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ABSTRACT 

Data broadcasting provides an effective way to 
disseminate information in the wireless mobile 
environment using a broadcast channel. How to provide 
the service of the k nearest neighbors (kNN) search 
using data broadcasting is studied in this paper. Given 
a data set D and a query point p, the kNN search finds k 
data points in D closest to p. By assuming that the data 
is indexed by an R-tree, we propose an efficient protocol 
for kNN search on the broadcast R-tree in terms of the 
tuning time which is the amount of time spent listening 
to the broadcast, latency which is time elapsed between 
issuing and termination of the query, and memory usage 
on the clients. We last validate the proposed protocol by 
extensive experiments. 
 
 
1: INTRODUCTIONS 
 

Emerging technologies on the mobile 
communications and positioning systems enable a 
wireless environment where mobile clients can 
ubiquitously access the information-centric services, 
such as the electronic news service, traffic information, 
stock-price information, etc. In such an environment, 
data broadcasting provides an effective way to 
disseminate information to mobile clients in the wireless 
environments where the server disseminates information 
via the broadcast channel and each mobile client can 
independently retrieve the relevant data of individual 
interest [1][6][7][8][9][10][11][13].* 

Besides the asymmetric bandwidth, the energy is a 
scarce resource for mobile clients; therefore, raises an 
important issue when designing the mechanisms to 
provide the services. Two cost measures therefore are 
usually considered in a data broadcasting environment. 
The latency (i.e., the time elapsed between issuing and 
termination of the query) indicates the Quality of 
Service (QoS) provided by the system and the tuning 
time (i.e., the amount of time spent on listening to the 
channel) represents the power consumption of mobile 
clients. These two measures are the same when only the 
data are broadcasted. On the other hand, broadcasting 

                                                           
* Work supported by the National Science Council under the grant 
numbers NSC-94-2213-E-027-043 

data with an index provides an efficient approach to 
disseminate information in terms of energy consumption 
[6][7][8][11][12][13] and distinguished these two 
measures. The index allows a mobile client to tune into 
a broadcast only when data of interest and relevance are 
available; therefore, minimizes the power consumption. 
In our work, we further consider the amount memory 
used when a client executes a query since the size of 
memory is also usually limited. 

In this paper, we use R-trees [5] and its variations 
[2][3] as index trees and discuss the k nearest neighbors 
(kNN) search on a broadcast R-tree. The kNN search 
finds the k objects closest to a query point p. Having the 
kNN search service, a mobile client can have the queries 
like ”please give me 10 nearest hotels” or ”please find 5 
gas stations nearby”. In order to minimize the latency, 
tuning time, and memory used at the client 
simultaneously, we investigate how a server schedules 
the broadcast for an index tree and what the query 
processing is at the client side. Scheduling the index tree 
for broadcast involves determining the order by which 
the index nodes are sent out and adding additional data 
entries to the index nodes. 

The organization for the rest of this paper is as 
follows. After giving the preliminaries in Section 2, we 
present and discuss the broadcast schedules in Section 3. 
The corresponding algorithm for executing kNN search 
on a broadcast index tree is proposed in Section 4. The 
experiment work is discussed in Section 5. Section 6 
concludes this paper. 
 
2: PRELIMINARIES 
 

The research about R-trees for multi-dimensional 
data has been extensively explored in recent decades. 
The index node of an R-tree uses the minimum bounding 
rectangle (MBR) as its index which surrounds the MBRs 
of its children and contains the information of the 
children, including the MBRs of children. The leaf nodes 
only contain the MBRs of data objects. Figure 1 shows 
an R-tree and the corresponding MBRs of the node in the 
R-tree. 

- 555 -



 
Suppose a query point p is given. We now give three 

types of distance for node v in an R-tree which are 
usually used in the process of the kNN search on an 
R-tree. 

 mindist(v) is the minimum distance from p to v’s 
MBR; and 

 minmaxdist(v) is the minimum distance of the 
maximum distances from p to each face of v’s 
MBR. 

 maxdist(v) is the maximum distance from p to v’s 
MBR. 

The conventional kNN search algorithm on R-trees 
proposed in [14] uses mindist and minmaxdist to prune 
the nodes which are impossible to be in the kNN of p. 
The authors defined kthdist to be the minmaxdist of the 
current kth nearest neighbor during the processing and 
initially ∞. A node v can be skipped if kthdist < 
mindist(v). 

