ZP N THUEZHFERER

BWYE

Proceedmgs of National Computer Symposium 1995

A AT % B FCORDIC#H E

ke pizadia

NEW CORDIC-BASED COORDINATE TRANSFORMATION
ALGORITHMS USING VARIABLE FACTORS®

ﬁ\ 75 f—

Brx

P

Hsiu-Feng Lin, Hao-Yung Lo, Tso-Bing Chang

Y REERTAR T
Institute of Information Engineering, Feng Chia University
Wen-Hwa Road 100, Taichung

W

ez S Hl T RAgEETS
CORDIC*M&%EHB’JF t“ﬁ?ﬁﬂ o U EE
ERVEAERE IR (AR R RYGER
EAEEEEBAIHIEE BEEGER
i T s E T LI U 2 8% - 25
_ D%CPW—_T{#U*;WE@%ETEE%EN)G Yo
99‘,'/(,7_%? HTRESLHEINTM TR
:: o Bt m Y AEE TR %JFBE‘—B*W .
AR S E i CORDICTEE mHI1ET
ka% .
REESE): CORDIC EEF » STEKE

Abstract

In this paper we will describe our new
CORDIC algorithms which are applied 1n
coordinate transformation using variable
factors. In our simulation for our new
algorithms. the number of iterations s 12
maximum. with the accuracy of 23 bit length.
This is accomplished by using signed two bits.
instead of one to process at a time. Simulation
results show that the accuracy can be up to
99% maximum and Y6% minimum. Besides.
our new algorithms are multiplication-free and
division-free and keep the original concept of
the classical CORDIC algorithws.
Keywords: (CORDI ', computer
algorithm.

arithimetic,

1. Introduction

Our research proposed another CORDIC
algorithms to perform the coordinate
transformation. Yang[6]. used variable factors
to perform 16-Bit sine and cosine computation

FURA S 1995 S A SR TR

with over 91% accuracy. This paper is
organized as follows. The second section of this
paper gives a brief survey of CORDIC . Our
new algorithm that makes use of variable
fuctors for performing plane rotation 1s
described in the third section. It achieved over
95% accuracy as compared to the results
obtained by C language standard library. In the
fourth section we will describe our new
algorithm which performs the transformation
between plane coordinate and polar coordinate.
This algorithm we propose can get lower
iteration time and higher accuracy. thus
producing an efficient execution of CORDIC
algorithm. The last section is our conclusion
for this paper.

2. A Brief Survey of CORDIC

Consider the computation of plane rotation
of an given angle 6 (rad). based on CORDIC
algorithm[8]. tthe following iterations should
be executed.

Xoy=N -dey 2T (2-1)

i
VYo =y Hdoexg27 (2-2)
z,, =z, —d o
where o, e{-L.1},0, = arctan2™".

If we order i=0.1.2.....(n-1). we can get the
result of the gencralized equations.

x, = K[x(, €os ~ ¥y, sinu] ,,,,, (2-4

v, = K[_v” €ostL + X, simx] (2-3)

- (2-6)

- = -
=2

" 0

where
n-1

o= Z(/l(x, - (2-T)

=it

K= ﬁ(uz—z")% Tk,)
i=0

=0
Where K is called the scaling factor which is
converge to a constant 1.6468. In the classic
CORDIC algorithm, d; is selected in each step
so that the net sum of angle z

zero. If we initially

_v . -
Xy = X//g’yo = A and z =6,

and ¥'=xsin6 + ycost

approaches to

n

set
then
X'= xcosH — yvsinb
are obtained simultaneously from x, and v, .

respectivelv. Note that the operation of the
above equations can be easily executed by shift.
addition/subtraction. The values of
o, = arctan2”’ are provided by a small look-
up table. In the above derivations. we can get
the basic CORDIC execution concept. The
classic CORDIC algorithm use a constant
factor to scale up the final results. producing an

execution error and wasting execution time. In

the following sections. we will introduce our
new CORDIC aigorithms which make use of
variable factors to replace the classical
CORDIC algorithms and show their high
accuracy and less iterations.

