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Abstract 

Owing to the importance of quality of service (QoS) 
in the future communication networks, in spite of wired 
networks or wireless ones, the control mechanisms are 
important issues. The connection admission control 
(CAC) is the basic and necessary control mechanism for 
provision of QoS. This paper studies the CAC for a very 
general arrival envelope, called leaky bucketed 
multi-segment arrival envelope. By theoretical 
approach, we derived the minimum delay that can be 
provided by the network and developed an efficient 
algorithm to calculate the minimum delay. With the 
result of the paper, many arrival processes can be 
exactly and fast calculated the minimum delay to assist 
the decision of CAC. 
 
Keywords: Quality of service, connection admission 
control, leaky bucketed multi-segment arrival envelope. 
 
1: Introductions 
 

The future communication network should 
guarantee Quality of service (QoS) to the users. To 
promise the guarantee, the control mechanisms are 
necessary. One of the important control mechanisms is 
the connection (or call) admission control (CAC), which 
is the first gate of the network to provide QoS. 

To satisfy the QoS of various applications in the 
Internet, the IETF has developed two service 
architectures, i.e., (integrated services, IntServ) [2] and 
(differentiated services, DiffServ) [1]. IntServ utilizes 
the RSVP (Resource Reservation Protocol) [3] to make 
the reservation of network resources for the connections. 
IntServ possesses good granularity but poor scalability. 
DiffServ solves the problem of scalability and suits to 
the Internet in the near future, although its granularity is 
not perfect. 

The CAC is associated to the scheduling algorithms 
of networks. For providing QoS, Sariowan [6] proposed 
a scheduling algorithm called SCED (Service Curve 
based Earliest Deadline first policy), which is also a kind 
of EDF. Pyun [5] also studied the SCED, where the 
service curve is with single rate and is leaky bucketed. 
In [5, 6], both papers suggested the algorithm in [4] to 
lower the complexity in CAC. The problem studied in 
[4] is: The arrival envelope of a new connection is a 
piecewise linear curve that claims a maximum delay 

requirement. Under this situation, should the network 
accept this new connection or not? [4] employed an 
algorithm to find two parameters in series, and then the 
minimum delay for the new connection provided by the 
network is the maximum value of the two parameters. 

Owing to the arrival envelope discussed in [4] is not 
general enough, this paper generalize the arrival 
envelope to a kind of leaky bucketed multi-segment 
arrival envelope. As we know, the leaky bucketed 
arrival envelope is the most general arrival envelope. 
Our proposed leaky bucketed multi-segment arrival 
envelope is more general than the general leaky 
bucketed arrival envelope that is with single rate in 
general. Except a more arrival envelope is discussed, 
this paper also derived the minimum delay for the leaky 
bucket multi-segment arrival envelope and proposed a 
new algorithm that finds the two parameters in parallel, 
so our proposed algorithm will be more efficient than 
that in [4]. In this paper, the theoretical approach is 
employed to prove that our derivation of the minimum 
delay is correct and our proposed algorithm is efficient. 

The remaining parts of the paper are organized as 
follows. Section 2 introduces the leaky bucketed 
multi-segment arrival envelope. The theoretical 
derivation of the minimum delay is approached in 
Section 4. Section 5 illustrates the parallel algorithm 
and its complexity. Finally, the conclusions are given in 
Section 6. 
 
2: Leaky Bucketed Multi-segment Arrival 
Envelope 
 

The multi-segment arrival envelope discussed in [4] 
is a continuous function starting from zero [4, 
Definition 1]. However, a very popular arrival envelope 
is leaky bucketed and discontinuous, so this paper 
discusses the leaky bucketed multi-segment arrival 
envelope, which is expressed as 
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where N is the number of segment of the arrival 
envelope A(t), segment i of A(t) is denoted by ρi: (τi, σi) 
that indicates the segment starts from (τi, σi) and is with 

- 501 -



 2

slope ρi, ∑
=

N

i
iii

1

),(: στρ  is employed to indicate a 

curve consisting of N segments ρi: (τi, σi), i = 1, …, N, 
and ρi ≥ 0, ρN = 0, τi+1 > τi, τ1 = 0+ = 0 + δ , δ → 0, σi+1 
≥ σi, and σ1 ≥ 0. The general mathematical expression 
of segment i ρi: (τi, σi) is  
 
