
Design and Implementation of a Dynamic Module and Self-Maintaining
Mecahnism in

Wireless Sensor Network Operating System

Li-Chi Feng, Sung-Nan Yao, Yu-Yao Wang, Bing-Chuen Fang
Department of Computer Science and Information Engineering

Chang Gung University
lcfeng@mail.cgu.edu.tw

Abstract
The purpose of sensor node is to detect the around

environment, and to process the gathered data or
deliver the data to data-gathering machine through
sensor network.

In many applications, sensor nodes are distributed
over wide environment. It is very difficult to retrieve
them for maintenance or software update when the
application of sensor nodes change or system occur
unusual behavior. How to make sensor node have the
self-maintenance capability is becoming an important
issues.

Besides, the ability of sensor network OS at present
is too simple to deal with new sensor network appli-
cation in the future.

In this paper, we design and implement the first
sensor network operating system which has
self-maintaining ability. Our system has the following
features: light-weight dynamic module mechanism,
fault detection, self-recovery and self-update ability.
The experiment results show that our system can op-
erate correctly and efficiently.

Keywords: Sensor Network Operating Systems, Dy-
namic Module, Recovery, Self-maintaining, Software
Update

1. Introduction

The purpose of sensor node is to detect the
around environment, and to process the gathered data
or deliver the data to data-gathering machine through
sensor network that is composed of sensor nodes.

The application of sensor network is very wide.
It can apply to house, industry, medical-treatment and
some other relevant environments monitoring and
control.

For example, we can install the sensor in our
building to monitor the emergence of the fire. The
system will notify relevant units or trigger the alarm
when the fire takes place. In medical application, the
sensor can be used to monitor the body temperature
or health status of patients. If necessary, the system

will notify the nearest medical personnel to help.
The number of sensor node in a sensor network

application may be huge. It can range between sev-
eral hundreds to several ten thousands units and will
be distributed over wide environment. It is very dif-
ficult to retrieve these nodes for maintenance when
the application change or system occur unusual be-
havior. It is becoming an important issues that how to
make these sensor nodes have the self-maintaining
ability.

In this paper, we design and implement the first
sensor network operating system which has
self-maintaining ability. Our system has the following
features: light-weight dynamic module mechanism,
fault detection, self-recovery and self-update ability.
These features make our system highly available and
can provide a reliable, energy- efficient sensor net-
work application environment. The empirical results
show that our system can operate correctly and effi-
ciently, the performance has not been influenced by
new-added self-maintaining mechanism.

The paper is organized as follow: Section 2 is
related work. Our system design is briefly stated in
section 3. Section 4 describes the design of our mod-
ule format and dynamic module mechanism. The
content of section 5 is experiment. Section 6 is sys-
tem evaluation. This paper is concluded in Section 7.

2. Related Work

TinyOS[2] is an event-driver system designed
by UC Berkeley. Virtual machine, Maté[3], is re-
garded as uppermost component of TinyOS. It is
treated as a monitor taking care of software activities
above OS and performing dynamic loading/updating
of software module. However, the biggest shortcom-
ing lies in its low efficiency, and Maté can not change
the kernel components.

SOS[7] sensor network operating system that
Chih-Chieh Han et al. proposed in 2005 can swap
software while system running. But without domain
protection mechanisml, SOS could not prevent kernel
from being malicious damage. Consequently, sensor
node might crash.

 1
- 604 -

mailto:lcfeng@mail.cgu.edu.tw

3. System Design Goals

In order to meet the future trend of sensor net-
work development, we think that a well designed
sensor network operating systems should have sev-
eral key functionality as described below.

First, the system must support compact dy-
namic module for the effective wireless transmis-
sion when the system need a newer or correct soft-
ware component for fault recovery or normal soft-
ware upgrade.

Second, the system must have the ability to de-
tect at least some system fault and to trigger appro-
priate recovery procedure. For example, if it is a
kind of transient failure, we only need to
re-initialize the failed software component
(self-recovery). If it is a real bug, system upgrade is
necessary (software update).

Third, we also need a well design module
management system. Once the system fault is de-
tected, the self-recovery or self-update procedure is
started. To keep continuing running we should not
stop the running system as best as we can, that
means update have to be done while running.

We summary the design goals of our system
briefly as following:

 Light-weight dynamic module mechanism
 Fault detection ability
 Self-recovery and self-update ability.
 Acceptable system performance

Fault detection ability can prevent our system
from invalid access or external faulty module de-
struction. In fault detection, we seclude each module
into a separate memory region. Each module can ac-
cess its own memory region only, so called domain.
By means of ARM 7 MMU hardware support, the
domain solution is feasible. Only the module that
owns this domain could write/read the corresponding
memory region. Operating system kernel is the
unique module that can read/write all domains’
memory region.

