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Abstract 
A Mobile Ad-hoc Network (MANET) may suffer from 

various types of processor failure. In order to enhance the 
fault-tolerance and reliability of the Mobile Ad-hoc Networks, 
the Byzantine Agreement problem in the virtual subnet 
network of MANET is revisited in this paper. The proposed 
protocol is called Hybrid Agreement Protocol for processor 
(HAPp) which can make each correct mobile processor reach 
an agreement value to cope with the faulty component in the 
virtual subnet network. 
Keywords: Byzantine agreement, fault-tolerance, distributed 
system, virtual subnet, mobile ad-hoc network 
 

1. Introduction 
The mobile ad-hoc networks have attracted significant 

attentions recently due to its features of infrastructure less, 
quick deployment and automatic adaptation to changes in 
topology. Therefore, mobile ad-hoc network suits for military 
communication, emergency disaster rescue operation, and law 
enforcement [1]. 

The reliability of the mobile processor is one of the most 
important aspects in mobile ad-hoc networks. In order to 
provide a reliable environment in a mobile ad-hoc network, 
we need a mechanism to allow a set of mobile processors to 
agree on an agreement value [8]. The Byzantine Agreement 
(BA) problem [2.3.6-9] is one of the most fundamental 
problems to reach an agreement value in a distributed system. 

The original BA problem defined by Lamport et al. [3] is 
assumed as follows: (BA1): There are n processors in a 
synchronous distributed system, where n is a constant and 
n≥4. (BA2): Each processor can communicate with each other 
through reliable fully connected network. (BA3): One or more 
of the processors might fail, so a faulty processor may 
transmit incorrect message(s) to other processors. (BA4): 
After message exchange, all correct processors should reach a 
common agreement, if and only if the number of the faulty 
processors t is less than one-third of the total number of 
processors in the network (t≤(n-1)/3). Based on these 
assumptions, the BA requirement can be satisfied when the 
following constraints are met: 
 

Agreement: All correct processors agree on an agreement 
value. 

Validity:  If the source processor is correct, then all 
correct processors agree on the initial value 
sends by the source processor.  

The traditional BA problem was focused on the fixed and 
well-defined network [2.3.6-9]. However, the network 
structure of mobile ad-hoc network is not fixed, and it can 
change its topology at any time by the feature of mobility. 
Hence, the tradition solutions for the BA problem were not 
suited for the mobile ad-hoc network. 

In this study, the BA problem in the virtual subnet 
network of MANET is revisited. The proposed protocol is 
called as the Hybrid Agreement Protocol for processor 
(HAPp). HAPp can make each correct mobile processor in the 
virtual subnet network of MANET reach an agreement value. 

The remainder of this paper is organized as follows. 
Section 2 discusses the virtual subnet network and the failure 
type of a fallible mobile processor. Section 3 illustrates the 
concept of HAPp by an example. Finally, we conclude in 
Section 4. 

2. Related work 
Recent advances in technology have provided portable 

processors with wireless interfaces that allow networked 
communication among mobile users. The computing 
environment, which refers to as mobile computing, no longer 
requires users to maintain a fixed and universally known 
position in the network and enables almost unrestricted 
mobility. 

Furthermore, each processor has highly mobility in 
MANET, it will causes network topology changes of the 
wireless mobile network. In addition, the limitation of power 
leads processors disconnects mobile unit frequently in order 
to save power consumption. On the other hand, processors 
may immigrate into the network or move away from the 
network at any time. In MANET, virtual subnet is composed 
of several groups by overlay network approach [1.5]. Fig. 1 is 
a topology of virtual subnet under the MANET. There are two 
situations that the processors communicate underlying virtual 
subnet: 
Situation 1.  Processors in the same group communicate to 
each other directly by virtual backbone. 
Situation 2.  Processors in different groups are exchanging 
messages with each other via virtual subnet or physical 
communication media (such as the agent-based). 
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Fig. 1. The topology of virtual subnet 
A mobile processor is said to be correct if it follows the 

protocol specifications during the execution of a protocol; 
otherwise, the mobile processor said to be faulty. The 
symptoms of mobile processor failure can be classified into 
two categories: dormant fault and malicious fault (also called 
as Byzantine fault) [6]. The dormant faults of a fallible 
mobile processor are crashes and omission. A crash fault 
happens when a processor is broken. An omission fault takes 
place when a processor fails to transmit or receive a message 
on time or at all. However, the behavior of a mobile processor 
with malicious fault is unpredictable. A mobile processor with 
malicious fault may work in coordination with other faulty 
mobile processor to prevent other correct mobile processors 
to reach an agreement value. In this study, we will solve the 
BA problem with mobile processor with malicious and 
dormant fault. 