3. Algorithm of a CORDIC-Based
Plane Rotation

Let P(x.y) be a plane vector. Consider the
plane rotation of angle © (rad) of the points
P(x.y). Assume that P is transformed into the
new vector P'(x'.y'). then
X'=xcost — ysint ... (3-D
v'=xsin6 + y cosd

Let us see the CORDIC algorithm that
performs the above computations.
// 2-i

20 12
(1+2) .~
//\ Qj

1

Figure 3.1.A The triangle of «,

ZI+] :ZI—anI (."J)
Xi+1 =cosai(Xi —ql.}'l. tan(xi) 3-4)
Yi 1= cosai(}'[. +ini tanai).........(3-5)

whereq, e{-1.0. 1}

In order to simplify multiplication. we fix
angle o :mn—l 27", i=0.12....n-1. After n

iterations. we get:

89

Xn = XO cos(qoao tqapttq, 4,)
- Y() sin(qoao rquayt g, 4,)

Yn = Y() cos(qoono +qlo¢1+...+qn % l)

+ XO sin(qoao @O tetg, 0)

If the input angle is 0. x,=x,v, = v.
when Z, — 0. we obtain
Yn=xcos0 - ysinB

Yrn=xsin6+ ycosH

3.1 Derivation Process

In the above equations. if we start with x
and v. rotation angle ‘& . then we can get X'
and v'. This corresponds in computer graphics
that points in the graph rotates. generating a
new graph. Since we want to develop a
CORDIC-based algorithm that performs this
transformation. we take the following steps to
derive this new algorithm. The input angle is
represented in binary format.

(A)Case 1(The first four bits after the point of
the input angle are not all zeros)
3.1.A.1 The definition of angle {3 :

We now give a definition of the angle 3 :

B; =20, , for 1=0.1.2....n-1. where
o, =tan"' 27"
By our definition,
B,=2u, =2tan"' 27
=2x[2" Ly +i_2*-”—]
3 5
=27 427
=0.00..11L..
™

ith (i+1)th position,
From the above observation, we get corollary 1.

Corollary I:

Let B, =2tan"' 27 = O.BIp7...BIR"we
observe that the (i)th and the(i+1)th bits are
always 11 respectively. and before the (i)th bit

all bits are zeros. Namely. (B!,B!"')=(l,}).and
BY =0. if k<i
3.1.A.2 The properties of angle f3:

Since B, = 2tan 1277 the following
holds:

(12" /[27
|

\ Hi .
1.2°%
Figuure 3.1.B The triangle of 5,
(@)cosB, = — 2
a)cosp, = ————
! l+2_2’
.~
(b) tanBi :-2_’:5
1-2
(©)
BT e T T e
1+27%
when i=3,
L 106 02 By pry
_6 '
1+2
[Frro <272
when i=4,
L ;1_2_8 +2710 2724 Frpor,
1+278

[Error] < 27!
3.1.A.3 The execution of the angle f:
In this algorithm, the rotation angle ©

yid .
ranges between 0 and T Now let us examine

the execution of the angle P :

12 {1if8<0

Letezzo().-oz—o <<<<<< SRR\ I 0ifo>0’

iy
zy € {0,1

. LT
If the input rotation angle 6 xs:, we can

select angles Op 0ts.Oy or angles ﬁ3’|34 to

make the first four bits after point of the angle
6§ converge to zeros. In the above (a) and (c).
we use only the five terms in
cosf3; and cosf, . and the terms in cosa; are

as follows:

(e 27

Ny

1

1

[By Taylor Series approximation]

1

=(1+27) 2

cosa; =

90

1 1 1
T G VI
sle—2pp 2 2 -
1 1-2
1 1 1
-N-=-D(-=-2)
i 272 2 261
1.2.3
=l_2—3i—1 +3_2—1i—3 _5.2—51—4
+35.27% 7,
when i=1,
coso, =1-272 4277277 28 LB, |
=2,

coso, =1-277 4270 271 =12 _p-léy

.....

i=3,

cosay =1-277 42713 2719 =0 52y |
i=4,

cosay =1-27° 42716 —271F 76 7B, |

We know that the Taylor series
approximation of coso,,cosc; and cosct
contains a lot more terms than that in
cosf3; and cosP, . It means that if we take the
angle «, instead of P, for computation before
1=5. we must perform more shift and add
operations. After i=3, the number of terms in
both case are almost equal. So we take
35 and B, for input angle computation before
i=5. after =5, we take o, for computation
shown in case 2. We observe that after at most
three subtractions, the first four bits of the
input angle © are all zeros. we can use angle
o, to enable the remaining angles converge to

Z€10.