4. Dynamic Module Mechanism

Linux is a good operating system, but it is huge
for most popular sensor node architecture.

eCos(embedded Configurable operating sys-
tem)[10] is an open source, full function embedded
operating system which support many different
hardware platform. Due to its clear structure and ele-
gant design, more and more researchers engage into
its development.

 In original eCos, only source-level component
is supported. At run time, the entire system is com-
piled and linked as static image that can be
downloaded into embedded platform. That is no way
to dynamically change any module or device driver.

Due to the elegant and compact design of eCos,
we want to use it as the starting point of our sensor

network operating system design.
So we must develop a dynamic module format

and mechanism on eCos.

4.1. The Format of Module Execution File

(LW-ELF)

ELF is the most popular object file format in
UNIX world. In order to replace module in sensor
node by dynamic loading/unloading, the object file
must use the wireless device to transfer. The size of
module is closely proportioned to the transmission
time and power consumption. In order to down-sizing
the ELF object file format, we develop an ELF-like
object file format named LW-ELF.

We concentrate on reduction about section, re-
location and symbol data to generate LW-ELF.

4.1.1. Reduce Section Data

Section data includes section header table and
section string table. Section header table could find
section string table, symbol table, symbol string table
and relocation table in object code.

To trim section data, we regard sections in ob-
ject code as the same block to reduce the use of sec-
tion header entry and section string table. As Figure 1
shows, we put text section、BSS section and section
that will be used into the Object Code block of
LW-ELF.

ELF Header

BSS section

Text Section

Other section
Section Header

Table
Section String

Table

Symbol Table

Symbol String
Table

Relocation Table

Object Code

BSS Offset BSS Size

ELF LW-ELF

Figure 1. The method to trim section data.

4.1.2. Reduce Relocation Data

This kind of data can divide into four kinds of
type. They are defined PC, ABS and undefined PC,
ABS. Defined PC and ABS indicate that these ma-
chine code use the data in object code are able to find
target address. However, undefined PC and ABS in-
dicate that these machine code use the data unable to
find in object code, must obtain target address
through linker of OS.

The trimming methods used by LW_ELF are as
follow.

 Defined PC
Operand of general branch machine code is the

offset of target section. These sections based offset
need relocation entry and symbol entry to obtain ob-
ject code based offset.

To this kind of data, we calculate object code
based offset and update branch machine code to re-
duce the time to relocate and the number of reloca-

 2
- 605 -

tion entry and symbol.
 Defined ABS

The address of defined ABS stores the offset of
target section. While loading object code into operat-
ing system, OS must calculate the absolute memory
address according to the data of relocation. We cal-
culate the object code based offset and record it in
ABS defined relocate entry to save the size and time
of symbol table.

 Undefined PC
Undefined PC means that the branch target is

an undefined symbol must depend on OS to find the
exact address of this symbol by symbol name. This
kind of data is usually a memory address of a func-
tion; we will call it undefined function as follows.

In order to reduce the space accounted for of
symbol, we replace symbol string with ID. As Figure
2 shows, A want to branch to B that is in operating
system, we use Fun Undefined Relocate Entry to re-
cord the relocation data of A, use Fun Undefined ID
Entry to record the data of B.

Operating System

B Fun

AObject Code

Fun Undefined
ID Table

Fun Undefined
Relocate Table Module ID 1

Function ID 2

Relocation Entry of A

ID data

Fun Undefined
Relocate Entry

Fun Undefined
ID Entry

Figure 2. The method to trim undefined function

The structure of Fun Undefined Relocate Entry
records the object code based offset of A and the in-
dex to Fun Undefined ID Table.

Fun Undefined ID Entry records the Fun ID
and Module ID of this symbol.

 Undefined ABS
Undefined ABS is just like undefined function,

we use GV Undefined Relocate Entry and GV Unde-
fined ID Entry to record the data needed by unde-
fined ABS.

 Module-exported Function
Module provides function for operating system

such as the initial function of module must let oper-
ating system know. We use Fun Reg. Entry to offer
this kind of information.

 Module-exported GV(Global Variable)
Module provides global variables for operating

system; we use GV Reg Entry to offer this kind of
information.

Final LW-ELF format is illustrated in Figure as
below.