In wireless broadcast environments, the 
conventional kNN search algorithm mentioned above 
can be adopted to a broadcast R-tree but leads to a 
larger latency due to the serializability of a broadcasted 
tree [4]. Based on the conventional kNN search 
algorithm, the authors in [4] provided an 
energy-efficient kNN searching approach on broadcast 
R-trees using all the three types of distance. In order to 
reduce the tuning time, the approach used a 
conservative way to predict the kthdist and can prune 
the index nodes in the earlier stages. Hence, the tuning 
time is reduced. 

For simplicity, we use one node, including the index 
and data (or leaf) node, as a packet in the broadcast. For 
any index node v, the packet basically contains v’s 
identifier and information of v’s children. The 
information for each child v’ of v includes the address of 
v’ in the broadcast and the index for v’. The un-shaded 
area in Figure 2 shows the basic content of a 
broadcasted index node r in Figure 1. The address 
allows a client to tune in when the relevant node appears 
in the broadcast and is crucial to reducing the tuning 
time [6][7][8][11][12][13]. The leaf node in the 

broadcast contains only the node’s identifier and the 
data content. 

 
Our proposed kNN search algorithm uses mindist, 

maxdist, and an additional entry in the index node to 
prune the nodes which are definitely irrelevant to the 
kNN. We say a client explores node v when the client 
tunes into the broadcast to receive and process all the 
entries stored with v. Our algorithm maintains two lists: 
C-List and R-List. C-List stores the candidate nodes to be 
explored later and R-List keeps the nodes which are in 
the current result of kNN during the search processing. 
All the nodes in C-List and R-List are ordered by maxdist, 
respectively. The objective is to minimize the tuning 
time and latency as well as the memory usage for a 
particular kNN search at mobile clients. 
 
3: DATA BROADCAST SCHEDULES 
 

There are two aspects which should be considered 
when designing a data broadcasting protocol in a 
wireless environment. One is the broadcast schedule at 
the server and the other is the corresponding query 
process at the mobile clients. In this section, we discuss 
the broadcast schedules at the server. The schedules 
based on the breadth-first traversal can achieve a better 
tuning time [4] but result in a large memory usage at the 
mobile clients. Furthermore, most of the existing 
algorithms for different types of queries on broadcasted 
R-trees use the broadcast schedules based on the 
depth-first traversal [1][4][6][7][8][9][10][11][13]. We 
thus consider the broadcast schedules based on the 
depth-first traversal. Our work tailors toward one 
broadcast R-tree for different kinds of queries. 

We consider two broadcast schedules based on the 
depth-first traversal and these two broadcasts differs in 
the ordering of the children of each node in the R-tree. 
The first broadcast schedule, pDFS, organizes the 
broadcast simply by the depth-first order. Such a 
broadcast schedule for R-trees has been used and 
studied in many papers [4][6][7][8][9][10][11][13]. 
However, such a broadcast schedule does not consider 
any factor that might effect the performance in terms of 
the tuning time, latency and memory usage. We thus 
consider a variation of the pDFS, called wDFS. The 
wDFS broadcast schedule will rearrange the R-tree by 
the subtree sizes in a non-increasing order and then 
place the nodes in the broadcast according to the 
depth-first order. Figure 3 shows the broadcasts of the 

Figure 1. A kNN (shades) at the query point p 
(dashed circle) with k=3 on a 16-node R-tree.

Figure 2. A broadcast index node; the 
un-shaded part representing the basic 
content; the shaded part indicating the 
additional entry used in this paper. 
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R-tree in Figure 1 generated by the pDFS and wDFS 
schedules, respectively. 

Recall that a broadcast packet corresponds to a node 
in the R-tree. The un-shaded area in Figure 2 indicates 
the basic content of a broadcast index node. In order to 
effectively prune nodes which are irrelevant to a kNN 
search when exploring a node, we add an entry, l-entry, 
for each child. The l-entry of a child v’, l(v’), is the 
number of leaves in the subtree rooted at v’. Figure 2 
shows a broadcast node considered in this paper and the 
shaded area presents the l-entry of each child of node r. 
The number of leaves rooted at the child node a is four 
(i.e. l(a)=4). We will discuss it in more details in the 
next section. 