(B)Case 2(The first four bits after the point are
all zeros)

3.1.B.1 Calculation of the appropriate values
of g;'s for a given g

(B1) Contents of the prestoied angle values
in the ROM
o = tan~ 1271 =" —% 27304 1_2‘5f

Therefore, o; can be expressed as
@;=0.00... 1l oo™
T
(1+1)th position »

J g£0.1} .i=0.1.2... j=i+3.i+4...

(B2) The choice of (q; ’qi+1)

0n.1.2 _n ;
—h()Ob() 0 LO....where

0 means the integral part in our fixed-point

Let 9=20

format. Z, =0 if & is positive. or zy=1if 4 is
negative. The following is an explanation of
how 10 choose proper values
(A;-95 4) considering two bits at each time.

casel 9>0(7t)=0)
(H1If x.l 2 _11>thenweset g, =1’ g, =0

() If zﬁ,zﬁ =10 or 01 » then we set
gy = 0.4 =1

34,5
z, = 0000252520000

by
12
I}
ty
ta =
—
=
<
<
N
3
By
5
.

.

.

.

.

(iii) If z!z2 = 00 > then we set
q, =07 ¢ =0

34,5
2, = 00.00252025ee0e

0 = 00.00000.....

= 200.002323 eue oo zh =z, =345

case2 6 <0 (‘.3=1)
We use similar methods mentioned above to
get the proper values (g;,q;.;)-

If we select (¢;.q..) according to algorithm
{ %) given below. we can make the z-variable to

9

converge to zero:

[(1.0)

(0.1

(0.0)

(-1.0)

0.-1)

(0.0)

fo1D

(001) or (010)
(000)

(100)

(101) or (110)
a1

From the above discussions, we proved
corollary 2.

@;-qin) =

if (Z? 1 1‘])_

According to the n-bit input angle §.we can
decide the proper values (g,q.) by

» L. . . n
examining two bits at each time and after {E—\
n—1

0- T g
i=0

computations, we obtain <27

3.1.B.2 Taylor series approximation of cos oL ;

Using Taylor series approximation.
coso; can be expressed as follows:

1
1 i T Y
oS0, = —mmee = (1427°1) 2
i ;
V142724
= 1—2_2i -1 +2_4i -1_ 2—4i -3 + Error, lError' <27
. fori=6.

By the above two cases, given vector P(x.y)
and rotation angle &, We can set the initial
value x, y and z : xy.= X, ¥, = ¥,2, =0, then
after

z =0.x
“n n

Yy ® xsin® + ycosd = '

computation.
= xc0sO — ysin® = x',

By the above observations, we get the
following algorithm that performs coordinate
rotation:

1 2

0 n
(Input]: x.v.8 =2,0.2,Z;..... 2y -
(initial) set Xy« 4 v0 « B, z

Step 1:
(D scan[8 (l) (2):‘

it [20zh21) ={000] o [2pz023]=[111]
then goto sep 2

if (22,231 = [001] or {20202 1= [010] ox [zzz5] = (01 1]
thenset Py = 1 goto (2)

if 202231 = [100] o [zhz025) = [101] or [20zhz3] = {L 10}
thenset P, = —1 goto(2)

q=1-20 02 2B b p a2y

128 M b 3

Oy =102 By 2Oy
2=29-Pfh By=2t 12

(3) set X = X0 Vo &V 2y < zlzgoto(l)

Step 2:
3_.41.
(#) scan [382(‘;2()} :

it (222 = [000] or (202321 =[11]
then goto step 2

it (20202]=[001]) or [z4z02 | =[010] or {20202, 1 =[011]
thenset P, =1 goto(5)

it (202324 1={100] or [2h 20z = (101 or [20232] =[110]

thenset P, = —1 goto (5)