 ρi: (τi, σi) = ρi(t − τi) + σi, τi ≤ t < τi+1, i =1, …, N, (2)  
 
and we let τN+1 = ∞. In general case, the slope of 
segment N is 0, which means that the arrival of the 
connection will terminate at some time, so the arrival 
envelope will keep at a constant. The slopes of the other 
segments, except the segment N, may also be 0, such 
that the function of the leaky bucketed multi-segment 
arrival envelope is not necessarily one-to-one. 
Furthermore, because of the shaping of the leaky bucket, 
the leaky bucketed multi-segment arrival envelope may 
be discontinuous. In the most common case, the origin 
of the arrival envelope is discontinuous (σ1 > 0), but 
after that the arrival envelope is continuous. However, it 
is not necessary to be so, i.e., there may be 
discontinuous points in the successive segments. If there 
are no discontinuous point in the successive segments 
and σ1 = 0, the arrival envelope is not leaky bucketed. 

The leaky bucketed multi-segment arrival envelope 
results in that the available curve [4] is discontinuous 
and is with multi-segment. Here, we used curve instead 
of function, because a discontinuous impulse in a curve 
will be though as a vertical line segment. The 
expression of the available curve is 

 

 F(t) = ∑
=

M

i
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),,(: βαη  t ≥ 0 (3) 

 
where M is the number of the available curve, αi+1 > αi, 
α1 = 0, βi+1 ≥ βi, β1 = 0, η1 ≥ 0, and ηi, i > 1, is not 
constrained. 
 
3: The Minimum Delay 
 

The core in the connection admission control for 
EDF scheduler is to find the minimum delay that can be 
provided by the network system, e.g. routers. Hence, 
this section is devoted to finding the minimum delay 
offered by the network system when a new connection 
is with leaky bucketed multi-segment arrival envelope 
and asks the admission to the network. If the minimum 
delay offered by the network is less than or equal to the 
delay requirement claimed by the connection, the new 
connection is granted to connect and transmit. In this 
paper, although we approach the derivation of minimum 
delay of the leaky bucketed multi-segment arrival 
envelope by the observations of [4] after some 
enhancements, we illustrate the correction of the 
observations for the leaky bucketed multi-segment 
arrival envelope by conscientious theoretical derivation. 

With our results, the study of [4] becomes a special case 
of our study. 

Because the contact of the available curve F and the 
arrival envelope A may be a line segment, not necessary 
be a point only as specified in [4], this section will 
prove that the end points of the contact must be the 
convex point of the available curve or the concave point 
of the arrival envelope in the Theorem 1. Furthermore, 
we will derive the minimum delay and prove that it is 
really the minimum right shift to make the arrival 
envelope wholly under the available curve in Theorem 
2. 

Because both the available curve and the arrival 
envelope have discontinuous points, this paper extend 
the definitions of convex point and concave points to 
include the discontinuous points provided that we 
defined the discontinuous impulse as a vertical line 
segment. In this way, the slope of the line segment of 
the upward impulse is +∞ and that of the downward 
impulse is −∞. According to this definition, to decide a 
flex point is either a convex point or a concave point 
can be done by the ordinary definition. As a 
consequence, the starting point of an upward impulse is 
a convex point and the terminal point of an upward 
impulse is a concave point. Similarly, the starting point 
of a downward impulse is a concave point and the 
terminal point of a downward impulse is a convex point. 
In order to be consistent with the counting of flexion 
points and line segments of continuous functions, the 
two end points is considered as a flexion point. In this 
way, the number of the flexion points of a curve is the 
same as the number of the line segments, excluding the 
vertical line segment, of the curve. Note that the origins 
of the available curve and the arrival envelope are both 
convex points. 

Now, we can specify and prove the Theorem 1. The 
main action in the connection admission control is to 
put the arrival envelope A wholly under the available 
curve F and under this constraint to find the minimum 
shift of A. If the minimum shift meets the minimum 
delay requirement of the connection, then the system 
accepts the connection. Otherwise, the new connection 
is rejected. To process the finding of the minimum shift, 
it can be processed by shifting the arrival envelope A 
from the most right-hand side toward the left until the 
arrival envelope A contacts with the available curve F. 
At this moment, the distance between the origin of the 
arrival envelope A and the origin of the coordinates is 
the minimum delay. 

It is pointed out that the contact of the arrival 
envelope A and the available curve F must be a convex 
point of F or a concave point of A. Here, we modify this 
concept, because the contact of the arrival envelope A 
and the available curve F may be a line segment. The 
modified specification and the proof are given in 
Theorem 1. 