Module Header

Section 1

Section 2

Section 3

ABS Defined Relocate Table

Fun Reg Table

GV Reg. Table

Fun Undefined ID Table

GV Undefined Relocate Table

GV Undefined ID Table

Fun Undefined Relocate Table

Object Code

Figure 3. LW-ELF format

4.2. Automatic Tool of Format Transforma-
tion

We implement two tools, the one transforms
ELF into LW-ELF, the other reads LW-ELF to obtain
the information in it.

Read ELF file in buffer at beginning, and ana-
lyze the data in Header to obtain all information. Af-
ter that, read Fun ID Table and GV ID Table of the
operating system, trim section, relocation and symbol
data, and transform relocation data into our designed
format to produce LW-ELF format finally.

The main purpose of handling flow to read is to
inspect if producing LW-ELF fit our demand or not.
This tool will read LW-ELF in buffer, resolve
LW-ELF header to find other information. At the end,
it will print the data of LW-ELF Header, Object Code,
Relocation, Fun Reg and GV Reg.

4.3. The Design of Module Manager

In our system, module can be device driver or
AP, and will load into our system through Module
Manager. Figure 4 illustrate our system infrastruc-
ture.

Hardware

HAL Multithreaded
Debug Support

Device
Driver

ModuleKernel

Internal Kernel API

ISO C Library Native
Kernel C API

AP
Module

Module Manager

Figure 4. System infrastructure

4.3.1. Module Run-time Structure
The information of module will be recorded by

module structure as a table (show as Figure 5). In
order to find module structure fast, the way to store
them is array and the search for them is through
Module ID. Module ID 0 initialized specifically for
kernel, the other IDs are assigned to other modules by
developer.

 3
- 606 -

Module ID

Fun list Fun structure

Address structure

Version

Base addr

Data
Container

Update

Lock

Data Container

GV list GV structure

Fun Use list

Address structureGV Use list

Figure 5. Module structure

The attribute of Data_container structure is a
important area to store the configuration data , which
is critical to this module. While self-maintenance or
self-recovery mechanism occurs, this data structure
will be used to find the saved data kept before. Data
Container is the pointer to point Data_container
structure.

There is an additional Lock attribute as a syn-
chronous mechanism flag that will be used while
self-maintenance or self-recovery mechanism occurs.
Update tells kernel that module have updated or re-
covered. The update mechanism will be explained in
section 3.4.

5. Self-maintaining Mechanism

The self-maintenance mechanism in our design
is divided into two parts: self-recover and self-update.

The time to trigger module self-recover is when
the system find out some failures. The main method
is to re-initialize this fault module to get back to the
normal working state fast. Some study have showed
that this method can usually solve transient failures
[12] fast.

The time to trigger self-update mechanism is
self-recover mechanism can not resolve failure or
module manager thread receive the new version
module. Figure 6 is the self-update flow. Module
manager thread will inspect whether the system re-
ceive new version module or not every ten minutes.
When receiving new version module, the module
manager thread will decide whether it can update or
not. If the version of received module is newer than
that of system, it will enter update step.

S

E

Resolve LW-ELF Header Allocate object code memory

Copy object to its memory

Create A module

Relocate ABS Defined
Object Code

Update GV Undefined
Object Code

Update Fun Undefined
Object Code

Update Fun Register
Data

Hot swap

Update GV Register
Data

Construct module

Free Original module

Figure 6. The self-update flow

The key question of this part is how to get back
to the original execution environment after module

update or recover. Object code of module is possible
updated or recover at any time. So, the data the mod-
ule use can not put into object code. It must store in
Data_Container we design and implement.

The most important part of self-update and
self-recover mechanism is hot swap. The environ-
ment of old module is transplanted into new module
in the operation of the system, and replaced old mod-
ule with new module. This step must deal with syn-
chronization, will use lock in module structure to
control only one can use this module.

When module thread should change old, how-
ever, old Module has already been used by kernel or
other module, it will not be updated unless kernel or
other module release lock of this module; when mod-
ule is update, kernel or other module must wait mod-
ule thread to release the lock of this module.
After finishing hot swap, module thread will sets up-
date field in module structure as 1 to tell kernel while
use this module, it must execute the reload function
to read the data in Data_container and complete
whole flow of update. Finally, module thread will
free the memory space used by old module structure.

6. System Evaluation

First, we will explain how we experiment on
SCAN II. After this, we will describe our experi-
ment and the result.

6.1. Experiment Method

The implementation of Zigbee/802.15.4 proto-
col stack on SCAN II is a project of our laboratory.
Due to the delay of protocol stack implementation,
we can not use wireless device to test module trans-
mission. We suppose that one original and one newer
LW-ELF files have already existed in the memory of
SCAN II, and module manager know the memory
address of them.

