Performance Study on Video Placement and Load Balancing of Distributed

Video-On-Demand Systems
Jonathan C. Lu and Chung-Hao Chen

Department of Computer Science and Information Engineering

Fu-Jen Catholic University
Taipei, Taiwan, R.O.C.

e-mail: {jonlu, armain86}@csie.fju.edu.tw

Abstract

Distributed VOD server is a solution to the
problem of the capacity limit posed by single
server system. There needs to be an algorithm for
the head-end to use to evaluate the current status
of traffic loading in the whole VOD system, so
that it can decide whether a new user request
should be served locally, forwarded to a remote
server, or simply be rejected. The computation is
further complicated by the fact that server
capacities and communication costs between
different servers may be variable.

In this paper, we first define a mathematical
model used to analyze the performance of our
VOD systems. We then present an algorithm to
compute the number of copies each film should
be duplicated, as well as where to place them in
order to gain maximum revenue. Numerical
results show that our algorithm offers
improvement over Chen’s algorithm [7]. We also
present a method to evaluate whether a new user
request should be served locally, or forwarded to
a remote server, or simply be rejected. It can be
seen under the prerequisite of maximal revenue
that while a local video server is too busy to
serve a local request, it is a good idea to send it
to a remote video server which has extra capacity

to process it.

Keyword:

Video-On-Demand, Film Duplication and

Placement, Load Balancing, Performance

Analysis.

1. Introduction

These years there have been a great number of
research activities on multimedia applications
because of the rapid advances in broadband
networking, mass storage, and video/audio
encoding such as MPEG technologies. Among
on VOD have
especially received a lot of attention in both the
industries and academia [1][2][3][8][13][14][15].

The main bottleneck, however, resides in the

them, the research results

development of large video storage systems.
[4][5][6][71[12][17] have

suggested putting in a video server multiple disks,

Some researches

which are divided into several clusters. But most
of those solutions is to stripe every video file
over all servers. The advantage of this approach
is that data retrievals can be interleaved as to
achieve load balancing between clusters.
However, the system is not reliable, since the
failure of one server will result in data loss.
Another idea [6] [19][20] is to place buffer
space between the video server and the client’s
set-top box. Sufficient amount of video data can
be first downloaded to the buffer via high-speed
communication networks before being further
passed down to the client side and played back.
This scheme not only smoothes the playback by

reducing the impact of delay jitter caused by

network traffic fluctuations, but the video server
now does not need to be tied up to the clients as
long as before, thus has more effective capacity
and can serve more customers. Nonetheless, it
may not be cost-effective to construct many
large-sized buffers, compared with the cost of
disk storage.

Because the number of users a single video
server can serve is limited, some research
[9][10][11][18][21] had
distributed VOD servers.

started to study
The cost of this
approach is extra disk space. Though video
programs has to be duplicated at suitable
intermediate levels, depending on the trade-off
among the bandwidth, storage cost, and load
balancing. At the same, each switch must decide
whether a new request should be served by the
local server, or by a remote server when the local
server does not have the requested program.
Therefore, we produce some methods to
resolve above problem in this paper. The rest of
the paper is organized as follows: In section 2,
we define the adopted network model and cost
function. In section 3 the film placement and
duplication algorithms for our network model are
described. In section 4 we present a method to
decide whether a new user request should be
served locally, remotely, or simply be rejected.

Finally, section 5 gives the conclusion.

2. The Network Model and The Cost Function

In this section we define our network
architecture as well as the mathematical models
and assumptions that we will apply to evaluate

the performance of the VOD system.

2.1 The Network Model
We assume that there are S communities in the

systems, which are denoted by C;= {1 = ; =

S }. Each community consists of video servers,
users and switching equipment connecting the
community to the others as shown in Figure 2.1.
Let U(i) represent the number of users in C,.
Each video server has certain capacity for storing
video films, and users in a community may
generate requests to ask a particular film to be

downloaded and displayed.

