
Twin-bit based Fast IP Lookup and Update Algorithm

Ching-Lung Chang, Cheng-Che Hsu
Institute of Computer Science,

National Yunlin University of Science and Technology,
Taiwan, R.O.C.

chang@yuntech.edu.tw

ABSTRACT
Success of the Internet and the increased use of

broadband in homes have caused a gradual shift in
traffic on the Internet from data to multimedia
communications. Traffic on the Internet traffic is
increasing daily, while advances in communication
technologies have allowed the Ethernet speeds to rise
from 10 Mbps to 100 Mbps, and now to 10Gbps. The IP
address lookup time in gigabit networks is a bottleneck
for a router, which needs to find the longest prefix
matching for the address. This study proposes a
Twin-bit based IP address lookup and update algorithm,
based on tree structures, called Fast Twin-bit Tree
(FTBT). FTBT can effectively reduce the number of
memory access times, and provide fast routing table
update. Performance evaluation results reveal that the
proposed algorithm can lookup an address among
78504 routing entries in six memory accesses on
average.

1: INTRODUCTIONS

Internet traffic has been growing rapidly due to the
wide acceptance and success of the Internet while
advances in communication technology has increased
Ethernet speeds from 10 Mbps to 100 Mbps, and now to
10Gbps. Designing a high-performance router to
increase the packet processing speed to the 10Gbps is an
most important issue. A key design issue for a gigabit
router is the IP address lookup scheme. The CIDR
(Classless Inter-Domain Routing) [1], which removes the
restriction of IP class, makes IP address efficient and
flexible to use. In CIDR, the IP address lookup is a
bottleneck for a gigabit router, which has to find the
Longest Prefix Matching (LPM) for the address.

Since the speed of IP Lookup affects the router
performance, many schemes have been developed to
solve the classless IP lookup problem. Some such
schemes (such as CAM-based and Hashing-based) are
hardware-based, while others are more suitable for
software solution (e.g. Tree-based schemes). Since
software-based IP lookup is more suitable for applying to
the large scale network environment, this study presents
a tree-based IP lookup scheme.

P. Gupta, et al. [2] used an IP address to index the
routing table directly. Their scheme can perform lookup
in only one memory access, but has a large memory
requirement. Some hardware schemes use Content
Addressable Memory (CAM) [3]-[4] to increase the IP
Lookup speed. The disadvantages of CAM-based lookup
scheme are the high cost and heavy power consumption.
Another lookup scheme uses hashing [5] to realize the IP
address table lookup. Nevertheless, the hashing function
has the collision problem, in which the numbers of IP
address are indexed to the same entry of the hashing table.
Authors of [6] proposed a multi-hashing function to
reduce the collision problem.

Unlike the hardware-based, most software-based IP
lookup solutions are based on the tree structure. The
solution of [7] is a typical IP lookup operation with a tree
data structure. Figure 1 illustrates the mapping from the
routing table to the binary tree, where the left leaf
represents the bit “0”, and right leaf represents the bit “1”.
The node value indicates the next hop port number. A
node value of zero (called as a dummy node) does not
represent a routing entry. For example, if the output port
of IP address “10110000” is looked up, then this address
can be applied to trace the tree, and thus derive the LPM
result. Finding the longest prefix matching involves
looking up the tree until a leaf node is reached. In this
example, the lookup result is H. Although the binary tree
is a simple method, it requires 32 memory accesses (the
highest level in the tree) to find the LPM in the worst
cast.

Figure 1. An example of binary Tree

To reduce the height of the IP lookup tree, Patricia [8]
proposed a compressed tree structure, which removes

F2011100*

H41011*

E501101*

G210*

I3111*

B2010*

C40100*

D70100110*

6

2

Length

J111000*

A00*

Next HopPrefix

F2011100*

H41011*

E501101*

G210*

I3111*

B2010*

C40100*

D70100110*

6

2

Length

J111000*

A00*

Next HopPrefix

0

A

root

0

0

B

C

0

0

D

0

0

0

F

0

G

0

0

H

I

0

0

[Routing Table]

0

V

0 1

dummy node : next hop = default route

valid node : next hop is non-zero

1

11

1

00

0

0

1

0

01

1

0

0

0

0

J

1

E

1
0

1

0

- 519 -

partial unnecessary dummy nodes, but which needs more
memory storage to record the skip information. Berger
proposed a prefix tree structure [9], which removes all of
dummy nodes and has the least memory storage in IP
address lookup. In contrast to the previous concepts, the
Wu proposed LPFST scheme [10], which utilizes the
heap concept to reduce the table lookup time. LPFST
endeavors to place the longest prefix on the upper level
of the tree, and thus has the fastest lookup time. However,
LPFST incurs more memory access in routing entry
update operations.