We connect Multi-ICE to SCAN II, use ADS to
download our OS image and serial port driver mod-
ule. Then the OS image is executed.

When system initialize, module manager will
read serial port driver module, the format of that is
LW-ELF, add this module into system, and create
module thread responsible for module update. Finally,
it will create the thread of simple shell to communi-
cate with user.

6.2. The Design and Result of Experiment

To verify that our method can reduce the size of
ELF, we compare the size of LW-ELF and ELF first.
After this, we will describe the experiment of
self-recovery and self-update mechanism. Finally, we
will compare our system with other sensor network
OS.

 4
- 607 -

6.2.1. The Comparison Between the Size of
LW-ELF and ELF

The goal to trim ELF is to reduce the size of
module to lower the power during transmission. We
compare the size of serial port driver module that is
ELF with LW-ELF. The result is show in table 1. Ac-
cording to table 1, the original ELF serial port driver
module is 5.3K; the size of LW-ELF transformed
from our tools 2.4K. The size of ELF has been re-
duced to 45%. Besides, simple shell can be reduced
to originally 47%. It shows that LW-ELF is effective
to reduce the size of ELF and help to low the power
of wireless device.

Table 1. The comparison of size of ELF with
LW-ELF

1.1K2.3KSimple Shell

2.4K5.3KSerial Port Driver

LW-ELFELFApplication

1.1K2.3KSimple Shell

2.4K5.3KSerial Port Driver

LW-ELFELFApplication

6.2.2. Self-maintaining mechanism

We try to experiment our self-maintaining
mechanism by means of infusing the tested module
with NULL memory access purposely. This type of
fault scenario is occurred when request memory from
kernel while running out of memory, the memory
address returned might be NULL. In our system,
NULL memory-address lead off the interrupt vector
table. What if access is done, system will be under
great risk of crash. In our experiment, the module is
serial driver and there is an application called small
shell we designed supported by serial driver. Small
shell is a virtual terminal device catch user input
line(s) then show on screen.

System will detect serial driver while running
the code section that access NULL memory-address,
then trigger Recovery Manager Thread re-initializing
the serial driver module. In the period of time, kernel
might gather enough memory then resume working
properly. If the module access NULL mem-
ory-address intentionally, Recovery Manager Thread
will try to update the module with another version
stored on specific memory section. What if the newer
could not be found, Recovery Manager Thread will
kill small shell necessarily to prevent influencing
system. During the re-initialization or update proce-
dure, small shell catch user input then output on the
screen still. That is the application supported by ab-
normal module will keep working normally even the
module is re-initialized or updated ever.

About overhead, the average time cost during
re-initialization is 10 ms and 20 ms during update.

6.2.3. Performance of Dynamic Module Man-
ager

The testing application is an x modem applica-
tion we wrote, used to transmit data, and the uses
serial port driver as lower level support. The host
end used x modem application to transmit data of the
size is 200K through serial port to sensor node. Sen-
sor node will execute x modem application to receive
data.

The contrasting group is an original eCos
without module mechanism. The experimenting
group is the one with module mechanism.

Figure 7 is the average result of ten times test-
ing. According to the result, the contrasting group
will complete receiving in 40.02 seconds; the ex-
perimenting group still complete that in the same
time and the receiving data is correct. This is because
the design of self-recovery mechanism is very simple
and makes few overhead of system.

Another statistics measured is for tty module.
Our testing method is to input a piece of
200K-size-of data and take down the time cost. Fi-
nally, constructing files (256 bytes for each) up to
400 K totally, we have the time action cost. Figure 8
shows the statistics of experiments above, composite
with serial driver module.

40.02 40.02

0

10

20

30

40

50

Receiving time

Constrating group

Experimenting group

Figure 7.Comparsion of X-Modem transmission

time measurement

Figure 8. Execution time comparison between be-

fore and after dynamic module mechanism.

6.2.4. Comparison with Other Sensor Network OS

Due to unable to find common platform to
compare each sensor network OS, we compare with
each of them using static ability.