 
Theorem 1: The end points of the contact of the arrival 

envelope A and the available curve F must be the 
convex point of the available curve or the concave 
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point of the arrival envelope. If the contact is not a 
line segment but a point, it can be though as a line 
segment with zero length and the two end points 
becomes a point. 

Proof: Prove it by contradiction. Assume the end points 
of contact are neither the convex point of the 
available curve nor the concave point of the arrival 
envelope. Let an end point be denoted by P. and 
denote the segments of A (F) at the left-hand side 
and right-hand side of P by PA− (PF−) and PA+ (PF+), 
respectively, which may be a same segment, and 
denotes the slope of PA− (PF−) and PA+ (PF+) by 
A'(PA−) (F'(PF−)) and A'(PA+) (F'(PF−)), respectively. 
Because P is not the concave point of the arrival 
envelope A, we have  

 
 A'(PA−) ≤ A'(PA+) (4) 
 

Similarly, P is not the convex point of the available 
curve F, so 
 

 F'(PF−) ≥ F'(PF+) (5) 
 
Three conditions are considered to prove that (4) 
and (5) can not be satisfied simultaneously under 
the constraint that the A must be under the F. 

1. P is the right end point of the contact segment: 
Because the A must be under the F, it implies 
A'(PA−) = F'(PF−) and A'(PA+) < F'(PF+). If (4) 
A'(PA−) ≤ A'(PA+) is satisfied, then F'(PF−) = A'(PA−) 
≤ A'(PA+) < F'(PF+), i.e., F'(PF−) < F'(PF+) to 
conflict with (5). On the other hand, if (5) F'(PF−) 
≥ F'(PF+) is satisfied, then A'(PA+) < F'(PF+) ≤ 
F'(PF−) = A'(PA−), i.e., A'(PA+) < A'(PA−) to conflict 
with (4). 

2. P is the left end point of the contact segment: 
Because the A must be under the F, it implies 
A'(PA−) > F'(PF−) and A'(PA+) = F'(PF+). If (4) is 
satisfied, then F'(PF−) < A'(PA−) ≤ A'(PA+) = 
F'(PF+), i.e., F'(PF−) < F'(PF+) to conflict with (5). 
On the other hand, if (5) is satisfied, then A'(PA+) 
= F'(PF+) ≤ F'(PF−) < A'(PA−), i.e., A'(PA+) < A'(PA−) 
to conflict with (4). 

3. The contact is a single point P: Because the A 
must be under the F, it implies A'(PA−) > F'(PF−) 
and A'(PA+) < F'(PF+). If (4) is satisfied, then 
F'(PF−) < A'(PA−) ≤ A'(PA+) < F'(PF+), i.e., F'(PF−) 
< F'(PF+) to conflict with (5). On the other hand, if 
(5) is satisfied, then A'(PA+) < F'(PF+) ≤ F'(PF−) < 
A'(PA−), i.e., A'(PA+) < A'(PA−) to conflict with (4). 

 
Consequently, (4) and (5) can not be satisfied 
simultaneously, so the end points of the contact of 
the arrival envelope A and the available curve F 
must be the convex point of the available curve or 
the concave point of the arrival envelope. 

 
From Theorem 1, it is proven that even for the 

discontinuous multi-segment arrival envelope and 

available curve the phenomenon observed is the same as 
that of [4] provided that the impulses are taken as 
vertical line segments. The result of Theorem 1 
facilitates the approach to find the minimum delay. It 
reveals that only the convex points of available curve 
and the concave points of the arrival envelope need to 
be checked to find the minimum delay. The minimum 
delay is found to be the maximum value of the shifts of 
arrival envelope when the convex points of available 
curve contact the arrival envelope or the concave points 
of arrival envelope contacts the available curve. The 
mathematic expression of the minimum delay is given 
below. Moreover, the next theorem will prove that the 
minimum delay obtained is really the minimum to make 
the arrival envelope wholly under the available curve. 
Before that, we define key contact point in Definition 1 
and prove a corollary from Theorem 1. 
 
Definition 1: The key contact point is the point of 

convex point of available curve or the point of 
concave point of arrival envelope that decide the 
minimum delay. When the key contact point 
contacts the other curve, the shift of the arrival 
envelope is the minimum delay. 

