

Design and Implementation of a Lightweight Operating System for Wireless
Sensor Networks

Jang-Ping Sheu*, Bai-Kuan Hsu, Po-Chuan Lin, and Chia-Jen Chang
Department of Computer Science and Information Engineering

National Central University
*Email:sheujp@csie.ncu.edu.tw

ABSTRACT
Wireless sensor networks are composed of large
numbers on tiny networked devices, which are called
sensor nodes. To implement a sensor network
application, we need an operating system that provides
a complete hardware control libraries and schemes to
interactive with the sensor node hardware. In this
paper, we design and implement a lightweight
operating system (LOS) for wireless sensor networks.
We implement four applications in our LOS and
TinyOS, respectively. The code sizes used in our LOS
can save about 42% to 67% memory space for the four
applications compared to TinyOS.

1: INTRODUCTION

Wireless sensor networks (WSNs) are composed

by large number of sensor nodes and can be used in a
variety of applications such as military surveillance,
air-conditioner control, building security, health
monitor, and scientific investigations in harsh physical
environments. To realize the above applications, it is
very difficult for users directly programming to control
sensor node hardware. Thus, several researchers
developed the operating systems focused on WSNs.
TinyOS [2] and Sensor Network Operating System
(SOS) [4] provide powerful interface between users
and the hardware. TinyOS is featured with NesC
programming language, which was focused on
network programming issues [1]. SOS is featured with
a dynamic micro kernel [5] concept which saves the
cost of memory space and wireless power
consumption on kernel update.

In this paper, we design and implement a
lightweight operating system (LOS) for WSNs. We
implement our LOS in C language, which is already
known and learned world widely. Without learning a
new programming language, users can implement their
new ideas quickly by using our LOS. The users can
also have the standard ANSI C functions included in
their programs, which save a lot time for them to
complete their work. LOS uses static memory
mapping that has optimized performance and code size.
Event-driven is the concurrency mechanism of LOS
which is suitable for WSNs. Kernel architecture
adopted in LOS is monolithic which has better

performance and compact size compared to micro kernel
approach. The main design concept of LOS is to keep
the kernel as lightweight as possible and the
characteristics of highly flexible and easy modification.
The LOS also can lower the cost of sensor nodes with a
small memory space. The LOS is designed to be
lightweight but it still supports enough functions for
applications. The applications written in LOS are
smaller than TinyOS in our experiments.

The rest of this paper is organized as follows.
Section 2 presents the preliminary of WSN OS. Section
3 describes the system architecture and implementation
of our LOS. Section 4 evaluates the system performance
of LOS. Section 5 concludes this paper.

2: PRELIMINARY

In the following, we review the programming
languages, memory mapping, concurrency control, and
kernel architecture which are adapted by the existing
operating systems of WSNs.

(a) Programming Languages:

The programming languages are directly influence
on user’s developing experience and efficiency. Since
the low-level system implementation on WSN OS is
usually needed, it is desirable if only one programming
language is used through the entire system.
Programming language also effect the performance and
size of the system. NesC is focused on networked
embedded systems [1]. TinyOS uses NesC for users
programming language. However, in its kernel still uses
C for system programming language. During the
compiling procedure, the NesC interpreter will transfer
the NesC program codes into C codes. If we use the C
programming language instead of the NesC language,
the code size is more compact than that generated by
NesC. C is compact and performs better than NesC, but
it lacks extendibility. We suggest users to write the
application code in structure based formation, which can
enhance the extendibility of applications.

(b) Memory Mapping:

The memory control system is essential for
operating systems. Memory control system has to
manage the whole memory related operations such as

- 586 -

memory allocation, memory protection, and garbage
collection. There are two kinds of memory mapping:
dynamic and static. In static memory mapping system,
the compiler displays the memory usage after
compiling. So, if the OS adapts static memory
mapping, memory control system can be ignored or
reduced which makes the kernel much smaller. Static
memory mapping lacks of extendibility on kernel
function update, recompiling the whole kernel is
necessary if there needs functional update. The
memory size of dynamic memory mapping is bigger
than that of static one because the kernel needs to
include the memory control system and increase the
kernel size by a certain amount. The memory control
system also brings extendibility for user to have
functional update on system kernel without compiling
the whole kernel. In order to minimize the kernel size,
LOS adapts static memory mapping mechanism.