 5
- 608 -

Table 2. Comparison our system with other sensor
network OS

NoNoYesSelf-recovery ability

NoneIndirectDirect

The invoking
relationship
between module
and kernel

NoYesYesReplace system
component

Script
Language
(Mate)

ModuleModuleSoftware update
mechanism

Event-DrivenEvent-DrivenMulti-ThreadingInfrastructure

TinyOSSOSOur System

NoNoYesSelf-recovery ability

NoneIndirectDirect

The invoking
relationship
between module
and kernel

NoYesYesReplace system
component

Script
Language
(Mate)

ModuleModuleSoftware update
mechanism

Event-DrivenEvent-DrivenMulti-ThreadingInfrastructure

TinyOSSOSOur System

Table 2 compare the difference between our
system and other sensor network OS, SOS and
TinyOS. SOS and TinyOS are event-driven system,
there is a deficiency to apply in the future. The virtual
machine mechanism of TinyOS has shortcoming to
exchange the component of system; however, our
system is able to exchange the components of system.
Though SOS can exchange the components of system,
the invocation between module and kernel is indirect,
making some overhead of system; the invocation of
our system is direct, the performance of ours is better
than indirect invocation. At last, our system has
self-recovery ability, SOS and TinyOS lack that.

7. Conclusion and Future Work

Recently, more and more people are engaged
into the study and development of wireless sensor
network. The number of sensor node in a sensor
network application may be huge. These huge
number of nodes may be distributed over wide en-
vironment. It is very difficult to retrieve these nodes
for maintenance when the application change or
system occur unusual behavior.

This paper focus on this problem, we design
and implement the first sensor network operating
system with self-maintaining ability. Our system is
highly available and can provide a reliable, en-
ergy-efficient platform for various sensor network
applications. The empirical results show that our sys-
tem can operate correctly and efficiently.

 In the future, we will finish the Zig-
Bee/802.15.4 protocol stack implementation and in-
tegrate it with our system. Furthermore, to make our
sensor network OS more perfect, we will do research
on low power mechanism of wireless protocol and
sensor network OS.

8. Reference

[1] Berkeley Sensor node.

http://www.tinyos.net/scoop/special/hardware
[2] Berkeley TinyOS.

http://www.tinyos.net
[3] Phil Levis and David Culler, “Maté : a Virtual Ma-

chine for Tiny Networked Sensors “ , ASPLOS, Dec
2002.

[4] Adam Dunkels, Björn Grönvall, and Thiemo Voigt.
“Contiki - a Lightweight and Flexible Operating
System for Tiny Networked Sensors”, In Proceed-
ings of the First IEEE Workshop on Embedded Net-
worked Sensors 2004 (IEEE EmNetS-I), Tampa,
Florida, USA, November 2004.

[5] A. Boulis, C.C. Han, and M. B. Srivastava, " Design
and Implementation of a Framework for Program-
mable and Efficient Sensor Networks" , MobiSys
2003.

[6] Jaein Jong, David Culler, “Incremental Network
Programming for Wireless Sensors”, IEEE SECON
2004 (Oct 2004).

[7] Chih-Chieh Han, Ram Kumar Rengaswamy, Roy
Shea, Eddie Kohler and Mani Srivastava, “A dy-
namic operating system for sensor networks” ,NESL
Tech Report TR-UCLA-NESL-200502-01, 2005.

[8] Linux Loadable Kernel Module HOWTO.
http://www.ibiblio.org/pub/Linux/docs/

HOWTO/other-formats/pdf/Module-HOWTO.p
df

[9] ELF. http://www.x86.org/ftp/manuals/tools/elf.pdf
[10] eCos. http://sources.redhat.com/ecos/
[11] Andrew Baumann, Jonathan Appavoo, Dilma Da

Silva, Jeremy
Kerr, Orran Krieger, and Robert W. Wisniewski,
Providing Dynamic Update in an Operating System",
USENIX 2005 , pp. 279-291, Anaheim California
April 2005

[12] Michael M. Swift, Muthukaruppan Annamalai, Brian
N. Bershad,
Henry M. Levy. Recovering Device Drivers , in
Proceedings of the 6th ACM/USENIX Symposium
on Operating Systems Design and Implementation,
San Francisco, CA, Dec. 2004.

[13] GCC, http://gcc.gnu.org/
[14] ARM, http://www.arm.com/
[15] Hynix HMS30C7202,

http://www.magnachip.com/ENG/Prod
ucts/MCU/32Bit/HMS30C7202_ref.html

[16] Eduardo Souto, Germano Guimaraes, Glauco
Vasconcelos,
Mardoqueu Vieira, Nelson Rosa, Carlos Ferraz

“A message-oriented middleware for sensor net-
works,”
2nd International Workshop on Middleware for Per-
vasive and Ad-Hoc Computing, October 18th - 22nd,
2004, Toronto, Ontario, Canada.

 6
- 609 -

http://www.magnachip.com/ENG/Prod

