2)

The Hausdroff distance dH(X,Y) in R3 is defined by

 dH(X, Y) = max(dE(X, Y), dE(Y, X)). (2.3.3)

We may use the Hausdroff distance between a simplified
mesh and the original mesh as the error of the simplified
mesh [11]. Some people also use the maximum distance of
vertex shifting as the error caused of mesh simplification.
There are already some algorithms developed to estimate
the difference between a simplified mesh and the original
mesh.

2.4. Vertex Decimation

Figure 3: Vertex classification.

The method classifies all vertices into five categories listed
in Figure 3. Then it removes simple vertices that are nearly
co-planar with their adjacent vertices and re-triangulates
the holes caused of these vertex removals. In other words,
the method replaces some sub-surfaces of the original
mesh by sub-surfaces composed of fewer triangles. Some
algorithms use edge collapsing to close the holes caused of
vertex removals instead of re-triangulating them. A
progressive mesh generated by vertex decimation
algorithms could be a base mesh together with a sequence
of inverse sub-surface replacements.

3. GENERIC PROGRESSIVE MESH

REPRESENTATION

The notion of progressive meshes described in this paper
can be written as

“Triangular meshes whose resolution
can be modulated by modifying partial
geometry.”

For a progressive mesh M, M l denotes the mesh M in level
l. Let M 0 denote the base mesh. Rl denotes the refinement
that makes M l -1 become M l. Cl denotes the inverse
operation of Rl. Using these notations, a progressive mesh
M can be treated as a finite state machine shown in Figure
4. A progressive mesh M with n refinements has n+1 states
and can change its state via Rl and Cl where l = 0, …, n.

Figure 4: Mesh states.

Let ti
l denote the triangle of index i in the state of level l. It

is trivial that that if Rl+1 does not have any operation on ti
l

then ti
l+1 = ti

l. We define the three following commands:

3

delete(t) : to remove triangle t from the current mesh,

add(t): to add a new triangle t to the current mesh,

replace(t, u, v) : to replace the corner vertex u of
triangle t by vertex v.

We can categorize progressive meshes generated by all
kinds of mesh simplification algorithms into two categories.
One is vertex-split progressive meshes which may be
generated by some edge-collapsing or vertex-clustering
algorithms. The refinement operation for vertex-split
progressive meshes is splitting some vertices to open some
holes on the mesh and fitting some new triangles into these
holes. Such an operation can be achieved by using replace
and add commands. Rl in such progressive meshes can be
written as “replace(ti

l-1, u, v) for some indices i included in
M l-1 and add(tj

l) for some indices j not included in M l-1”.
The other category of progressive meshes is subsurface-
replacing progressive meshes which may be generated by
vertex decimation algorithms. The refinement operation for
subsurface-replacing progressive meshes is removing some
sub-surfaces and fitting finer sub-surfaces into the holes
caused of these removals. Such an operation can be
achieved by using delete and add commands. Rl in such
progressive meshes can be written as “delete(ti

l-1) for some
indices i included in M l-1 and add(tj

l) for some indices j not
included in M l-1”. Considering these two categories of
progressive meshes and hybrid cases, we describe our
generic progressive mesh representation as

“A base mesh together with a sequence
of refinement operations that are
composed of delete, replace, and add
commands.”

We can say that every refinement Rl is a set of commands
such as delete(ti

l-1), replace(ti
l-1, u, v), and add(tj

l) for some
indices i included in M l-1 and for some indices j not
included in M l -1.

4. LEVEL SHRINKING

In the previous section we have discussed that a
progressive mesh can be treated as a finite state machine.
To shrink the refinement sequence of a progressive mesh
can be thought as to remove some states of the finite state
machine. As shown in Figure 5, we delete state M l and
derive R’l+1 from Rl and Rl+1 for the progressive mesh M.
We can shrink the refinement sequence of a progressive
mesh by performing such state deletions repeatedly.

Figure 5: Removing state M l of progressive mesh M.

4.1. Cases and Rules

To delete state M l, we merge Rl and Rl+1 and create R’l+1.
Since the input of R’l+1 is M 1- and the output is M l+1, any
triangle ti touched by R’l+1 does not need to pass through
the state of ti

l and can be converted to ti
l+1 directly. Some

commands in Rl and Rl+1 processing the same triangles may
be eliminated or converted while creating R’l+1. Table 1
lists the cases and their corresponding rules of re-writing
commands in Rl and Rl+1 processing the same triangle ti. In
case 1 through case 6, if ti is only touched by one of Rl and
Rl+1, we have to duplicate these commands in R’l+1. In case
7, if we add ti in Rl and may apply vertex replacements in
Rl+1, we only have to add ti which is already after vertex
replacements directly. In case 8, if we apply vertex
replacements that do not replace the same vertices both in
Rl and Rl+1, we can not eliminate any one of these
commands. But in case 9, if some vertex replacements
replace the same vertices, we only have to put commands
that replace vertices of ti

l-1 by vertices of ti
l+1 directly in

R’l+1. In case 10 and 11, if ti is deleted in Rl+1, all commands
processing ti in Rl can be canceled in R’l+1.