(c) Concurrency Control:

Concurrency is a property of systems which
consist of multiple tasks executing simultaneously.
Two concurrency control mechanisms [9][12] were
discussed here. In time-sharing systems, each running
task requires the hardware resources from the process
scheduler. Process scheduler will dispatch timeslots for
each task. A task may end up its computation and then
leave the time slot. Otherwise, the scheduler will force
the task to quit in the end of time slot. On the other
hand, event-driven systems have their own control
flow. CPU executes the main control flow mostly, and
it is largely driven by external events.

Time-sharing systems have to include a scheduler
and process handler for process creation and
termination, which increase the kernel size but are
extendable for many processes. Event-driven systems
execute user defined event handlers and routine tasks,
which save much kernel space without the scheduler
and process handler. Since the user has to define each
event handler, event-driven system suits only those
have few events, like the WSNs. In general, an
application WSN will have less than ten events.
Comparing time-sharing system and event-driven
system, the later has less memory request and more
appropriate for WSN applications.

(d) Kernel Architecture:

Kernel is a piece of software responsible for the
communication between hardware components and
software components. There are two kernel
architectures: micro kernel [5] and monolithic kernel
[7]. The concept of micro kernel is to build a minimal
kernel providing the most important system calls. The
minimal set of services required in a micro kernel is
memory space management, inter-module processing
(IMP), and timer management. By linking optional
kernel modules, users can have more functions to
enhance the kernel. Micro kernel concept has better
upgradeability. The communications between kernel
modules depend on IMP. Since the IMP happens quite

frequently, it will slow down the whole system
performance [5]. The IMP also making the sensor
network system may fail for some real-time constrained
applications. The concept of monolithic kernel is to
compile all the required services set into a larger kernel.
The compiled kernel does not need IMP since the kernel
itself contained all the required functions. So the
performance of monolithic kernel does better than micro
kernel if the two kernels contain the same service set.

These four aspects have great influence to the
system performance and kernel size of operating
systems. TinyOS uses static memory mapping,
event-driven mechanism, and monolithic kernel. NesC
uses component-based architecture, with many
components statically linked with the kernel to a
complete image of the system. The advantage of
module-based design concept is easy of inheriting
developed components, but on the other hand, the
program grows large faster than traditional C program
language. SOS [4] is the acronym of Sensor Network
Operating System, developed by UCLA. SOS uses C as
the programming language, dynamic memory mapping,
and event-driven mechanism. SOS features in micro
kernel architecture, which can reduce the system image
size. It saves the time and power on modules update.
The modules are dynamically linked and the memory is
dynamically allocated. Therefore, the main kernel has to
induce memory allocation and protection system, which
also increase the risk of run-time error possibility.

Middleware consists of software acting as an
intermediary between application components. Taking
an example for quicker understanding, JAVA virtual
machine is a middleware. Middleware have to adopt
dynamic memory mapping method since the dynamic
attribute of agent. The concurrency control mechanism
of middleware is time-sharing because the support of
multiple agents inside a node. The middleware Mate [10]
and Agilla [11] are based on TinyOS and with their own
script format. The major benefit of middleware concept
is the high mobility of software agents which are
positive on WSN applications. Middleware concept also
brings many other drawbacks. First, integrated
middleware makes the operating system image quite
large. Second, middleware systems have their own script
standards, users need to learn new script languages.
Third, the sensor node will spend much computation
power on middleware script interpreter which needs
many cycles on a single operation string compare
computation.

According to the above considerations, our LOS
adapts C programming language, static memory
mapping mechanism, event-driven concurrent control
and monolithic kernel architecture to achieve
lightweight OS.

3. IMPLEMENTATION OF LOS

In this section, we describe the hardware platform,
software platform, and implementation details of our
lightweight operating system (LOS). The hardware

- 587 -

platform consists of hardware programmer and
Octopus sensor node. Hardware programmer is the
bridge between development platform (a desktop or a
laptop) and sensor node device. Octopus is our
self-designed IEEE 802.15.4 compliant wireless sensor
node, which is composed of AVR Atmega128 [6] and
Chipcon’s CC2420 [3], as shown in Fig. 3.1. The AVR
Atmega128 is an 8-bit RISC processor. It can be
programmed with 128 K bytes internal flash memory,
4 K bytes EEPROM, and 4 Kbytes internal SRAM.
Chipcon's CC2420 is the industry's 2.4 GHz IEEE
802.15.4 compliant RF transceiver.