 
4: EXACT kNN SEARCH ALGORITHM 
 

This section introduces our exact kNN search 
algorithm, w-disk, on a broadcast R-tree. We will show 
that our kNN search algorithm can find the exact kNN 
efficiently and analyze the time complexity for exploring 
a node in the R-tree. Algorithm w-disk will determine an 
imaginary circle C centered at the query point p using 
maxdist as the radius. With such a circle and the l-entry 
added in the child’s information in the broadcast, the 
algorithm can decide which node and its descendants are 
irrelevant to the kNN and exclude them for further 
exploring to achieve a shorter tuning time and latency. 

Suppose algorithm w-disk starts from the beginning 
of the broadcast cycle (i.e. the root of the R-tree). For a 
kNN search at query point p, we let U denote the union 
of C-List and R-List. Amid all the nodes in U, there is at 
least one node u having the following property 

where l(v) is the number of leaves in the subtree rooted 
at v. Among the nodes having the above property, we 
refer to the node whose maxdist is minimum as the 
Pnode. The Pnode is used to prune the nodes irrelevant 
to the kNN. Based on the Pnode u, one can generate a 
circle Cu centered at p with radius maxdist(u). Suppose 
there are n MBRs inside Cu and the corresponding 
nodes are u1, …, un. We denote the total number of 
leaves in the subtrees rooted at u1, · · · , un as 

where l(ui) is the number of leaves in the subtree rooted 
at ui and Su ≥ k. 

Initially, the Pnode is a pseudo-node and the radius 
of the corresponding circle is ∞. The algorithm starts 
with receiving the root and then explores the root. 
During the exploration, all the children of the root are 
inserted into C-List since all the MBRs of the children 
are in the corresponding circle of the Pnode. After the 
insertion, a new Pnode is calculated and used to prune 
the irrelevant nodes in the current and next explored 
node. The next node to be explored is the node closest 
to the currently explored node in the broadcast in C-List. 

In general, suppose node v is the next node to be 
explored, algorithm w-disk works as follows. Assume 
that the Pnode determined in the previous explored node 
is u and the corresponding circle Cu is centered at p with 
radius maxdist(u). Consider that node v is received from 
the broadcast channel. There are two cases for node v. 
First, when node v is a leaf node, we then insert v into 
R-List. If R-List is full, we remove the one having the 
maximum maxdist among all the nodes in R-List 
including node v. Then, we consider the next node to be 
explored from C-List as before and the process 
continues. 

The other case is that node v is an index node. For 
each child v’ of v, the algorithm first uses Cu to decide 
whether v’ can be ignored. Should mindist(v) be greater 
than maxdist(u), child v’ can be ignored since it is 
impossible for the leaves in the subtree rooted at v’ to be 
in the kNN; otherwise, insert v’ into C-List. The 
algorithm then calls FINDPNODE() to find a new 
Pnode u’ among all the nodes in the current C-List and 
R-List. It is not difficult to find a new Pnode u’ since 
both of the lists are sorted by maxdist in a 
non-decreasing order. With the Pnode u’ and its 
corresponding circle Cu’ , algorithm deletes all the nodes 
in C-List and R-List whose MBRs are outside Cu’ and 
keeps all the nodes whose MBRs intersect with Cu’. 
Then, the algorithm extracts the next node to be 
explored from C-List. Figure 4 shows the high-level 
description about exploring a node in algorithm w-disk. 

Algorithm w-disk starts from the beginning of the 
broadcast cycle (i.e., the root) and uses the above 
algorithm to explore a node. The algorithm stops when 
C-List is empty (i.e. there is no next node to be 
explored). We now use the R-tree in Figure 1 to 
illustrate how algorithm w-disk works. Consider a kNN 
search at the query point p with k = 3 with a pDFS data 
broadcast schedule. Algorithm w-disk first explores the 
root r. During the exploration, nodes a and h are placed 
into C-List with the order of a, h since maxdist(a) < 
maxdist(h) (Step 1.2). Then the algorithm needs to find 
a new Pnode from C-List (Step 1.3). Node a is the new 
Pnode and the corresponding circle is Ca because 
maxdist(a) < maxdist(h) and Sa > k. Having the new 
Pnode a, the algorithm examines all the nodes in C-List 
to discard the irrelevant nodes (Step 1.4). However, the 
MBR of h intersects with Ca and h is thus kept in C-List. 
After exploring the root r, the next node to be explored 
is node a since node a is broadcast earlier than node h 