3. The proposed protocol 
This paper proposes a new protocol, Hybrid Agreement 

Protocol for processor, called HAPp, to solve the BA problem 
due to faulty processor(s), which may send wrong messages 
to influence the system to reach agreement in a virtual subnet.  

The notations and parameters of our protocols HAPp for 
the virtual subnet network are shown in follow: 

 Let x, y be the group identifier where 1≤ x, y ≤g and g ≥ 
4. 

 Let fm be the total number of malicious faulty processors. 
 Let fd be the total number of dormant faulty processors. 
 Let FGm be the maximum number of malicious faulty 

groups allowed. 
 Let FGd be the maximum number of dormant faulty groups 

allowed. 
 Let TFP is the total number of allowable faulty processors, 

TFP = fm + fd. 
 Let TFG is the total number of allowable faulty groups, TFG 

= FGm + FGd. 

 Let ηx is the number of processors in Gx, 0 ≤ x ≤ g. 
 Let c be the connectivity of the virtual subnet network, 

where c is g – 1. 
 
The proposed protocol HAPp is organized as two phases 

with the procedure TRANSMISSION. In the first round of 
the message exchange phase, the source processor sends its 
initial value to all processors by using TRANSMISSION, and 
then receiver processor stores the received value in the root of 
its message-gathering tree (mg-tree). The mg-tree is a tree 
structure that is used to store the received message [9]. If the 
source processor is dormant fault, then the value “λ0” has 
replaced the initial value from source processor. After the first 
round of message exchange phase (θ > 1), each processor 
without source processor uses TRANSMISSION to transmit 
the value at level θ − 1 in its mg-tree to all processors. If the 
value at level θ − 1 is λi (the value λi is used to report absent 
value), then the value λi will be replaced by λi+1, where 0 ≤ i 
≤ TFG – 1. At the end of each round, the receiver processor 
uses the function RMAJ on it received VMAJ values, which 
are from the same group by TRANSMISSION, to get a single 
value. Moreover, each receiver processor stores the received 
messages (VMAJ values) and function RMAJ value in its 
mg-tree. 

Subsequently, in the decision making phase, each 
processor without the source processor reorganizes its 
mg-tree into a corresponding information-collecting tree 
(ic-tree). The ic-tree is a tree structure that has used to store a 
received message without repeated group names [9]. 
Therefore, the common value VOTE(s) has obtained by using 
function VOTE on the root s of each processor’s ic-tree. The 
function VOTE counts the non-value λ0 (expert the last level 
of the ic-tree) for all vertexes at the θ-th level of an ic-tree, 
where 1 ≤ θ ≤ TFG + 1. The conditions in the function VOTE 
are similar to conventional majority vote [7]. The detail steps 
of the proposed protocol HAPp has presented in Fig. 2. 

 
HAPp (source processor with initial value vs) 
Pre-Execute. Computes the number of rounds required θ=⎣(g−1)/3⎦+1 

Message Exchange Phase: 
Case θ = 1, run 
A) The source processor transmits its initial value vs to each group’s 

processors by using TRANSMISSION. 
B) Each receiver processor obtains the value and stores it in the root 

of its mg-tree. 
C) If the source processor is dormant fault, the value “λ0” has 

replaced the initial value from source processor. 
Case θ > 1, run 
A) Each processor without the source processor uses 

TRANSMISSION to transmit the values at level θ − 1 in its 
mg-tree to each group’s processors. If the value at level θ − 1 is 
“λi”, and the value λi will be replaced by λi+1, where 0 ≤ i ≤
TFG – 1. 

B) Each receiver processor applies RMAJ on its received messages 
and stores RMAJ value in the corresponding vertices at level θ
of its mg-tree. 

- 723 -



Decision Making Phase: 
Step 1: 

Reorganizing the mg-tree into a corresponding ic-tree. (The 
vertices with repeated group names are deleted). 

Step 2: 
Using function VOTE on the root s of each processor’s ic-tree, 
then the common value VOTE(s) has obtained. 