 
It may be not unique for the key contact point, i.e., 

the number of key contact points is larger than or equal 
to 1. The minimum delay found from these key contact 
point are equal, so the minimum delay can be found 
from any key contact point. 

 
Corollary 1: (1) If a key contact point P is a concave 

point of arrival envelop A, then A'(PA+) = 0 and 
F'(PF−) = 0 can not be satisfied simultaneously. 
(2) If a key contact point P is a convex point of 
available curve F, then F'(PF+) > 0 and F(x) ≥ F(y), 
where y is the horizontal coordinate of P and x is 
the horizontal coordinate of any convex point of F 
after P. 

Proof: (1) If A'(PA+) = 0 and F'(PF−) = 0 can be satisfied 
simultaneously, the curve of A can be further 
moved left and does not cause the curve A over the 
curve F. It means the P is not a key contact point to 
conflict the premise that P is a key contact point, 
so A'(PA+) = 0 and F'(PF−) = 0 can not be satisfied 
simultaneously when a concave point of arrival 
envelop P is a key contact point. 
(2) First, we prove that F(y) is not less than the 
value of any convex point of F after P. Because A 
is a non-decreasing function, it implies A(x) ≥ A(y) 
for x > y. Because the curve F is above the curve A, 
it yields F(x) ≥ A(x) for all x such that F(x) ≥ A(y) 
= F(y) for x > y. The horizontal coordinate of a 
convex point of F after P is larger than y, so the 
value of the convex point is larger than or equal to 
F(y). Next, we prove that F'(PF+) > 0. Because A is 
a non-decreasing function, it implies A'(PA+) ≥ 0.  
And, it is obvious that F'(PF+) < 0 is impossible, 
otherwise the curve A will be above the curve F 
after the point P, so it is sufficient to prove F'(PF+) 
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≠ 0 to illustrate F'(PF+) > 0. Because the slope of 
the last segment of A is 0 and the network capacity 
is generally constant, the slope of the last segment 
of F is positive. If F'(PF+) = 0, then there exists 
convex points of F, otherwise the slope of the last 
segment of F is impossible to be positive. Because 
the value of any convex point is not less than the 
value of F at P, the right end point Q of the 
segment PF+ is a convex point. Because the curve A 
is not above the curve F, the slope of the segment 
between P and Q of A is 0. It implies the convex 
point P of F is not a key contact point, because the 
most right point of the curve A with the equal value 
of the convex point P is a point after Q rather than 
P. It is a contradiction, so F'(PF+) ≠ 0. 
Consequently, the only possible condition is F'(PF+) 
> 0. 

 
From Theorem 1, Corollary 1-(2), and [4, (10), (11)], 

we can express the minimum delay for the leaky 
bucketed multi-segment arrival envelope under a EDF 
scheduler as 

 
 dmin = max(mx, my) (6) 

 
 mx = max{u − max{A~1(F(u))}: u ∈ VF+, F(u) < A(∞)} 
  (7) 

 
 my = max{F~1(A(a)) − a: a ∈ ΛA} (8) 

 
where f~1 is the pseudo inverse function of f. When f is 
not a one-to-one function, f~1 is a set and is expressed as 
[4, (6)] 
 
 f~1(y) = {x: f(x) = y}, (9) 
 
max{f~1(y)} is the maximum value among the set f~1(y), 
VF+ is the set of all the convex points of F with positive 
slope of its right-hand side segment, Λf is the set of all 
the concave points of a function f. The f in (9) may be A 
or F. Because the slope of a segment of A may be 0 in 
this paper, the pseudo inverse function of A is necessary 
when the inverse function of A does not exist. With 
regard to the available curve F, it may be a many-to-one 
function by nature. 

In the following, we will prove the minimum delay 
derived in (6) is the minimum shift to cause the arrival 
envelope wholly under the available curve. First, a 
lemma is proven. 

 
Lemma 1: The shift amount found by (6)-(8) results in 

all the concave points of arrival envelope A is 
under the available curve F and all the convex 
points of available curve F is above the arrival 
envelope A. 

Proof: From (7), for a u ∈ VF+, F(u) < A(∞), there exists 
F(u) = A(u − s), where s is the shift amount at this 
moment of the contact of A and F and s ≤ mx ≤ dmin. 
Because A is a non-decreasing function, F(u) = A(u 
− s) ≥ A(u − dmin), which implies this convex point 

of F must not be under the curve A when the shift 
is dmin. That is, all the convex points in the set VF+ 
all above the curve A. Furthermore, all the values 
of the other convex points of F are not less than the 
minimum of the values of the convex points in VF+, 
so the points in VF+ are also above the curve A. 