As discussed above up until now, all of the tree-based
IP lookup schemes perform the lookup operation bit by
bit. The complexity of the IP lookup and routing table
update operation is ()O w , where w is the prefix length.
In contrast with the current tree-based scheme, the
proposed Fast Twin-bit Tree (FTBT) IP lookup
algorithm is based on a Twin-bit based tree structure.
Each node in this tree structure represents two bits of an
IP address. The FTBT algorithm can reduce the order of
the memory access in an IP lookup and routing entry

update operation to
8()

2
wO −

.

The rest of this study is organized as follows.
Section 2 first defines the Twin-bit based tree’s node
and data structure. Section 3 introduces the proposed
Fast Twin-bit Tree (FTBT) algorithm. Section 4
compares the performance of the FTBT IP lookup with
other IP lookup schemes. Conclusions are finally in
Section 5.

2: TWIN-BIT BASED TREE NODE

In contrast with the other tree-based IP lookup
schemes [7]-[10], the proposed scheme adopts two bits
to define a tree node to reduce the height of the lookup
tree, and thus can minimize the number of memory
accesses in an IP address lookup.

A
B

C

00 branch 01 branch

10 branch 11 branch

Figure 2. FTBT Tree Node

Figure 2 shows the FTBT tree node, where A is the
output port number of the prefix value Curr_Prefix, and
B and C represent the output port numbers of the prefix
value Curr_prefix × 21 and Curr_prefix × 21 + 1,
respectively. This study refers to B and C as expanded
next hop0 and expanded next hop1, respectively.
When the length of the lookup prefix is more than the
1-bit length of Curr_prefix, the lookup operation visits
one of the sub pointers, 00 branch, 01 branch, 10

branch, or 11 branch, to find the associated output port
number. For example if the prefix value is Curr_prefix
× 22, then the lookup operation visits the 00 branch to
find the associated output port number.

Figure 3. FTBT Node Formats

The FTBT node structure is defined in Fig. 3. Each
node is in one of two node formats. All fields are
defined below.

Node type (nt): 0 or 1. Stands for the node type 0 or
node type 1.

Next hop (h): the output port number of curr_prefix.
Valid bits (vb[4]): indicates whether the field of the

Sub pointers have valid values.
Sub pointers (sp[4]): a pointer that points to the 00

branch, 01 branch, 10 branch, or 11 branch.
Expanded next hop 0 (eh0): the output port number of

the prefix value curr_prefix × 21.
Expanded next hop 1 (eh1): the output port number of

the prefix value curr_prefix × 21+1.

The node type is 0 when the routing table contains
no routing entry mapped to the eh0 field or mapped to
the eh1 field.

3: FAST TWIN-BIT TREE (FTBT) IP
LOOKUP ALGORITHM

Some terms used in the FTBT algorithm are defined
below.

• PosVal(prefix A, i, j): returns the value of the
bits i to j of prefix A, bit 0 is the MSB of prefix A.
For example: PosVal(1101*, 0, 2) = 110.

• Prefix match: consider two prefixes, A =
a0a1a2…an and B = b0b1b2b3…bm. If n<m and A =
PosVal(B, 0, n), then prefixes A and B match.