The software platform consists of toolkits and our
designed operating system LOS. The toolkits include
WinAVR library, AVR Studio, and GNU C Compiler.
AVR programmer can load the compiled kernel image
into our sensor nodes. The AVR Studio is the software
to control AVR programmer. WinAVR is a suite of
open source software development toolkit. It is
designed for AVR RISC micro-controllers. The most
important component inside WinAVR is WinAVR
library. It is a set of C function library for lower level
operation on AVR micro-controllers. It is essential for
LOS since we use many functions from WinAVR
library. GNU C Compiler is a suite of famous open
source software (AKA GCC). Here we use AVR
instruction compatible and Windows compatible
version.

Figure 3.1 A photo snap of Octopus

Currently, the development platform is on
Microsoft Windows XP 32-bit version. The
development of the LOS system is focused on four
main components: main program, Makefile, system
code, and system header. In the main program, user
can design process routine by his own algorithm and
data structure. The main program eventually becomes
a combination set of process routines including main
schedule, event handler, and routine task. The system
overview is shown in Fig. 3.2. Main schedule is the
entrance of the whole process. In most situations, main
schedule does not have many instructions to execute,
but only a few routine maintain instructions. In some
cases, the main schedule can even be an idle schedule.
Another importance of main schedule is the

declaration of other schedules such as event handler and
routine task.

Event handler is the key idea of event-driven system.
In time-sharing system, the RF device will hold a
process in the process scheduler. The process scheduler
waits for CPU to poll the data inside the RF device
frequently. In event-driven system, the arrival of RF
packet will trigger an interrupt to MCU. When the
interrupt is triggered, the MCU will sense it and hold the
current process, then jump into the event handler which
was declared in main scheduler. After the event handler
is executed, MCU will jump back to the original
process.

Basically, only those acceptable interrupts can have
their own event handlers. Here, we can find out the
system actually will not complex due to the number of
event handler will never exceed the number of
acceptable interrupts. The event handlers must be
declared in header files or in the main schedule. Routine
task is another important and useful component in WSN
operating systems. In most WSN applications, routines
like polling data from a sensor device are highly
required. For instance, if you want a series of
temperature recording, you may create a task that polls
the data from the temperature sensor every 10 minutes,
and stores the value into an array. And then create
another routine task, which sends the recorded values to
sink node every 6 hours. These two routines formed a
simple WSN application. The routine task was triggered
by timer interrupt.

Makefile is a configuration file that defines many
detail project specifications and compiler strategies.
Compiler will read the Makefile before each compiling
action is triggered. Each project will need an individual
Makefile for configuration definition. In the Makefile
we used, there exist 88 kinds of specifications and
compiler strategies. Here, we list five specifications:
MCU name, processor frequency, target filename,
included C source files, and output format.

In our LOS, the system code was split into six main
modules including delay control module, EEPROM
control module, I/O control module, timer control
module, USART control module, and RF control module.
Delay control module holds an instruction for a while is
tricky in WSN application programming. For example,
if we want to display some information on the LED, the
state should be hold for a while for human eyes. It is
difficult to control the delay time precisely. It is also
very important to confirm the delay control parameter
inside the system is accurate. The mechanism we
adopted for confirming delay period is to program an
I/O pin and measure the delay time through oscilloscope.
Users just need to input a counter for desired delay time.

- 588 -

Figure 3.2 System diagram overview

EEPROM Control Module is a kind of
non-volatile memory. The characteristic of
non-volatile memory is that the data stored inside will
not cleared if power is lost. User can store critical data
inside EEPROM in case the power supply is lost or
drained. When the power regained, the critical data
can be restored from EEPROM. To be noticed, access
EEPROM takes more time and power than RAM.
EEPROM operations are not very complex. First,
access the EEPROM when it is idle by checking the
EECR register. Second, make sure the EEPROM
operations were not being split by disable the
interrupts. Third, write the data (EEDR = inByte) into
the desired address (EEAR = adrEEPROM). Finally,
execute the operation for MCU to write the EEDR
register into address EEAR.

I/O control module in LOS is dedicated for easy
I/O signal control for users in just one line of C
program code. Users can access the IO pins of the
MCU by a redefined variable name. For example, the
green surface mounted LED pin is defined as
GREENLED. This is because LOS integrated difficult
control procedure into a single function call. By define
the MCU name in the Makefile, the compiler will read
the MCU information for each MCU hardware
specifications. The direct address information is based
on WinAVR library definitions, and then refined in
LOS system headers. Timer control module is an
important component in event-driven system.
Atmega128 MCU provides two 8-bit timers and three
16-bit timers. Usually one timer will be taken as the
system timer. The others can be assigned for different
routine tasks like sensor data polling. Each timer can
be triggered in three different ways. First, the input
capture trigger. This means each tick of the timer will
trigger the MCU to execute the service routine of this
timer. Second, the compare match trigger. This kind of

trigger is useful for periodic routines like sensor data
polling. Third, the overflow capture trigger. Some
functions like watchdog will need this kind of timer
trigger.