 
Theorem 2: The minimum delay obtained by (6) is 

really the minimum right shift amount to cause the 
arrival envelope wholly under the available curve. 

Proof: We will first illustrate the arrival envelope A is 
wholly under the available curve F by Lemma 1, 
and then illustrate the minimum delay obtained by 
(6) is really the minimum shift. Assume the curve 
A is above the curve F after a contact point P when 
the shift is dmin. From Lemma 1, it shows that after 
the point P, F must surpass the curve A before the 
next concave point of A or the next convex point of 
F. Assume Q is the next concave point of A or the 
next convex point of F, which is nearer to the point 
P. Because the curve A is above the curve F just 
after P, it has F'(PF+) < A'(PA+). From Lemma 1, 
the curve A has no concave points between P and 
Q, such that curve A is a convex curve between P 
and Q, i.e., the slope is non-decreasing, and the 
curve F has no convex points between P and Q, 
such that curve F is a concave curve between P and 
Q, i.e., the slope is non-increasing. These kinds of 
slopes of A and F cause that the curve F can not 
surpass the curve A before the point Q, so there is 
no such point P, i.e., all the points of curve A is 
below the curve F. Next, assume that dmin is not the 
minimum shift and there exists a shift d' < dmin. For 
mx ≥ my, the key contact point is a convex point of 
F. Assume a key contact point is at (ux, F(ux)) of 
curve F and (ux − mx, A(ux − mx)) of curve A, then 
ux − mx = max{A~1(F(ux))}. When d' < dmin = mx, 
one has ux − d' > ux − mx = max{A~1(F(ux))} such 
that A(ux − d') ≠ F(ux). Because A is a 
non-decreasing function, it has F(ux) = A(ux − mx) < 
A(ux − d'), which indicates the curve F is under the 
curve A when the shift is d'. Hence, it is impossible 
to have a shift d' < dmin for mx ≥ my. On ther other 
hand, for mx < my, assume P is a contact point that 
is a concave point of A, when the shift is dmin. If P 
of A can be move more left, then it must be F'(PF−) 
≤ 0, otherwise the P of A will be over the curve F 
after the shift left. Because A is a non-decreasing 
function, it must be F'(PF+) ≥ 0 to avoid the curve 
F below the curve A after the point P. For F'(PF+) = 
0, it must be A'(PA+) = 0, and from Corollary 1-(1), 
one has F'(PF−) ≠ 0. Consequently, it must be 
F'(PF−) < 0, which indicates the P of F is a convex 
point. Then it results in mx = my, which conflicts 
with the premise mx < my, so F'(PF+) ≠ 0, i.e., 
F'(PF+) > 0. However, because F'(PF−) ≤ 0, the 
point P of F is still a convex point and it still 
conflicts with the premise mx < my. Therefore, the 
curve A can not be moved left and it can be F'(PF−) 
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> 0. In a word, no matter the key contact point is 
the concave point of A or the convex point of F, 
the dmin is the minimum shift amount and the curve 
A can not be move left further. 

 
 

4: The Parallel Algorithm 
 
mx =0; 
for i = 2 to m //Move the pointer of Θ 
{  //Move the pointer of WA 
   j = max{k: A(ak) < {F(VF+)}i}; 
   mx = max(mx, {TF+}i − A−j({F(VF+)}i)); 
} 
 
my =0; 
q = 1; 
a = {ΛA}q; 
i =0; 
v' = 0; 
do while (v' ≤ max{F(VF+)}) 
{  k = min{j: {I}j > i}; //Move the pointer of Θ  
   v" = {F(VF+)}k; 
   E = ΛF+ ∩ [v', v"); 
   do while (a ≤ max{ΛA} and A(a) < v") 
   {  q++; //Move the pointer of ΛA 
      a = {ΛA}q; 
      //Move the pointer of E 
      l= max{p: {E}p < A(a)}; 
      my = max(my, F−(i+l−1)(A(a))− a); 
   } 
   i = k; 
   v' = v"; 
} 
 
dmin = max(mx, my); 
 
Figure 1 The parallel algorithm for the minimum delay. 
 