Switch

Viden cervel”

Figure 2.1 VOD network model

2.2 The Cost function

Let cost(i,j) represent the communication cost
between C; and C;. We assume that no
communication cost will be incurred if a request
is served by the video server (called its local
server) in the same community. For community
C;, let CAP(i) represent the capacity (in number
of films) of video storage, and fp(i,k) denote the
number of copies of the k™ film placed at the

video server in C;. Thus, we can say:

; fo(ik) = CAP(i) 2.1)

Where F represents the number of different films
available in the whole VOD system.

We assume that the viewing probability of a
film could be different in different communities
depending on its local popularity. The sum of the
viewing probabilities of all the films available in

the system is equal to 1 in each community. Let

vp(i,k) denote the viewing probability of the k™
film at C;. We have:

F

Z w (i, k) =1 (2.2)

Let A

generates a viewing request, and req(i,k) denote

represent the rate an idle user

the aggregate rate of viewing request for the k™
film in C;, where
req(i,k) =U (@) *x A Xvp(i,k).

Since the communication bandwidth between
the user and the video server is usually much
faster than the client's playback rate, each copy
of the film at the server disk is able to serve
multiple client requests simultaneously. Given
this observation, we will model the behavior of
each film and its viewing requests as an
M/M/m/R queue(see appendix) [16], where the
request arrival rate is equal to req(i,k), and the
service rate « is assumed to be known. We
further assume that a copy of film stored on disk
handle b,

simultaneously. The value b; may be different

at C; can viewing requests
from server to server depending on CPU and the
speed of hard disk, etc. The system space, R,
which equals fp(i,k) xb;, represents the number
of viewing requests that can be served
simultaneously by the fp(i,k) copies of the k™
films placed at the video server. Also m is set to
be equal to R, which means that there is no
waiting room for any accepted request, because
typically a user would expect a film to start
playing very soon after his request is accepted.
The performance of a video server is mainly
limited by the number of films itself has. The
CPU and network connection is assumed to be
very fast that they will never become the
bottleneck. We next define our objective
functions for two cases:

Case (I):

A new request generated by users in C; will
either be served or rejected by its local video
server, i.e., no request is forwarded. We have:

TR = iki[l — P)] X reqli k)X Re (2.3)
where 7R is the total revenue collected, Pz(i,k)
means the blocking probability for an arbitrary
viewing request for the k™ film in C, and R,
denotes the fee a user pays for watching the k"
film .

Case (II):

A new request from users in C; could be
transferred to and served by video servers in a
different community C; (i # 7). We have:

S Sl Py (i, k)]xreq (i,k) % Re — total _ communicagon_cost

i=1k=1

(2.4)

where: req’(i,k) is the composite viewing rate for
the k™ film in C; . This value may be different
from the original req(i,k), because some fraction
of req(i,k) may be forwarded to a different video
server, while requests generated at other
communities may also be forwarded to C;. Py (i,k)
means the blocking probability for req (ik).
When a request generated at C; is redirected and
served by video server at C;, the communication
cost incurred is equal to cost(ij) as defined
previously. The total communication_cost
represents the aggregate communication cost

incurred in the overall system.

3. The Film Duplication And Placement
Algorithms

In this section we will present both a
duplication algorithm for calculating how many
copies the i™ film should be duplicated, and a
placement algorithm for determining where to
VOD

Numerical results are shown to evaluate the

place those copies in our system.

performance of the algorithm.

3.1 Film Duplication Algorithm

Our duplication calculation follows the basic
idea that the higher a film viewing rate, the more
the number of its duplicates. The number of
duplicates of the k™ film, denoted by fe(k), can be

calculated as follows:

Initially fe(k) = 1, | =k=F:
While (total _capacity # 0)
Choose the film k which provides the maximum value for

S

> U (D)% wp (k)
fe (k)

Set fc(k) = fe(k)+1 and total_capacity = total capacity -1;

Where fotal capacity is the total storage capacity
of our VOD system.