USART control module is used to connect the
sensor node and the desktop through the 9-pin D-shell
connector (DE-9 connector). The programmability of
the whole system is great enhanced. USART can send
and receive data packets. User can transmit any
variables and characters as he wants. Regarding to the
poor information display ability on sensor node, this
function turns a desktop computer into a powerful
debug system. Receive data packets is also useful on
sensor hardware. For example, by coordination
through a desktop computer and a sensor node, user
can build the desktop computer into an interactive
communication interface.

RF control module is composed of two
sub-modules, the SPI control module and CC2420
control module. These two sub-modules have
dependency for each other so they must be included
together. SPI control module is the module for
controlling digital electronics that accepts clocked
serial stream of bits. CC2420 control module is the
collection of operation for CC2420 RF chip. Based on
the SPI control module, the CC2420 control module
provides all kinds of RF transmitter functions for
WSN applications. The operations of RF transmitter
can be sorted into three types: packet transmission,
packet receiving, and status control. Packet
transmission operation is not complex. It waits for the
idle state and then sends the data and command into
CC2420. Packet receiving is a rather complex
operation. CC2420 has 128 K bytes packet buffer. If
the packets arrive, but the MCU did not fetch in time,
they will be stored in the buffers If the buffer
overflows, the latest packet will overwrite the oldest

WinAVR - Library

System Code

Makefile

System Header

Main Program

Gnu C Compiler (AVR compatible)

LOS
DELAY
Control

USART
Control

EEPROM
Control

IO
Control

Timer
Control

RF module

SPI
Control

CC2420
Control

Octopus

MCU
Atmega128

RF
CC2420

Sensor

Kernel Image

AVR Studio

AVR Programmer

- 589 -

one. LOS provides 128 x N K bytes ring-queue buffer.
Default value of N is set to 4. This means that packet
buffer has been expend to 128 * 5 K bytes, and the
packet inside CC2420 will be fetch into LOS system
buffer automatically if the LOS buffer is not full.

 In LOS, each module has one header file. Each
header file includes several compiling essentials such
as function declaration, variables definition,
parameters explanation, function dependency, and
function example, which is a brief example of the
function call for users’ reference.

The whole system has been explained in above. To
create a new project, users need to lookup the manual
to compose a new Makefile and a main program. In
the Makefile users can define variables such as the
project name, included modules, and library path. In
the main program, users can create main process,
periodical routines, and interrupt service routines for
several different events.

4: KERNEL SIZE EVALUATION

In order to evaluate the performance of our
lightweight operating system LOS, we developed four
applications on LOS and TinyOS, respectively. These
applications achieve the same goals by the same
algorithms. We will compare their compiled kernel
image sizes in LOS and TinyOS.

First, we implement an I/O control application,
which controls a LED blinking and an USART control
demo application, which control the USART on the
sensor node. These two simple demo applications can
be found inside TinyOS under application
demonstration directory (/opt/tinyos1.x/apps/). The
LED blinking application is to control one or many
LEDs blinking. The LOS kernel image takes only 1.55
K bytes and TinyOS takes 4.7K bytes. The USART
control application sends the value of an integer
through USART. The LOS kernel image takes 2.89K
bytes and TinyOS takes 5.55K bytes. Thus, our LOS
can save 67% and 48% memory cost compared to that
of TinyOS under the two simple applications.

Second, we implement a program that transmits
data packets through wireless communication and
displays the received packet information on LED. The
result shows that the RF transmission application we
implemented in TinyOS takes 26.6K bytes, and in
LOS takes only 11.2 K bytes which saves 58% of
memory cost. The above experimental results are
drawn in Fig. 4.1.

Finally, we implement a time synchronization
protocol (RSP), which is proposed in [8]. To perform
this protocol, we need to implement three kinds of
applications for the master node, slave node, and
broadcast node, respectively. The image size of
broadcast node in LOS takes 11.8 K bytes and in
TinyOS takes 29.7 K bytes. The image size of master
node in LOS takes 12.0 K bytes and in TinyOS takes
30.3 K bytes. The image size of slave node takes 26.7
K bytes in LOS and takes 45.7 K bytes in TinyOS. The

experimental results are shown in Fig 4.2. Besides,
studies have shown that the power consumption of
memory scales roughly as the square root of the
memory capacity [13]. This implies that LOS achieves
further reduction in power.