In real operations, the prefix length in the routing
table is greater than 8. A range table (RTB) is created to
reduce the number of memory accesses in the lookup tree
search. The RTB has 28 entries, each with a pointer to the
root node of the FTBT tree. Figure 4 shows the routing
table and the associated FTBT tree. In this example, the
first eight bits of prefixes are used as the index of the
range table. Thus, a large routing table is divided into

nt=0 sp[4]vb[4]hnt=0 sp[4]vb[4]h

valid bits Sub
pointers

next hop

nt=1 sp[4]vb[4]eh1eh0hnt=1 sp[4]vb[4]eh1eh0h

expanded
next hop 0

expanded
next hop 1 valid bits Sub

pointers
next hop

node type

node type

(a) node type 0

(b) node type 1

- 520 -

multiple FTBT trees. In FTBT tree construction, if an
FTBT node with no entry in the routing map is called a
pseudo-node. The next-hop field of a pseudo node
always has a value of zero.

pointerpointer

RTB

00000000

00000001

11111111

A

C811111111*

F1211111111 0110*

E1211111111 0101*

G1211111111 0111*

B1010001000 11*

D911111111 0*

9

8

Length

H11111111 1*

A00000001*

Next HopPrefix

C811111111*

F1211111111 0110*

E1211111111 0101*

G1211111111 0111*

B1010001000 11*

D911111111 0*

9

8

Length

H11111111 1*

A00000001*

Next HopPrefix

0
sp[3]

B

10001000

[Routing Table]

C

sp[1]

0
sp[3]

GF

sp[2]

E
sp[1]

Ⅰ

Ⅱ

Ⅲ

Ⅳ

Ⅴ

Ⅵ

Ⅶ Ⅷ

.

.

.

.

.

.

.

.

.

.

.

.

Pseudo Node
(11111111 01*)

Pseudo Node
(10001000*)

H

D

0
0

Node
Ⅵ, Ⅶ,
Ⅷ

0,1,1,
100

Node
Ⅵ, Ⅶ,
Ⅷ

0,1,1,
10Node Ⅴ

D H1 Node
Ⅴ

0,1,0,
0C D H1 Node

Ⅴ
0,1,0,

0C
Node Ⅳ

valid bits
Sub

pointers

next hopnode type valid bits
Sub

pointers

next hopnode type

expanded
next hop 1

expanded
next hop 0

Figure 4. FTBT Example

Figure 5. FTBT Construction Algorithm

Figure 5 illustrate the FTBT tree construction
algorithm. Initially, the whole RTB points to NULL
values. In the CIDR, a routing entry is represented by
the (p, l, h) format, where p denotes the route prefix, l is
the length of prefix p, and h is the output port number of
prefix p. The proposed algorithm does not have to sort
the routing table before constructing the FTBT tree.

First, the first 8-bit value of the prefix p is extracted
and used as the index of RTB. Thus, the first 8-bit value
of prefix 8 determines the FTBT tree related to the prefix

p. If the associated RTB bank points to the null address,
then the associated FTBT tree is empty, and a new FTBT
tree has to be constructed. Otherwise, the Insertion()
function is called to insert the routing entry into the
associated FTBT tree. If a tree node in a constructed
FTBT tree has no correspondence routing entry, then a
pseudo node is inserted.

Figure 6. FTBT Insertion Algorithm

Figure 6 shows the FTBT node insertion algorithm
Insertion(a, b, level), where variable a represents the
desired inserted node, variable b represents insertion
location, and level is the level of node b in the tree. The
root node is at level zero. Since one FTBT node
represents two-bit length of prefix, the prefix length of
the current node is given by 8+level*2.

In the insertion algorithm, the px_remain parameter
denotes the number of bits in the prefix that have not yet
been processed, up to the current level of the FTBT tree.
If px_remain is greater than 2-bit, then the routing entry a
must be inserted in the b-node’s branch according to the
value k in Fig. 6. If px_remain = 1, then the routing entry
is inserted in eh0 or eh1, depending on whether the
remained value is 0 or 1. Finally, If px_remain = 2, then
the routing entry is also inserted in the branch of node b
based on the value k in Fig. 6.