{ 8 —16_y24

-8 4
Y =(i-2"+2 *y=2 Np~Ry 22Ny

- R 16 =2, . R —~
(3+'1:U_2-x+; -2 4X‘()'2 YotPy 22y

]
l2=2-Fy (By=2tm '™

(6)set x) € Xp- Yo € V-2 < zl:goto(-L)

(

Step3:
(Mysetx, = x5V, € V)52, ¢ 22 goto (4)

(8)
for(i=4: I<23: i=1+2)
[

((L) itz = {011

(01)if (2027 2721 = [001] or [010]
(0.0)it (22271277) = [000] or [111]
(~10) it [2/271 277 = [100]

(0=Dif (2222 = [101] or [110]

(111"114)=

e - . . Ve *

Z,_:=Zl—ql-(t.,"q,-|(l,-1 *)
-1 y-i

(where 1, = tan A

.= [1_\ql_|(2—::—1 _Hl iy

N [l _ q’_ll(z—li—3 __2—41—i +2—41—7)]

IV, (g2 4,27 L)

92

.= [1—|l],-|(2‘3"_1 e R 3
U=lgaf@7F7 27 42y
<[Y; - ((I,-Z—' +q,. 2-i-l X):

¥

[Output]:x'(= X).¥'(= ¥).0(=Z,)

In the above algorithm, step 1 checks the
first two bits of the input angle 6 (e.g..
zyand z;). If they equal zero. the algorithm
jumps to step2 and checks the third and the
fourth bits of the input angle 6 (e.g..
zyandzj) . If not, the algorithm sets the
operand value P, according to the value of

[zgz})zf)]. performs the operations (2) and (3).
We repeat the same process until z, and z> are

both zero . In step2. we check the third and the
fourth bits of the input angle O(e.g.

z and z}). if they do not equal zero then the
algorithm sets the operand value P, according

to the value of [z)z)z}]. performs the
operations (5) and (6). This will make
z; andz) become 00, then the algorithm

performs step3. In step3. we set the initial
value of 1 to be four because the first four bits of
angle © are all zeros. there is no XY ROM
access execution in this algorithm because the
initial value x, and v, is set in the initial

execution. After the execution of this algorithm.
the output value (x, . y,) = (x'.y") is the new
coordinate value of (x,y). It is obvious that no
multiplications or divisions are involved in our
new algorithm. Thus the execution is faster
than the algorithm which uses constant factor.
If we want to compute the length of the two
edges x and y in an right triangle using slides
p and angle @ (see Figure 3.2). we set the
initial value z, =8,x5 =p, v, =0. then we

can obtain x and y.

X
Figure 3.2 Right triangle

3.2 Simulation Results

We simulate the algorithm by C language
on the SUN Sparc-10 workstation, then we

examine the correctness by subtracting the
value which the algorithm computed from the
C standard librarv. We have the following
Figures to explain our algorithm accuracy. The
value E equals the difference between the
computed value(e.g. by the algorithm) and the
theoretical value(e.g. by the standard C library).

321 The error analysis computed by our
algorithm

Figure 3.3 The erro r analysis of Xn

In Figure 3.3. we find that the Xn can
achieve 96% correct rate. there is only +.0%
error rate.

[

[
H
¥
¥
ik
i
I3
£

MR Z=-% os-l iz =1 R 2y=-u

Figure 3.4 The error analysis of Yn

In Figure 3.4. we find that the Yn can
achieve 99.28% correct rtate. there is only
().72% error rate. From these simulation results.
we find that the algorithm only takes at most
12 iterations to complete the computation for
performing 23-bit data format computation. It
is almost half the number of iterations when
using classic CORDIC methods. We have
simulated the classical CORDIC algorithm
using the same data formats. we get the
following results.

3.2.2 The error analysis computed by classical
CORDIC algorithm

93

Figure 3.5 The error analysis of Xn computed
by classic CORDIC algorithm

Figure 3.6 The error analysis of Yn computed
by classic CORDIC algorithm

From the above we can understand that the
classic CORDIC algorithin can only achieve
75% correct rate. Besides. for 23-bit data
formats. the CORDIC algorithm needs 23
iterations and one multiplication of the final
value by a constant factor. thus reduce the
correctness and the execution performance.