0

10

20

30

I/O UART RF

LOS
TinyOS

Figure 4.1 Kernel size comparison diagram for

small size applications.

For the same hardware control modules such as
I/O control and RF control, the experimental results
show that our LOS indeed saves much memory space
as comparing to TinyOS. Since the WSNs applications
always need to access these hardware control modules,
the code sizes of applications developed on LOS will
be smaller than TinyOS.

0

10

20

30

40

50

Broadcast Master Slave

LOS
TinyOS

Figure 4.2 Kernel size comparison diagram for
time synchronization application.

5: CONCLUSIONS

In this paper, we review the related work of WSNs
operating systems in four aspects, programming
language, memory mapping mechanism, concurrency
handle mechanism, and kernel architecture. The
lightweight OS was considered as a proper solution for
WSNs since sensor devices provide only a little
computation power, limited wireless communication
bandwidth and battery energy. Lightweight OS also
has more flexibility and easier for users to design
applications. To achieve the lightweight feature, our
LOS adapts C programming language, static memory
mapping method, event-driven handler, and
monolithic kernel architecture.

The LOS achieves the lightweight kernel sizes
with available functionalities. The sensor nodes adapt
LOS use less power and memory cost than TinyOS
when executes the same applications. Users can
experience longer battery maintaining periods, faster
application developing on cheaper sensor nodes by
using our LOS.

- 590 -

REFERENCES

[1] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,

and D. Culler, “The nesC Language: A Holistic
Approach to Networked Embedded Systems,”
Proceedings of Programming Language Design and
Implementation, pp. 1-11, San Diego, CA, USA, June
2003.

[2] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister, “System Architecture Directions for
Networked Sensors”, Proceedings of International
Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 93-104,
Cambridge, MA, USA, November 2000.

[3] Chipcon IEEE 802.15.4 Compliant RF Transmitter
Single Chip, http://www.chipcon.com/

[4] C. -C. Han, R. Kumar, R. Shea, E. Kohler and M.
Srivastava, “A Dynamic Operating System for Sensor
Nodes,” Proceedings of the 3rd International
Conference on Mobile Systems, Applications, and
Services, pp. 163-176, New York, NY, USA, 2005.

[5] D. L Black, D. B Golub, D. P. Julin, R.F. Rashid, R. P.
Draves, R. W. Dean, A. Forin, J. Barrera, H. Tokuda, G.
Malan, and D. Bohman , “Micro Kernel Operating
System Architecture and Mach,” Proceedings of the
Workshop on Micro Kernels and Other Kernel
Architectures, pp. 11-30, April 1992.

[6] Atmel 8-bit RISC Processors,
http://www.atmel.com/products/avr/

[7] M. Zec, “Implementing a Clonable Network Stack in
the FreeBSD Kernel,” Proceedings of the USENIX 2003
Annual Technical Conference, pp. 137-150, February
2003.

[8] J. P. Sheu, W. K. Hu, and J. C. Lin “Design and
Implementation of a Ratio- ased Time Synchronization
Protocol for Wireless Sensor Networks”, Proceedings
of the 2nd Workshop on Wireless, Ad Hoc, and Sensor
Networks, pp. 65-72, Jhongli Taiwan, August 2006.

[9] D. C. Schmidt, "Reactor: An Object Behavioral Pattern
for Concurrent Event Demultiplexing and Event
Handler Dispatching," in Pattern Languages of
Program Design, Reading, MA: Addison-Wesley, 1995.

[10] P. Levis and D. Culler, “Mate’: A Tiny Virtual Machine
for Sensor Networks,” Proceedings of International
Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 85-95, San Jose,
CA, USA, October 2002.

[11] C. -L. Fok, G.-C. Roman, and C. Lu, “Rapid
Development and Flexible Deployment of Adaptive
Wireless Sensor Network Applications, ”Technical
Report WUCSE-04-59, Department of Computer
Science and Engineering Washington University, St.
Louis, USA, 2004.

[12] F. Zhao, L. J. Guibas, “Wireless Sensor Networks: An
Information Processing Approach,” Morgan Kaufmann
publishers, 2003

[13] R. Evans & P. Franzon, “Energy Consumption
Modeling and Optimization for SRAM’s”, Journal of
Solid-State Circuits, Vol. 30, No. 5, May 1995.

- 591 -