Function Insertion (a, b, Level)
{

px_remain = gLength - (8+Level*2);
case 1: px_remain > 2
{ k=PosVal (gPrefix, 8+Level*2 , 8+Level*2+1); //2-bit compared

if (b.vb[k] ≣ 0)
{ b.vb[k] = 1; b.sp[k] = a; // node a is pseudo node

NewNode = malloc (Node(0)); // create a new node
Insertion (NewNode, b.sp[k], ++Level); // link to sub pointer

}
else Insertion (a, b.sp[k], ++Level); // link to sub pointer
return;

}
case 2: px_remain ≣ 1 // 1-bit difference between prefixes
{

if (b.nt ≣ 0)
transfer b to node type 1; // b = Node(1 , hb , 0 , 0)

if (PosVal (gPrefix, gLength-1, gLength-1) ≣ 0)
b.eh0=gNexthop;

else
b.eh1=gNexthop;

delete a; // release node a
return;

}
case 3: px_remain ≣ 2 // 2-bit difference between prefixes
{

k=PosVal (gPrefix ,8+Level*2,8+Level*2+1);
if (b.vb[k] ≣ 0)
{ b.vb[k] = 1; a.h = gNexthop;

b.sp[k] = a; // link to sub pointer
}
else
{ b.sp[k].h = gNexthop; // update next hop of node b

delete a; // release node a }
return;

}
} // end Function

node
type

next
hop eh0 eh1

Function Construction (routing table)
{ /* P = {P0, P1,..., Pn-1} are the routing table prefixes (unsorted).

li and hi are the length and the next hop of a route prefix Pi respectively.

RTB is the Range Table which has 28 entries, each entry has a
pointer to map a corresponding node. */

while (more entry in routing table)
{

read one entry (Pi , li , hi) from routing table;
gPrefix = Pi ; gLength = li ; gNexthop = hi ; //global variables
index = PosVal (gPrefixes , 0 , 7);

NewNode = malloc (Node(0)); //memory allocated node type 0
/* NewNode.nt = 0 , NewNode.h = gNexthop ,

NewNode.vb = 0 , NewNode.sp = NULL */

if (RTB[index] ≣ NULL)
{

if (gLength ≣ 8)
{ NewNode.h = gNexthop;

RTB[index] = NewNode;
}
else
{ PseudoNode = malloc (Node(0));

/* PseudoNode.nt = 0 , PseudoNode.h = 0 ,
PseudoNode.vb = 0 , PseudoNode.sp = NULL */

RTB[index] = PseudoNode;
Insertion (NewNode , RTB[index] , 0); }

}else
Insertion (NewNode , RTB[index] , 0);

}// end while
} // end Function

- 521 -

J

x

0

K

(10001111*)

(10001111 00*)

(10001111 00 01*)

K1210001111 0001*

8

Length

J10001111*

Next HopPrefix

K1210001111 0001*

8

Length

J10001111*

Next HopPrefix

[Routing Table]

10001111

sp[0]

sp[1]

RTB

J

x
0

K

(10001111*)

(10001111 00*)

(10001111 00 01*)

10001111

sp[0]

sp[1]

RTB

J
x

0

(10001111*)

(10001111 00*)

10001111

sp[0]

RTB

J

x

(10001111*)

10001111
RTB

(a) (b)

(c) (d)

Function Lookup (IP, x, Level)
{

if (x.h≠0) next_hop = x.h;

if (PosVal (IP, 8+Level*2, 8+Level*2)≣0
& x.nt≣1 & x.eh0≠0)

next_hop = x.eh0;

if (PosVal (IP, 8+Level*2, 8+Level*2)≣1
& x.nt≣1 & x.eh1≠0)

next_hop = x.eh1;

k = PosVal (IP, 8+Level*2, 8+Level*2+1)
if (x.vb[k] = = 1) // link to sub pointer

Lookup (IP, x.sp[k], ++Level)

return next_hop;
} // end Function

Figure 7. FTBT Lookup Algorithm

Figure 7 shows the lookup algorithm Lookup(IP, x,
Level), where IP is the destination address (DA) of the
incoming packet, and x is the current node of the FTBT
tree.

Using the FTBT tree in Fig. 4, the IP address
“11111111010100…0” is now looked up. The first 8-bit
value of the IP address is extracted as the index of the
RTB. A root node whose next hop is C is then obtained.
To reach the LPM (longest prefix matching), the next
hop E is finally obtained.