Figure 3. The broadcasts generated by the 
pDFS and wDFS schedules respectively for 
the R-tree in Figure 1.
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Algorithm kNN-Explore(v) 
/* u is the Pnode used in the previous explored node */ 
(1) if node v is a leaf node then 

(1.1) INSERT v into R-List 
else /* node v is an index node */ 
(1.2) for each child v’ of v do 

  if mindist(v’) ≤ maxdist(u) then 
    INSERT v’ into C-List 

(1.3) u’=FINDPNODE(); 
(1.4) DELETE the nodes of which mindist > 

maxdist(u’) from the both lists 
(2) let w be the node closest to the currently explored node 

in C-List 
(3) kNN-Explore(w) 
End Algorithm kNN-Explore 
 
Algorithm FINDPNODE() 
(1) Scan the nodes in C-List and R-List by maxdist in a 

non-decreasing order using the way like the merge 
sort until the first node u whose Su ≥ k; 

(2) return u 

(Step 2) and the algorithm waits for node a in the 
broadcast to proceed the search process. 

When exploring node a, both of a’s children are 
inserted into C-List since the mindist of each child of a 
is smaller than maxdist(a). After the insertion, the order 
of nodes in C-List is e, b and h. Recall that the nodes in 
C-List are ordered by the maxdist in a non-decreasing 
order. It is not difficult to find the new Pnode b with the 
corresponding circle Cb as follows. The algorithm first 
considers node e since maxdist(e) is smallest among all 
the nodes in C-List and R-List. However, Se = l(e) = 2 < 
k = 3, the algorithm next considers node b for the new 
Pnode. Because the MBR of e is in Cb and Cb contains 
more than k = 3 leaves, i.e. Sb = l(e) + l(b) = 4 > 3, node 
b is the new Pnode and the algorithm then uses Cb to 
decide the irrelevant nodes in both C-List and R-List. 
The relation among nodes e, b and h and Cb is shown in 
Figure 5. The algorithm then extracts node b from 
C-List to be the next node to be explored since b is 
broadcast before e and h. The process then proceeds in 
the same way. 

For the rest of this section, we show the correctness 
and the time complexity of algorithm w-disk. Due to the 
space limitation, we state the theorems without proof. 
Theorem 1. Given a kNN search at query point p, 
algorithm w-disk can finds the exact k nearest 
neighbors. 
Theorem 2. For a broadcasted R-tree having height h 
and fanout B, it takes O(B · max{k, hB}) time to explore 
a node. 
 
5: EXPERIMENTAL RESULTS 
 

In this section, we present our experimental results 
and compare our kNN search algorithm w-disk with the 
revised conventional approach w-conv and the improved 
algorithm w-opt in [4]. The cost measures include the 
tuning time, latency and memory usage. When 
discussing each measure, we include the optimal cost for 
comparison. Besides, we also compare the impact on the 
performance resulting from the two broadcast schedules, 
pDFS and wDFS, discussed in Section 3. 

We use R*-trees [2] as the index tree on point data 
in the experiment. The trees have 150,000 leaves and 
the node fanout between 12 and 24. The point data are 
generated using a uniform distribution within the unit 
square and correspond to the leaves. The value of k 
varies from 1 to 210. For each value of k, data reported 
is the average of 1,000 different kNN searches with 
different query points selected uniformly. 
 
5.1: TUNING TIME 
 

The tuning time reflects the power consumption for 
the kNN search at the mobile clients. Figure 6(a) shows 
the comparison of the tuning time for three algorithms on 
the R*-tree with fanout 24 and 150,000 leaves. The tree 
has a height of 6 and a total of 159,185 nodes. The kNN 
search starts from the beginning of a broadcast cycle. 
The broadcast schedule in Figure 6 uses pDFS. The 
x-axis reflexes the different value of k. 