Commandsti
Case Rl Rl+1 R’l+1

1 add(ti
l) add(ti

l+1)
2 add(ti

l+1) add(ti
l+1)

3 replace(ti
l-1, u, v) replace(ti

l-1, u, v)
4 replace(ti

l, u, v) replace(ti
l-1, u, v)

5 delete(ti
l-1) delete(ti

l-1)
6 delete(ti

l) delete(ti
l-1)

7 add(ti
l) replace(ti

l, u, v) add(ti
l+1)

8 replace(ti
l-1, u, v) replace(ti

l, x, y) replace(ti
l-1, u, v)

replace(ti
l-1, x, y)

9 replace(ti
l-1, u, v) replace(ti

l, v, w) replace(ti
l-1, u, w)

10 replace(ti
l-1, u, v) delete(ti

l) delete(ti
l-1)

11 add(ti
l) delete(ti

l)
Table 1: Cases and rules for creating R’l+1.

4.2. Benefits

The cost of refining a mesh is related to the amount of
commands required, not related to the amount of resolution
levels. If we can not reduce the amount of commands, we
do not get any benefits in a level shrinking procedure.
Considering the cases listed in Table 1, in case 1 though
case 6 and case 8, any command required by Rl or Rl+1 is
also required by R’l+1, so we can not get any benefits. In
case 7, 9 and 10, we merge pairs of commands in Rl and
Rl+1 to single commands in R’l+1, so the cost is reduced to a
half. In case 11, we do not leave any command in R’l+1, so
the cost is avoided completely. Case 7 though 11 occur
while the modifying areas of Rl+1 overlaps those of Rl and
the level shrinking procedure earns benefits in processing
these cases.

4.3. Triangle Budget Schemes

For a progressive mesh M with n levels, let ml denote the
triangle amount of M l and ∆ml denotes the triangle amount
increased by Rl. Note that ∆m0 be zero although there is no

4

R0. We know that m0 is the triangle amount of the base
mesh and

 ∑∆
=

+=
l

k
kl mmm

1
0 . (4.3.1)

Scheme 1: Select a pair of (Rl, Rl+1) with the minimum
(∆ml + ∆ml+1) and delete state M l repeatedly until the
number of levels is reduced to a user-specified threshold.
Then ∆m of each level l will converge to a constant in the
resulting progressive mesh. In other words, triangle amount
ml will increase linearly in each level l while refining the
resulting progressive mesh.

Scheme 2: For a given increasing rate µ of triangle amount,
we can derive the triangle budget Bl for each new
resolution level l of the resulting progressive mesh by

)1(0 µ+= l
l mB (4.3.2)

 repeatedly until Bl ≥ mn holds, where n is the number of
levels of the original progressive mesh and B0=m0. For
each Bl, find all mesh state M k satisfying Bl-1 < mk ≤ Bl and
preserve the mesh state with the maximum mk among these
states and delete other states. After the procedure, in each
level of the resulting progressive mesh, the triangle amount
will be increased with a fixed rate µ while refining the
mesh.

4.4. Error Control Schemes

For a progressive mesh M with n levels, let el denote the
error of M l. We know that e0 is the maximum error of M
and en is zero.

Scheme 1: If we select a pair of (Rl, Rl+1) with minimum |
el – el +1 | and delete state M l repeatedly until the number of
levels is reduced to a user-specified threshold, then the
states in which the error of M is reduced rapidly are left.
The resolution levels of the resulting progressive mesh will
fit in some states of the original state sequence that are
most visually different from each other.

Scheme 2: For a given reducing rate µ of error, we can
derive the error threshold El for each new resolution level l
of the resulting progressive mesh by

)1(0 µ−= l
l eE (4.4.1)

repeatedly until El < en-1 holds. We give every mesh state a
preserved flag which is initialized to be false. First, mark
the preserved flags of M 0 and M n true. For each El, find
the mesh state Mk with the largest ek satisfying El ≤ ek, and
then mark the preserved flag of M k true. Find all mesh
state M k satisfying El < ek < El-1, and delete every M k

among these states whose preserved flag is false. After the
procedure, in each level of the resulting progressive mesh,
the error will be reduced by a fixed rate µ while refining
the mesh.

4. RESULTS

We have tested the improvement of efficiency of refining
progressive meshes after level shrinking for some models
and the results are listed in Table 2. Our experimental
platform is a PC with an AMD® K6-II 400CPU running
Microsoft® Windows 2000 Professional OS. As shown in
Table 2, the level shrinking procedure reduces the refining
time for each model. How much time reduction we can get
depends on the distribution of processing areas of
commands in the refinement sequence and the distribution
may depend on the mesh simplification algorithms and the
curvature properties of the geometry of original models.