3.3 Speedup comparisons

In above algorithms we derive. the iterations
for n-bit data is 0.5n. when compared to the
other proposed papers. we find the accuracy of
our algorithm is better than others. Table 3.1 1s
our iteration comparisons.

" Table 3.1 Iteration comparisons of proposed

algorithms
Methods Iterations of
algorithm
The classical 1.5n(including the
CORDICI8] multiplication time)
Lin and Sips[3] n+6
Takagi ef al.|7] n
Lee and Lang[4] 1.125n
Timmermann et al. [10] (In-3)/8
Our new algorithm 0.5n

4. Rectangular Coordinate to Polar
Coordinate Transformation Using
New CORDIC Algorithm

In this section we will define a new {¢>QD'VC()S¢_xsin¢ <0
CORDIC methods that can perform the

transformation from rectangular coordinate .)
{x.v) to polar coordinate (p,6) and vice versa. We get our algorithm as follows:
X, =X -in‘k‘Yi)cosa,_,

(<0< yeosp—xsind =20

The transformation plays an important role in l(

the computer graphics. In part 4.1. we describe j

our derivation for our new algorithm. and in '

part 4.2 we lists our simulation results. V2 =24, + gy,
Consider the rectangular coordinate (X.y) I[K, = exp(Y,) - exp(X,)

and polar coordinate (p,8) in the plane shown

=Y + q12‘ki X,)cosx

in Figure +.1. we have the following relations AL ifX. >0
between x.v. p and 6. where o, = tan™! 275 and g, = { ? 1
i i

-l X, <0
oY) o i
S the initial value of X. Y, Z. and K is .\, = v.
p 'y Y,=x.Z,=0.and K, =exp(Y,)-exp(X,) -
The function exp(N) 1is the exponent of
number N.
Figure 4.1 The rectangular coordinate and
' polar coordinate Here is the proof of our new algorithm.
B B _(2)‘00!2
[x =pcos® pENXT Y " ,
IV =psin® 0 = tan"' v (- Setting the initial value \ | =yv. } =x.
X Z,=0.and K, =exp(Y,)—exp(X,).
Afier the first iteration.
4.1 Derivation Process) B
X, =(v—q,2 " x)coso
4.1.1 Rectangular coordinate to polar = yeoso, — xsing, o,
coordinate transformation((x. v) — (p,8)) _
Now. given rectangular coordinate (X.¥). Yl =(x +(102 0 v)cosa I3
we want to find the polar coordinate (p,H). 0
= X080+ ysing o
e LV 0)70
where p=qx’+)y,0=tan"=. We]
x 21 =90
consider two cases: (Dx 2 v > 0.2y >x > 0. 0
(1) x2py>0 K, =exp(Y)) - exp(X;)
x v After the second tteration.
If v>p>0.then —20=tan'=>0. —k
4 X .\'2 =(X1 —qll 1Yl)cusm/‘_l
L =(Veosw; <€OSa, —XSIng, o, CoSu,
b Y ko TR ok, %))
R v —gy(xcosSw, simo, + vsing,o, sinw,)
X 1 Ky ky 0%k, ky
for arbitrary angle ¢ . = »v(cosu’,‘_o COW/\-l —sing o Si"ql“‘!\'l)
0

V

S ;
X"+

yeosd < yeost =xsind < xsind

() if ey >$p>0 sinb= —x(smq()(xk() Los(xkl +CoSw _smqluki)

0
= veos(q, o, gy)= xsin(g, ool)
07k, TRy A

cost = al -) .
oyt). = xc4)s(q()<1A_() +q1ukl)+ sm(q()uk() + ql(xkl)
(iyif 6>¢>0 ’
yeos > yeost = xsin® > xsind Zo Sty iy .
: - . 27007k, TR
By (i) and (ii). for 0 <¢ < 5 K2 = cxp(Y2) - cxp(X2)

94

After n iterations, we can obtain that

n-1 n-1
X, =veos() g0) - A\'Si"(zq]“k‘)

=0 =0

n-1 n~|
Y, =X cos(z q;dy Y+ sm(quuk‘ K
1=0 1=0)
a~}
Z,=Yau,

yzl)
K, = exp(Y,) — exp(X,)
sinceY() =x> X() = _\’.KO = exp(x) - exp{y) .