Function RMAJ(V) 
1. The majority value in the vector Vi = [v1, …, vηx-1, vηx], if it 

exists. 
2. Otherwise, choosing a default value (φ). 

Function VOTE(μ) 
1. If the μ is a leaf or the number of value λ0 is 3 * (TFG –θ + 1) + 

(g – 1) % 3, then output μ. 
2. Else if the majority value is not existed, then output φ. 
3. Else if the majority value is λi, where 1≤i≤TFG, then output λi-1.

Otherwise, output m, where m ∈ {0, 1} 

Fig. 2. HAPp protocol  
The procedure TRANSMISSION used to transmit 

messages in HAPp. Based on the distinctions of virtual subnet 
network [1.5], TRANSMISSION can provide a virtual 
channel for each processor to transmit messages to each other 
without influence from faulty inter-communication medium. 
The description of TRANSMISSION is shown in Fig. 3.  

 
Procedure TRANSMISSION 
Definition: 

1. For the virtual subnet, each processor has the common 
knowledge of entire graphic information Ĝ = (E, Gp), where 
Gp is the set of groups in the network and E is a set of 
group pairs (Gpx, Gpy) indicating a physical communication 
medium (the sensing is covered) between group Gpx and 
group Gpy. 

2. Each processor communicates with all other processors via 
virtual subnet, virtual backbone or physical communication 
media [1][5]. 

3. The processor plays sender, receiver or agent, depends on 
the behavior of which kinds of transmission [1]. 

4. The agent-based processor cannot garble the message 
between the sender processor and receiver processor; this 
assumption has achieved by the technology of encryption 
(such as RSA [4]). 

Step 1: 
The sender processor i (1≤i≤n) transmits the value vi to the 
receiver group. 

Step 2: 
If the group-disjoint path from sender processor to destination 
group passes through any dormant faulty processor or if the 
sender processor has dormant faults, then stores λ0 itself. 

Step 3: 
The processors in the receiver group take the local majority value 
from the same group paths and then construct the vector Vi = 
[vpath 1, vpath 2, …, vpath c-1, vpath c]. 

Step 4: 
The processors in the destination group apply VMAJ on vector 
Vi. 

Function VMAJ (for each vector Vi) 

1. Count the received value: Take the majority 
2. If the majority value is λ0 and the number of value λ0 is 

greater than or equal to c – ⎣(g − 1)/3⎦, then output the 
value λ0. 

3. Else set majority value m, where m ∈ {0, 1} 
If the majority value does not exist, then 

Output the majority value λ0. 
Otherwise, output the majority m, where m ∈ {0, 1}. 

Fig. 3. TRANSMISSION  
An example is given to execute our protocol HAPp, the 

virtual subnet network is shown in Fig. 4(a). There are 24 
processors falling into seven groups. Gp1 includes source 
processor Ps, P1 and P2. Gp2 includes P3, P4, P5 and P6. Gp3 
includes P7, P8, P9 and P10. Gp4 includes P11 and P12. Gp5 
includes P13 and P14. Gp6 includes P15 and P16. P17, P18, P19, 
P20 and P21 belong to Gp7, P22 and P23 belong to Gp8. 

In BA problem, the worst situation [3] is that the source 
does not honest anymore. Simply, here the worst case of the 
example, suppose the source processor Ps is malicious fault, 
which means Ps may send arbitrarily different values to 
different groups. Therefore, in order to solve the BA problem 
among correct processors of the example, HAPp requires θ 
(⎣(g – 1)/3⎦ + 1) rounds of message exchange phase. 

In HAPp, Pre-Execute counts the number of rounds 
required before message exchange phase. There is in need of 
three rounds to message exchange for the example. 

The source processor Ps uses TRANSMISSION to 
transmit messages to all other processors in the first round of 
the message exchange phase. The message obtained of each 
correct processor is listed in Fig. 4(b). In the σ-th (1 < σ ≤ θ) 
round of message exchange, except for the source processor, 
each processor uses TRANSMISSION to transmit RMAJ 
values at the (σ – 1)-th level in its mg-tree to all the others 
and itself. Subsequently, each receiver processor applies 
RMAJ to its received messages and stores the received 
messages (VMAJ values) and RMAJ values at the 
corresponding vertices at level σ of its mg-tree. The mg-tree 
of correct processor P1 at the second and final round in the 
message exchange phase is shown in Fig. 4(c) and 4(d). 