Utilize an import new observation, the algorithm of 
[4, Fig. 5], which is with complex O(K2N), can be 
simplified to the algorithm in Figure 2 and to have the 
low complex the same as that of the algorithm of [4, Fig. 
17]. The new algorithm developed in this paper is called 
the parallel algorithm for the minimum delay. 
Furthermore, the parallel process makes the process to 
calculate the minimum delay faster. The new algorithm 
calculate the mx and the my in parallel instead of in 
series as [4, (10)-(12) and Fig. 17].  

Now, describe the important new observation. To 
find my, the concave point(s) of arrival envelop A 
contacts the available curve F to cause A wholly under 
F. Assume a contact point is at (τ, F(τ)) of F and (τ + my, 
A(τ + my)) of A when curve A shifts my. Because A is a 
non-decreasing function, it must be F(t) ≥ F(τ) for all t > 
τ. If not so, assume F(γ) < F(τ) for t = γ > τ. Because F(τ) 
= A(τ + my) < A(γ + my), it results in an unreasonable 
phenomenon F(γ) < A(γ + my), i.e., the arrival envelope 
A is above the available curve F. Owing to this 

observation, we know that the key contact point of a 
concave point of A must be on the line segment with 
convex point P of F as starting point and the height of 
the key contact point is not higher than the heights of all 
the convex points of F after P. In another word, the key 
contact point is lower the lowest convex points of F on 
the right hand side of the key contact point and the 
height of the lowest convex point is higher than the 
point P. In a word, the height of the key contact point is 
between the height of a certain convex point P of F and 
the height of the lowest convex point among the convex 
right to P. 

The parallel algorithm for the minimum delay is 
described in Figure 1, where f−j is the inverse function 
of the j-th segment of function f. There are two pointers 
respectively pointing to the sets ΛA and Θ , where Θ is a 
triplet as 

 
 {Θ}i = ({I}i, {TF+}i, {F(VF+)}i), (10) 

 
VF+ is sorted in ascending order, TF+ is the set of the 
times corresponding to the elements in VF+, I is the set 
of the original index in the curve F corresponding to the 
elements in VF+, and {E}i is the i-th element of the set E. 
That is, Θ saves not only the values of F, but also the 
corresponding time and index that indicates the order 
number of the convex point with positive slope of 
right-hand side in F. The two pointers advance one at a 
time without ever returning. It results in the complexity 
O(|VF+| + |WA|) = O(M + N) at the worst case to find mx, 
where Wf is the set of all flexion points of f and |E| is the 
number of the elements of the set E. 

To find my, the complex to locate the convex point 
of F, where the key contact point (a concave point of A) 
is on the segment starting form this convex point, is also 
O(M + N). After locate the convex point, it needs to find 
the segment that contacts with the key contact point. For 
the worst case, all the concave points of F are checked 
and the complexity is O(|ΛF|). As a consequence, the 
overall complexity in find my is O(|VF+| + |WA| + |ΛF|) = 
O(M' + N) at the worst case, where M' is the number of 
the segments of F. The complexity of the parallel 
algorithm at the worst case is the same as the series 
algorithm in [4]. 

However, two point emphasized to illustrate the 
parallel algorithm can find the minimum delay faster 
than the series algorithm does. First, the two parameters 
should be calculated in series by the series algorithm, 
but they can be found in parallel by the parallel 
algorithm. It can save almost half of the processing time. 
Secondly, the complexity of the parallel algorithm 
found above is for the worst case. In general case, not 
all the convex points and all the line segments should be 
checked. In fact, after checking a convex point P, the 
next convex point needs to be checked is the lowest 
convex point Q after P. Furthermore, only the segments 
between P and Q need to be checked. In general, most 
convex points and segments of F can be skipped. It can 
also save almost half of the processing time.  
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5: Conclusions 
 

Because the importance of the CAC to the provision 
of QoS, this paper developed a parallel algorithm to find 
the minimum delay in the CAC for the leaky bucketed 
multi-segment arrival envelope, which is a very general 
arrival envelope and can take the arrival envelope in [4] 
and the leaky bucketed arrival envelope as its special 
cases. Furthermore, the parallel algorithm developed in 
this paper is more efficient than the series algorithm in 
[4]. 

Owing the popularity of the scheduling mechanism 
EDF, the CAC collocates with EDF is a topic worth 
further study. What factors affect the decision of CAC 
except the arrival envelope? And how they affect the 
CAC? These topics are our future works. 
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