SO

-k
exp(X1 y=exp((y -2 0 x)cosak()) <exp(v)—1
By the same way.

-k
exp(Xz):e.\'p((Xl -2 1Yl)cosul_1)

<exp(X)) -1l <exp(y)-2

After n iterations. we have
exp(Xn y< exp(Xn - <. < exp(Xl j—(n-1)

<exp(X;)-n=exp(y)-n

At most p=exp(y)+24 iterations. we obtain
exp(X) <-2+. Thus we can conclude that

when ' converges to zero. we have the

following results:
X, > 00X, <27

u-l n-1

=yeos(Y q,o) = xsin(Y qo;)
1=a 1=0
n-1 Y
tan() g,)= =
=0

n—1
aQV
and Z, =3 g, = 0 =tan =

=0

Y =xcosb+ ysinB=x.

X
n
\fxz +y2

v 2
Y= =
V2 +y?

b's +y2
\/xz +_v2

= \/xz +_v2 =p

(2)y>x>0

If y>x>0. then we let the initials value of X,
Y.Z andKare X\, =x. I, =y. Z,=0. and

K, =exp(Y,)-exp(X,). and 8 =12r~—¢. then

apply them into algorithm. we can get the polar
coordinate (p,0).

95

(x.y) Y

From the above derivations. we obtain the
following algorithm:

(lnpu X, =v.Y, =x.Z2, =0
{Initial} K, = exp(Y,) —exp(X,)
for(i=0:1<=23i++){

Stepl: 0 K <3

X=X -2"X,-q;2-27%Y)
X(1=270 4271 =271 4 =24y

Yo =(Y, -27°Y, +q,2-27°X,)
x(1=27" 42717 Z 2718 4 gy

Zx«l = Zz +qz“k’,

K =expY) -exp(X,.,)

Step2: 4<K, <6

X =(X;=2:27%X, ~q,2-27%Y)
< (l~2‘3k’ +2—4k, __24“',)

Y=Y, -2278Y, +q,2-27%X)
x(1=275 4ok gk

Zi, =2 g0

K =exp(Y,) —exp(X,)

K, 27

X=X, -q, 275Y) x(1=27%

Y, =Y, +q,- 27X,)x (1= 27%

z

K =exp(Y) —exp(X,..)

?
]

+1 X, 20
where q; = J1iEX <0

{Output] X, - 0.Y, =p.Z, =9

Stepl:

=Z +qu,

s+l

4.1.2 Polar coordinate to rectangular coordinate
transformation((p,8) — (x,v))

If we want to transform the polar coordinate
to rectangular coordinate. we can make use of
the algorithm Tnentioned in Section 3. setting
the initial value Zy =9.x0 =p.yy=0. then

we can obtain x and y.
4.2 Simulation Results

We simulate these two algorithms by C
language program to check their accuracy for
131172 input patterns totally. In 4.2.1 we
describe the simulation results of the
transformation from rectangular coordinate to

polar coordinate. In 4.2.5 we describe the
simulation results of the transformation of
polar coordinate to rectangular coordinate. The
svmbol E denotes the difference between the
computed value and the standard value.

4.2.1 Error analysis of rectangular coordinate
10 polar coordinate
transformation((X,v) — (p,8))

4.2.1a Error analysis of p computed by our Figure 4.4 The error analysis of 4.2.2a

ol

algorithm

e In above results we find that the accuracy
: computed by classical CORDIC only achieves

o 42% accuracy.

382

: 4.2.2b Error analysis of 6computed by

o classical CORDIC

204 .

T

Figure 4 2 The error analysis of 5.2 1a

In Figure +.2 we find that the accuracy of
p computed by our algorithm is 94.78%. there

is only 5.22% one-bit crror.