For approach 1, the idea is that the number of
copies of a film placed at C; should be
proportional to its viewing rate at C;. Our method

is defined as following:

IList fc(k)'s in a nonincreasing order and put them in a queue;
While (queue is not empty)
Remove the first item from queue and suppose that it is fc(k),
IList fc(k)'s in a nonincreasing order and put them in a queue;
While (queue is not empty)
Remove the first item from queue and suppose that it is fc(k),
IList fc(k)'s in a nonincreasing order and put them in a queue;
While (queue is not empty)
Remove the first item from queue and suppose that it is fc(k),
ISet fp(i,k) =0, | =/=S;
While (fe(k) # 0)
Let community i be the one where the placement of a copy of film k|
produces the maximum increase in TR based on equation (2.3);

Set fp(i,k) = fp(ik) + 1, CAP(i) = CAP(i) -1 and fe(k) = fe(k) - 1;

If (CAP(i) equals 0) remove community i from consideration;

where fp(i,k) presents the number of copies of the
k™ film to be placed at C;. After the calculation,

we have:

s
S f(ik)= fe(k) (3.1)
i=1
and
i i Jfp(i k)= total _ capacity (3.2)

On the other hand, for approach 2, the basic
principle is to place a new film copy in the
incremental

community where maximum

revenue can be generated.

3.3 Numerical Results

Below we present some performance results of
our algorithm compared to Chen and Lin's. In our
numerical experiments using M/M/m/R model,
we set £=0.3 and assumes that a copy of a film
can serve 5 requests simultaneously (i.e. K = 5 x
(k). The viewing fee R; is randomly drawn
from the interval between 2 and 3. A denotes the
average number of requests each user generates
in a unit of time. 7R stands for the total revenue
calculated by Equation (2.3). Since we assume
that the viewing probability of a film is different
in different communities, the viewing probability
vp(i,k) is drawn from a geometric distribution,
where vp(i,k)=(1-Pi)x p/

€0
© /.Tl—n—k
0 —— Qherls algorithm
= —— aproach |
=] -
i // / apch?
i
0 /
10 L 2
0
01 [0 al ols 02 0% 03 03 04 045
A
Community U(i) CAP(i)

C1 80 35
C2 130 45
C3 180 55

Figure 3.1. Total revenue versus load for the
case of three communities
From the numerical results above, it can be seen
that both of our approaches offer improvement
over Chen's algorithm, with approach 2
producing slightly higher revenue than approach
1. Because the conditions on other numbers of S
are similar to the numerical results above, we

only show the results of § = 3.

4. Request Redirection Among Different
Servers

In this section we are to study the case where
switches can communicate with each other. Once
a switch has decided that a new request should be
forwarded to a remote video server, we next need
to know which video server the request should be
forwarded to. The communication cost between
the two servers has to be subtracted from the
total revenue, as shown in Equation (2.4). Also
note that when a remote server agrees to accept a
request sent by another server, the blocking
probability at that server will become larger,
which in turn results in a reduced revenue.

Our objective is to lower communication cost
and to obtain maximum revenue. In this section,
we will divide our problem into two cases. Case
one is that a server will not redirect any of its
local requests unless it does not have the

requested film at its local storage.

4.1 Request Redirection When No Film
On Local Server

In this section we discuss the case 1 where a

local request will be forwarded only if there is no

any copy of the requested film at the local server.

Let ec(i,k) represent the extra capacity that

server in C; can use to process requests for the k™

film forwarded by other servers. Its calculation is

as follows:

If (fp(i,k) =0) then ec(i,k) = -req(i,k)
Else
ec(ik) = fp(i,k)xbix(-req(i, k),
if (ec(i,k) < 0) then ec(i.k) = O;

where ec(i,k) = 0 means that video server in C;
cannot accept any foreign request from the other
video servers. If ec(i,k) < 0, it means that certain
amount of the local requests for the k™ film in C;
should be forwarded to other servers. If ec(i,k) >
0, it means that the video server in C;has extra
capacity to accept remote requests for the k™ film.