The routing table update algorithm in FTBT is
implemented by the remove algorithm, Remove(px, x,
Level) as depicted in Fig. 8 to avoid reconstructing the
FTBT tree. As shown in Fig. 8 shows, px is a prefix
value of the desired removal routing entry, x is the
current traced location in FTBT tree, and x’s parameters
denotes information related to x, such as whether x has
an expanded next hop or sub-pointer to another branch.

For instance, in Fig. 9, if consider the removal of a
routing entry with prefix value “10001111 0001* and a
prefix length of 12. The root node is determined via
RTB as shown in Fig. 9 (a), and then the FTBT tree is
searched until the current location x is node K, as in Fig.
9 (b). Then the x.h is then set to zero. Furthermore, the
x’s parameters must be checked to decide whether node
K can be removed directly. When the node is removed,
x returns to the previous node, as shown in Fig. 9 (c).
The x’s parameters is checked continually until the
current location x stops at node J, as shown in Fig. 9(d).

Function Remove (px, x, Level)
{

px_remain = gLength - (8+Level*2);
case 1: px_remain ≧ 2
{

k=PosVal(px, 8+Level*2 , 8+Level*2+1);
if (x.vb[k]≣1)
{

Remove (px, x.sp[k], ++Level)
x.vb[k] = 0;
if (x’s parameters≣0)
{ delete x; // release node x

return; }
}
return 0; // Exit Function

}
case 2: px_remain ≣ 1
{

if (PosVal(px, gLength-1, gLength-1)≣0)
x.eh0 = 0;

else
x.eh1 = 0;

if (x’s parameters≣0)
{ delete x; // release node x

return;
}else if (x.eh0 & x.eh1≣0)

transfer x to node type 0; // x = Node(0 , hx)
return 0; // Exit Function

}
case 3: px_remain ≣ 0
{

x.h = 0;
if (x’s parameters≣0)
{ delete x; // release node x

return;
}else

return 0; // Exit Function
}

} // end Function

node
type

next
hop

Figure 8. FTBT Remove Algorithm

Figure 9. FTBT Remove Example1

- 522 -

Figure 10 illustrated another example of routing
entry removal. In this case, two routing entries are
matched and the prefix length differs by one-bit. Figure
10 (a) reveals that the root node must be found via RTB
remove the prefix value “11110000 1*”. In this case,
px_remain = 1. Since the 9th bit of the prefix value is
“1”, the x.eh1 of the current location must be removed.
Once the x.eh1 field is clear, the current node x’s
parameters is checked, and the node x is changed to
node type 0. The associated information of node x at
this time is shown in Fig. 10 (b).

M911110000 1*

8

Length

L11110000*

Next HopPrefix

M911110000 1*

8

Length

L11110000*

Next HopPrefix

[Routing Table]

00 NULL0L0 NULL0L

valid bits
Sub

pointersnext hopnode type

L

x

(11110000*)

11110000
RTB

M

0 M1 NULL0L 0 M1 NULL0L

next hopnode type valid bits
Sub

pointers
expanded
next hop 1

expanded
next hop 0

L
(11110000 *)

11110000
RTB

(a) (b)

Figure 10. FTBT Remove Example2

4: PERFORMANCE ANALYSIS

Performance of the proposed FTBT scheme is
evaluated. The number of total nodes, number of
dummy nodes, maximum memory access times,
average memory access times and required memory size
of the proposed FTBT scheme are simulated and
compared with Tree [7], Patricia [8], Prefix Tree [9],
LPFST [10] based on the AS3303 routing table, which
has 78504 routing entries [11].

Table I: Performance Comparison

 Tree Patricia Prefix
Tree LPFST FTBT

total
nodes 201181 147846 78470 75682 109248

dummy
nodes 122677 69342 0 0 30744

Max.
memory
access

28 25 25 24 9

Avg.
memory
access

21.7 19.9 19.7 17.6 6.2

memory
size(KB) 982.3 1588.1 766.3 815.7 1059.5

Table I presents the simulation results, which
indicate the Tree [7], Patricia [8], and proposed FTBT
schemes require extra memory space to maintain the
dummy nodes. Because an FTBT node is two bits long,
and to reduce the routing table update complexity (i.e.,
require extra dummy nodes), FTBT has a larger
memory requirement than other schemes, as shown in
Table I.