After the message exchange phase, the tree structure of 
each correct processor is converted from mg-tree to ic-tree by 
deleting the vertices with duplicated names. The example 
ic-tree has showed in Fig. 4(e). Eventually, using the function 
VOTE to root the value s for each correct processor’s ic-tree 
{VOTE(s) = VOTE(s1), …, VOTE(s8) = 1}, an agreement 
value 1 can be obtained, as shown in Fig. 4(f), and the 
decision making phase has completed. 

4. Conclusion 
In the previous work, the complex networks had studied 

in a branch of mathematics known as graph theory. The 
network topology developed in recent years [1.5] shows a 
mobile feature. The previous protocols such as [2.3.6-9] 
cannot adapt to solve BA problem in MANET, and none of 
the BA protocol is designed for the virtual subnet of MANET. 
Therefore, the BA problem in virtual subnet network with 
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dual failure mode on fallible processor has revisited. The 
proposed protocol can tolerate the most damaging failure type 
of fallible processors. The proposed HAPp can take the 
minimum number of required rounds to achieve an 
agreement, and tolerate the maximum number of faulty 
components. 

Furthermore, in a generalized case, there are not only 
processors may be crash, omission or malicious, but also 
communication medium. On other hand, our protocol will be 
extend to solve when dormant or malicious communication 
media or processors are existed simultaneously underlying 
virtual subnet network of MANET in future work. 
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The symbol notations: 

: Correct processor 
: Malicious faulty processor 
: Dormant faulty processor 
: Physical communication media (agent-based)  

 

The messages sent from the source processor by 
TRANSMISSION and then start to execute HAPp. 

 The source processor, Ps is a malicious faulty 
processor. 

 Ps sends value 1 to Gp2, Gp4, Gp5, Gp6, Gp7 and 
Gp8. 

 Ps sends value 0 to Gp1 and Gp3. 

Fig. 4(a). The initial status of executing HAPp in a virtual subnet of MANET. 
 Level 1 

root 
s 

Gp1’s correct processors 0 
Gp2’s correct processors 1 
Gp3’s correct processors 0 
Gp4’s correct processors 1 
Gp5’s correct processors 1 
Gp6’s correct processors 1 
Gp7’s correct processors 1 
Gp8’s correct processors 1 

VMAJ values

 

Level 1
root 

s 

Level 2 Function RMAJ 

 
Val(S)=1 s1 0 (0,0) 
 s2 1 (1,1,0,1) 
 s3 0 (0,0,0,0) 
 s4 1 (1,1) 
 s5 1 (1,1) 
 s6 1 (1,1) 
 s7 0 (0,0,1,0,1) 
 s8 λ0 (λ0, λ0) 

VMAJ values 

 

Fig. 4(b). The mg-tree of each processor at the 1st round Fig. 4(c). The mg-tree of correct processor P1 at the 2nd round
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Level 1 
root 

Level 2 
 

Level 3 
 

Function RMAJ 
 

s s1 s11 0 (0,0) 
0 0(0) s12 0 (0,0,0,0) 
  s13 0 (0,1,0,0) 
  s14 0 (0,0) 
  s15 0 (0,0) 
  s16 0 (0,0) 
  s17 1 (1,1,1,0,1) 
  s18 λ0 (λ0,λ0) 
     
 s2 s21 1 (1,1) 
 1(1,1,1,1) s22 1 (1,1,1,1) 
  s23 1 (1,1,1,1) 
  s24 1 (1,1) 
  s25 1 (1,1) 
  s26 1 (1,1) 
  s27 0 (0,0,1,0,1) 
  s28 λ0 (λ0,λ0) 
     
 s3 s31 0 (0,0) 
 0(0,0,0,0) s32 0 (0,0,1,0) 
  s33 0 (0,1,0,0) 
  s34 0 (0,0) 
  s35 0 (0,0) 
  s36 0 (0,0) 
  s37 0 (0,0,1,0,1) 
  s38 λ0 (λ0,λ0) 
     
 s4 s41 1 (1,1) 
 1(1,1) s42 1 (1,1,0,1) 
  s43 1 (1,1,1,1) 
  s44 1 (1,1) 
  s45 1 (1,1) 
  s46 1 (1,1) 
  s47 1 (1,1,1,0,1) 
  s48 λ0 (λ0,λ0) 
     