Recall that w-opt uses a conservative approach to 
determine kthdist in an earlier stage; therefore, can 
prune the nodes effectively. With l-entry added in the 
broadcast node, our algorithm w-disk can decide the 
range of the kNN more accurately. Hence, w-disk can 
avoid exploring more nodes not in the resulting kNN. 
The experimental results indicate that our w-disk 
algorithm can explore fewer nodes than the other two 
algorithms; therefore, leads to a fewer tuning time. This 
trend becomes obvious as the value of k increases. In 
general, the difference in the tuning time becomes big as 
k increases. Figure 6(a) also shows the optimal tuning 
time. However, we conjecture that it is very hard to 
achieve. 
 
5.2: ACCESS LATENCY 
 

This section compares the access latency of different 
kNN search algorithms on broadcasted R*-trees. As 
shown in Figure 6(b), algorithm w-disk achieves the best 

Figure 4. Client algorithm for exploring a 
node in the kNN search. 

Figure 5. The relation among nodes e, h, and 
the Pnode b when exploring node a. 
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latency which is closest to the optimal latency . The other 
two algorithms yield almost the same latency. 

In w-opt, some redundant nodes are kept for the 
result to generate the kthdist. Using the kthdist, the 
nodes to be explored later are determined and stored . 
The kthdist changes as the algorithm proceeds but the 
nodes stored to be further explored are not checked 
using the new kthdist; therefore, may result in a longer 
latency. Such a case also occurs in w-conv. Since w-disk 
examines the C-List and R-List each time when a new 
Pnode is determined, w-disk leads to a much shorter 
latency. 
 
5.3: MEMORY USAGE 
 

The size of C-List denotes the amount of storage used 
during the kNN search processing. Figure 6(c) shows the 
comparison of the maximum amount of storage used for 
these three algorithms. The results show that w-disk uses 
fewest storage space among these three algorithms and 
w-opt performs better than w-conv. 

Algorithm w-disk uses the Pnode to prune the 
irrelevant nodes when exploring a node. Such a Pnode is 
derived by considering the number of leaves in its 
corresponding circle; therefore, leads to a better 
approximation to the resulting kNN. Furthermore, w-disk 
uses the previous Pnode to delete the irrelevant children 
and the new Pnode to delete the irrelevant nodes in 
C-List and R-List. As a result, w-disk needs fewer storage 
to execute a kNN search. 
 
5.4: pDFS v.s. wDFS 
 
We now discuss the impacts result from the two 
broadcast schedules pDFS and wDFS in Section 3. The 
broadcast schedule using wDFS broadcasts the larger 
subtrees first in DFS fashion. The experimental results 
show that the broadcast schedule using wDFS can 
achieve a shorter tuning time than the one using pDFS. 
This conclusion holds in all our experiments. Figure 7(a) 
presents the comparison of the tuning time using wDFS 
and pDFS broadcast schedules respectively. 
Broadcasting the node which has a larger subtree size 
first allows the mobile clients to have a better 

approximation for the kNN in an earlier stage since 
more MBRs can be obtained earlier. Such an impact 
results in a fewer tuning time no matter which algorithm 
is applied. On the contrary, the broadcast schedule using 
wDFS leads to a longer latency. This trend is shown in 
Figure 7(b). Broadcasting the node which has a larger 
subtree size first forces the query process to wait to the 
very end for the relevant node with a smaller subtree 
size. However, the broadcast schedule using pDFS does 
not need to wait for such a case. In general, the 
broadcast schedule using pDFS outperforms the one 
using wDFS in average in terms of the latency. 
 
 
6: CONCLUSIONS 
 

In this paper we propose an effective kNN search 
protocol on broadcasted R-trees in a wireless broadcast 
environment. In the broadcast environments, two 
directions are considered when designing the protocols. 
One is to consider how the server broadcasts the data. 
The other is what the corresponding process is on the 
client side. Previous work focused on either side. We 
consider the server and client aspects respectively. By 
adding an additional entry in the broadcast on the server 
side, our kNN algorithm at the client achieves fewer 
tuning time and shorter latency with fewer storage. We 
also consider two different broadcast schedules based on 
DFS. The results of the extensive experiments validate 
that our mechanisms achieve the objectives. On the 
broadcast R-trees, many types of queries have been 
studied. Our work in this paper tailors toward one 
broadcast R-tree for different kinds of query 
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