Triangles Refining time (sec)Model
name Max Base

levels
Unshrinked 1000 levels 100 levels

Beethoven 5030 500 1655 0.000885 0.000828
(-6.44%)

0.000657
(-25.76%)

Cow 5804 498 1602 0.001040 0.000992
(-4.62%)

0.000875
(-15.87%)

Spider 9286 500 1748 0.001865 0.001660
(-10.99%)

0.001340
(-28.15%)

Dog 33885 497 9023 0.005108 0.003922
(-23.22%)

0.003685
(-27.86%)

Bunny 69451 495 8677 0.021500 0.017975
(-16.40%)

0.016250
(-24.42%)

Table 2: Experimental results.

6. CONCLUSION

We present a generic progressive mesh representation and a
series of rules of shrinking the levels of generic progressive
meshes. We also present some schemes of shrinking levels
with triangle budget or error control. The technique can be
used to improve the efficiency of resolution modulation of
progressive meshes and make them more useful in virtual
environment systems.

REFERENCE

[1] “ISO/IEC 14496-2 MPEG-4 Visual Working Draft
Version 2 Rev. 5.0”, SC29/WG11 document number
W2473, 16 Oct. 1998.

[2] Algorri, M. M. and Schmitt F. “Mesh Simplification”,
EUROGRAPHICS’96, Vol 15, 3(C) :77-86, 1996.

[3] Cohen, J., Olano, M., Manocha, D. “Appearance-
Preserving Simplification”, Computer Graphics
(SIGGRAPH’98 proceedings), 115-122, 1998.

[4] DeHaemer, M. J. and Jr., Zyda, M. J. “Simplification
of Objects Rendered by Polygonal Approximations”,
Computer Graphics, Vol.15, 2:175-184, 1991.

[5] Garland, M. and Heckbert, P.S. “Surface
Simplification using Quadric Error Metrics”,
Computer Graphics (SIGGRAPH’97 proceedings) ,
209-224, 1997.

[6] Garland, M. and Heckbert, P.S. “Simplifying Surfaces
with Color and Texture using Quadric Error Metrics”,
IEEE Visualization’98 proceedings, 263-269, 1998.

5

[7] Gueziec, A., Silva, C., Taubin, G. “A Framework for
Streaming Geometry in VRML”, IEEE Computer
Graphics and Applications, special issue on VRML,
March-April 1999.

[8] Hoppe, H. “Progressive Meshes”, Computer Graphics
(SIGGRAPH’96 proceedings), 99-108, 1996.

[9] Hoppe, H. “View-Dependent Refinement of
Progressive Meshes”, Computer Graphics
(SIGGRAPH’97 proceedings), 189-198, 1997.

[10] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J.,
and Stuetzle, W. “Mesh Optimization”, Computer
Graphics (SIGGRAPH’93 proceedings), 19-26, 1993.

[11] Klein, R., Liebich, G., and Strasser, W. “Mesh
Reduction with Error Control”, Visualization '96.
Proceedings, 311–318, 1996.

[12] Low, K. L. and Tan T. S. “Model Simplification
Using Vertex-Clustering”, Symposium on Interactive
3D Graphics (1997), 75-81, 1997.

[13] Popoviċ, J. and Hoppe, H. “Progressive Simplicial
Complexes”, Computer Graphics (SIGGRAPH’97
proceedings), 1217-224, 1997.

[14] Rossignac, J. and Borrel, P. “Multi-resolution 3-D
Approximations for Rendering Complex Scenes”, In
Falcidieno, B. and Kunii, T.L., editors, Modeling in
Computer Graphics (1993), Springer-Verlag, Berlin,
455-465, 1993.

[15] Ronfard, R. and Rossignac J. R. “Full-range
Approximation of Triangulated Polyhedra” ,
EUROGRAPHICS’96, Vol. 15, 3:C:67-76, 1996.

[16] Schroeder, W. J. “A Topology Modifying Progressive
Decimation Algorithm”, IEEE Visualization’97
proceedings, 205-212, 1997.

[17] Schroeder, W. J., J. A. Zarge. And Lorensen, W. E.
“Decimation of Triangle Meshes”, Computer Graphics
(1992), 26(2):65-69, 1992.

[18] Taubin G., Gueziec A., Horn W., Lazarus F.
“Progressive Forest Split Compression”, Computer
Graphics (SIGGRAPH’98 proceedings), 123-132,
1998.

[19] Turk, G. “Re-tiling Polygonal Meshes”, Computer
Graphics (SIGGRAPH’92 proceedings), 26(2):55-64,
1992.

 …smooth transition…

Figure 6: A level-shrunk progressive mesh of a cow model.

(triangle amount increases by 10% for each level)