4.2.1b Error analysis of 8 computed by our Figure 4.5 The error analysis of 4.2.2b

algorithm
In above results we find that the accuracy

g . .

T computed by classical CORDIC only achieves
. 32.5% accuracy.

-

| . .

I 4.2.3 Error analysis of polar coordinate to
iH rectangular coordinate
f"": transformation((p.0) — (X.v))

LR

Soood geer EaL orslo EEL o Emoanes 4.2.3a Error analysis of 'x computed by our

. algorithm
Figure 4.3 The error analysis of 4.2.1b g
¢
In Figure 4.3 we find that the accuracy :
N R " 4
of 8 computed by our algorithm is 98.43%. i
there is only 1.37% one-bit error. B
§
4.2.2 Error analysis of rectangular coordinate :

to polar coordinate transformation computed by
classical CORDIC

(R 2z 27 nyzen

Figure 4.6 The error analyvsis of 4.2.3a
4.2.2a Error analysis of pcomputed by
, In Figure 4.6 we find that the accuracy of x
assics IC .) -
classical CORD computed by our algorithm is 97.3%. there is
only 2.7% one-bit error.
4.2.3b Error analysis of v computed bv our
algorithin

96

=-% &= Il m D

Figure 4.7 The error analysis of 4.2.3b

In Figure 4.7 we find that the accuracy of y
computed by our algorithm is 99.37%. there is
only 0.43% one-bit error.

4.2.4 Error analvsis of polar coordinate to
rectangular coordinate transformation
computed by classical CORDIC

4.2.4a Emor analysis of x computed by
classical CORDIC

Figure 4.8 The error analysis of 4.2.4a

In above results we find that the accuracy
computed by classical CORDIC only achieves
69.37% accuracy.

4.2.4b Error analysis of y computed by
classical CORDIC

Figure 4.9 The error analysis of 4.2.4b

In above results we find that the accuracy
computed by classical CORDIC only achieves
77.15% accuracy. In the above simulation
results. we find that the accuracy of our new
algorithm is very high. We also find that the
maximum number of iterations for our new
algorithm is 14.68 almost equal to 15 which is

97

less than the number of iterations needed when
using the classical CORDIC.

5. Conclusion

In this paper. we make use of variable factor
to develop an algorithm that can perform plane
rotation between two vectors in the plane. The
advantage of using variable factor is that it is
multiplication-free and division free and thus it
reduces execution time and increases accuracy.
Besides. we keep the original concept (e.g..
shift-and-add) of classical CORDIC algorithm
in our new design.

In future research, one can use the same
method t0 develop new CORDIC algonithms
which applied in the floating-point formats.

6. References

[1}JJ. A. Lee. T. Lang. "Constant-Factor Redundant
CORDIC for Angle Calculation and Rotation.”
[EFE Trans. Comput.. vol. 41. no. 8. pp.1016-
1025, Aug. 1992.

[2JH. X. Lin. and H. I Sips. "On-line CORDIC
Algorithms." IEEE Trans. Comput.. vol. 39. no.
8. pp.1038-1052. Aug. 1990.

[3IN. Takagi. T. Asads. and S. Yajima, "Redundant
CORDIC Methods with a Constant Scalar Factor
for Sine and Cosine Computation.” [EEE Trans.
Compaut.. vol. 40. no. 9. pp.989-993. Sept. 1991i.

[4]J. E. Volder. "The CORDIC Tngonometric
Computing Technique.” IRE Trans. Electron.
Comput.. vol. EC-8. no. 3. pp. 330-334. Sept.
1959.

{5]B. Yang, D. Timmermann. J. F. Bohme. H. Hahn,
B. J. Hosticka. G. Schmidt. and G. Zimmer.
"Special Computers: Graphics, Robotics.” in Proc.
VLSI Comput.. Compeuro, pp. 727-730. May

- 1987.

[6]JK. S. Yang. A New Method of Implementation
of VLSl CORDIC for Sine and Cosine
Computation.” Master Thesis. Fen-Chia
University. January, 1984.

	
	
	
	
	
	
	
	
	
	
	