Comparing the average and maximum memory
access times reveals that the proposed FTBT performs
better than the other schemes. The use of the range table,
and the two-bit node representation, both significantly
reduce the height of the FTBT tree. For N number of
prefix table, the proposed FTBT can reduce the number

of memory access times from ()O w to
8()

2
wO −

with a range table size of 28. As shown in Table I, the
average number of memory access times for one IP
address lookup in a routing table with 78504 entries
environment is six. FTBT has a significant performance
improvement, but has a larger memory size requirement
than other schemes.

5: CONCLUSION
This study has proposed a practical software-based

scheme called Fast Twin-bit Tree (FTBT) for IP address
lookup. The proposed scheme adopts three routing
entries to represent one FTBT node, thus reducing the
tree height effectively. A range table is adopted to
divide a large routing table into a multiple FTBT tree,
and to reduce the search space. The height of each
FTBT tree in the IPv4 environment is only 12 in the
worst cast.

The FTBT IP lookup algorithm can effectively
reduce the number of memory access times and provide
fast routing table update operations. Performance
simulation reveals that the FTBT algorithm requires an
average of only six memory accesses when applied to a
routing table with 78504 entries.

REFERENCES

[1] Y. Rekhter and T. Li, “An Architecture for IP Address

Allocation. with CIDR,” RFC 1518, 1993.
[2] P.Gupta, S. Lin, and N. McKeown, “Routing Lookups in

Hardware at Memory Access Speeds,” in Proc. IEEE
HPSR2004, pp. 1240-1247, 1998.

[3] A. McAuley and P. Francis, “Fast routing table lookup
using CAMs,” in Proc. IEEE INFOCOM, pp.
1382-1391, 1993.

[4] Ravikumar, V.C.; Mahapatra, R.N.; “TCAM architecture
for IP lookup using prefix properties,” IEEE Journal on
Micro, pp 60-69, 2004.

[5] D. Yu, B. C. Smith, and B. Wei, “Forwarding engine for
fast routing lookups and updates,” in Proc. IEEE
GLOBECOM, pp. 1556-1564, 1999.

[6] H. Lim and Y. Jung, “A Parallel Multiple Hashing
Architecture for IP Address Lookup”, in Proc. IEEE
HPSR2004, pp. 91-95, 2004.

- 523 -

[7] Sklower, K., “A Tree-Based Routing Table for Berkeley
Unix,” in Proc. USENIX Conf., pp. 93-99., 1991.

[8] D.Morrison, “PATRICIA- Practical Algorithm To
Retrieve Information Coded in Alphanumeric,” Journal
of the ACM, pp.514-534, 1968.

[9] M. Berger, “IP lookup with low memory requirement and
fast update,” IEEE Conf. on High Performance Switching
and Routing, pp. 287-291, 2003.

[10] Lih-Chyau W., Kuo-Ming C., Tzong-Jye L., “A Longest
Prefix First Search Tree for IP Lookup,” in Proc. IEEE
INFOCOM, pp. 989-993, 2005.

[11] BGP Table, http://bgp.potaroo.net/
[12] The Routing Arbiter Project, Internet routing and

network statistic, http://www.re.net/statistics/
[13] Huang, N.-F., and Zhao, S.-M., “A Novel IP-Routing

Lookup Scheme and Hardware Architecture for
Multigigabit Switching Routers,” IEEE Journal on
Selected Areas in Communications, pp. 1093-1104, 1999.

[14] Yazdani, N., Min, and P.S., “Fast and scalable schemes
for the IP address lookup problem, ”IEEE Conf. on High
Performance Switching and Routing, pp.83-92, 2000.

[15] Sharma, S., Panigrahy, R., “Sorting and Searching using
Ternary CAMs, ” IEEE Conf. on High Performance
Interconnects, pp.101-106, 2002.

[16] Chang, R.C., Lim, B.H., “Efficient IP routing table
lookup scheme, ” in Proc. IEE on Communications, pp.
77-82, 2002.

[17] Zhen Xu, Damm, G., Lambadaris, I., Zhao and Y.Q., “IP
packet forwarding based on comb extraction scheme,” in
Proc. IEEE INFOCOM, pp. 1065-1069, 2004.

- 524 -