Our procedure is as follows:

Consider those pairs where ec(i,k)>0 and ec(j,k)<0,
where i #j, 1 <k =F;

While (pairs still exist)

|Begin {while)}

R
cost(x,y)

R
Ifr(————>
cost(x,y)
Begin (if}

Redirect the amount of W = min{|ec(y,k)|,

ec(x,k), bandwidth(x,y)} from y to x;
Add W Xcost(x,y)to the

value;

1)

total communication_cost;

ec(,k)=ec(y,k)+W;

ec(x,k)=ec(x,k)-w;

bandwidth(x,y)=bandwidth(x,y)-w,

If (ec(x,k)=0) remove any pair including ec(x,k) from
consideration;

If (ec(y,k)=0) remove any pair including ec(y,k) from

consideration

=m=F, between x and y among consideration;

Find the parr, (ec(x,k) , ec(v,k)), that has the maximal

If (bandwidth(x,y)=0) remove any pair(ec(x,m) , ec(v,m)), 1

End {if}
If (ec(v,k)=0) remove any pair including
ec(v,k) from
consideration
If (bandwidth(x,y)=0) remove any
pair(ec(x,m) , ec(ym)), 1 =m=F, between x
and y among consideration;
Else stop;

End {while}

Where bandwidth(i,j) to represent the number of
requests that can be transmitted between C; and

C, per unit time.

4.2 Request Redirection Among Servers
With Heavy Load On Local Server

In this section we will discuss the case 2 where
a server has the requested film may also forward
a local request because it is too busy to handle all
the requests. The whole procedure is roughly the
same as the case one in the previous section,
except that the initialization of ec(i,k) is slightly
different:

ec(i,k) = fp(i,k) xbix «-req(ik);

4.3 Numerical Results

TR stands for the total revenue given in
equation (2.4). The bandwidth(i,j) is randomly
drawn from between 60 to 90. For film
duplication and placement algorithm (approach 1)
and other parameters described in section 3 is
used. Figures 4.1 displays the result at case on e.
On this paper we ignore the cost that video
servers frequently exchange current traffic load

information.

——vithout rag, redirection() — B yithra, rafiration(B) smidionz (4) simiiona (B!
0
®
© » : 8 E
\ e i
4] /
B /
) 7
»
10 %/
0
Q01 (103 01 Qs 02 s 3 03 04 045
A
Community U(i) CAP(i)

C1 42 7
Cz 56 12

F=10films, S =2, «=03 P=02 P=0.15

(2 communities)

Next we present the numerical results for case
2. In our experiment we assume that half of the
video servers are heavily loaded while the other
half are lightly-loaded, and viewing requests may
be forwarded from heavily-loaded servers to
lightly-loaded ones. The label (X)Y) on the
abscissa means that X and Y represent A s for
each of the

heavily-loaded servers and

lightly-loaded servers, respectively.

——vitntrgeddaf) —# vt el vithieg v
smidiond () X smidioa (el @ smidionat @&
j
D
o« o * -
0 — X
% X a
0 * e i
© i)g(/
Eo : / W
0 1
/V
kY
« ¥
D
|z
0
0
QD QL0 Qan Q11 @n @an @an (01 ©40n
A

Community UGi) | CAP®) b;

C, (lightly-loade 20 35 4
d)

C, (heavily-load 130 45 6
ed)

C, (lightly-load 180 55 4
ed)

F=45films, S=3, «=03 P=015,
P=0.1, =005

Figure 4.2 Total revenue versus load for case 2 (3
communities)

The results (casel and 2) show that while a
local video server cannot serve its local requests,
it is a good idea to send it to a remote video
server that has extra capacity. Because the
conditions on other numbers of § are similar to
the numerical results above, we only show the
results of $'=2 and 3.

5 Conclusion

Because the number of a user a single video
server can serve is limited, we had started to
study distributed VOD servers. Therefore, we
defined our network architecture and the
mathematical models. At a time, we presented
both a duplication and placement algorithms,
which offer improvement over Chen’ algorithm.
We also provided an algorithm that can decide
where a new user request should be served and
proved that it is a good idea to send it to a remote

video server that has extra capacity to accept

them.

References

[1] Daniel Deloddere,Willem Verbrbiest, and
Henri Verhille, “Interactive Video On
Demand”, IEEE Communications
Magazine, pp. 82-88, May 1994.

(2]

(3]

[9]

[11]

[12]

[14]

M. Kumar, “Video-server designs for
supporting very large numbers of
concurrent users”, IBM J. RES.DEVELOP.,
VOL.42, NO.2, pp. 219-231, March 1998.
Thomas D. C. Little and Dinesh Venkatesh,
“Prospects for Interactive
Video-on-Demand”,IEEE Multimedia, pp.
14-24, Fall 1994.

B. Ozden, R. Rastogi, and A. Silberschatz,
“Fault-tolerant architectures for continuous
media servers”, in Proceedings of SIGMOD
Conference, 1996, pp. 79-90.

Y. Wang et al., “Video file allocation over
disk arrays for video-on-demand”,
Proceedings of the third IEEE International
Conference on Multimedia Computing and
Systems, June 1996.

J. Leon Zhao, Doron Rotem, and
Su-Shing Chen , “Data Management for
Multiuser Access to Digital Video
Libraries” Journal of Parallel and
Distributed Computing 56, 208 234, 1999
Chen Yu-Tang and Lin Ming-Yi, “Video
Placement and Local Balancing for VOD
Services”, National Conference for
Computing, pp. D105-D110, Taipei, 1997.
W. D. Sincoskie, “System architecture for a
large scale video on demand
service”,Computer Networks and ISDN
Systems, pp. 155-162, (22) 1991.

Frank Schaffa and Jean-Paul Nussbaumer,
“On Bandwidth and Storage Tradeoffs in
Multimedia Distribution Networks”, IEEE
Infocom 95, pp. 1020-1026, 1995.
Chatschik C. Bisdikian and Baiju V. Patel,
“Issues on Movie Allocation in Distributed
Video-on-Demand System”, IEEE ICC ’95,
pp- 250-255,1995.

Giacinto Dammicco and Ugo Mocci,
“Optimal Server Location in VOD
Networks”, IEEE Globecom, pp.
197-201,1997.

Chen Shun-Ang, Liu Xiang-Jun, Huang
Yue-Min, and Ma jin-Gou, “Cluster-Pairing
Data Placement : A Novel Scheme to
Efficiently Utilize Data Transfer Rate of
Zoned-Disk for VOD Servers”, Second
workshop on Real time and Media Systems,
pp. 67-73, Taipei, 1996.

Ren-Hung Hwang and Jang-Jiin Wu,
“Scheduling Policies for an VOD System
over CATV Network”, IEEE Globecom, pp.
438-442,1997.

Ying-Dar Lin, and Chia-jen Wu, and
Wei-Ming Yin, “Pipelined Cyclic Upstream

[14]

[16]

[17]

[19]

[20]

(21]

Ying-Dar Lin, and Chia-jen Wu, and
Wei-Ming Yin, “Pipelined Cyclic Upstream
Protocol Over Hybrid Fiber Coax” IEEE
Network January/February, pp. 24-34,
1997.

A. Mu” fit Ferman and A. Murat Tekalp,
“Efficient Filtering and Clustering Methods
for Temporal Video Segmentation and
Visual Summarization” journal of visual
communication and image representation
Vol. 9, No. 4, December, pp. pp. 336351,
1998

Donald Gross and Carl M. Harris,
Fundamentals of Queueing Theory, Jon
Wiley & Sons, 1974.

Emmanuel L. Abram-Profeta and Kang G.
Shin Emmanuel L. Abram-Profeta and
Kang G. Shin, “A Practical Approach to
Resource Allocation in Video-on-Demand
Servers®, journal of visual communication
and image representation Vol. 9, No. 4,
December, pp. 314-335, 1998

V. 0. K. Li, W. Liao, X. Qiu, and E. W. M.
Wong, “Performance model of interactive
video-on-demand systems”, [EEE J.
Selected Areas Commun. 14, 6, 1996,
1099-1109.

A. Dan et al., “Buffering and caching in
large-scale video servers”,
Compcon__Technologies for the
Information Superhighway, Digest of
Papers, Jan. 1995, pp. 217 _224.

D. J. Makaroff and R. T. Ng, “Buffer
sharing schemes for continuous-media
systems”, Inform. Systems 20(6) 1999,
445 464.

A. Dan, M. Kienzle, and D. Sitaram, “A
dynamic policy of segment replication for
load Dbalancing in video-on-demand
servers”, ACM/Springer Multimedia System
3, 1995, 93-103.