 s5 s51 1 (1,1) 
 1(1,1) s52 1 (1,1,1,1) 
  s53 1 (1,0,1,1) 
  s54 1 (1,1) 
  s55 1 (1,1) 
  s56 1 (1,1) 
  s57 0 (0,0,1,0,1) 
  s5  8 λ0 (λ0,λ0) 
     
 s6 s61 1 (1,1) 
 1(1,1) s62 1 (1,1,1,1) 
  s63 1 (1,1,1,1) 
  s64 1 (1,1) 
  s65 1 (1,1) 
  s66 1 (1,1) 
  s67 1 (1,1,1,1,1) 
  s68 λ0 (λ0,λ0) 
     
 s7 s71 0 (0,0) 
 0(0,0,1,0,1) s72 1 (1,1,1,1) 
  s73 0 (0,0,0,0) 
  s74 1 (1,1) 
  s75 0 (0,0) 
  s76 1 (1,1) 
  s77 0 (0,0,1,0,1) 
  s78 λ0 (λ0, λ0) 
     
 s8 s81 λ1 (λ1,λ1) 
 λ0(λ0, λ0) s82 λ1 (λ1,λ1,λ1,λ1) 
  s83 λ1 (λ1,λ1,λ1,λ1) 
  s84 λ1 (λ1,λ1) 
  s85 λ1 (λ1,λ1) 
  s86 λ1 (λ1,λ1) 
  s87 0 (0,0, λ0,0,λ0) 
  s88 λ0 (λ0,λ0)  

Level 1 
root 

Level 2 
 

Level 3 
 

Function RMAJ 
 

s s1    
0 0(0) s12 0 (0,0,0,0) 
  s13 0 (0,1,0,0) 
  s14 0 (0,0) 
  s15 0 (0,0) 
  s16 0 (0,0) 
  s17 1 (1,1,1,0,1) 
  s18 λ0 (λ0,λ0) 
     
 s2 s21 1 (1,1) 
 1(1,1,1,1)    
  s23 1 (1,1,1,1) 
  s24 1 (1,1) 
  s25 1 (1,1) 
  s26 1 (1,1) 
  s27 0 (0,0,1,0,1) 
  s28 λ0 (λ0,λ0) 
     
 s3 s31 0 (0,0) 
 0(0,0,0,0) s32 0 (0,0,1,0) 
     
  s34 0 (0,0) 
  s35 0 (0,0) 
  s36 0 (0,0) 
  s37 0 (0,0,1,0,1) 
  s38 λ0 (λ0,λ0) 
     
 s4 s41 1 (1,1) 
 1(1,1) s42 1 (1,1,0,1) 
  s43 1 (1,1,1,1) 
     
  s45 1 (1,1) 
  s46 1 (1,1) 
  s47 1 (1,1,1,0,1) 
  s48 λ0 (λ0,λ0) 
     
 s5 s51 1 (1,1) 
 1(1,1) s52 1 (1,1,1,1) 
  s53 1 (1,0,1,1) 
  s54 1 (1,1) 
     
  s56 1 (1,1) 
  s57 0 (0,0,1,0,1) 
  s5  8 λ0 (λ0,λ0) 
     
 s6 s61 1 (1,1) 
 1(1,1) s62 1 (1,1,1,1) 
  s63 1 (1,1,1,1) 
  s64 1 (1,1) 
  s65 1 (1,1) 
     
  s67 1 (1,1,1,1,1) 
  s68 λ0 (λ0,λ0) 
     
 s7 s71 0 (0,0) 
 0(0,0,1,0,1) s72 1 (1,1,1,1) 
  s73 0 (0,0,0,0) 
  s74 1 (1,1) 
  s75 0 (0,0) 
  s76 1 (1,1) 
     
  s78 λ0 (λ0, λ0) 
     
 s8 s81 λ1 (λ1,λ1) 
 λ0(λ0, λ0) s82 λ1 (λ1,λ1,λ1,λ1) 
  s83 λ1 (λ1,λ1,λ1,λ1) 
  s84 λ1 (λ1,λ1) 
  s85 λ1 (λ1,λ1) 
  s86 λ1 (λ1,λ1) 
  s87 0 (0,0, λ0,0,λ0) 
      

Fig. 4(d). The final mg-tree of processor P1 after the 
message exchange phase 

Fig. 4(e). The ic-tree of processor P1

The tree structure 
has converted from 
mg-tree to ic-tree 
by erasing the 
vertices with 
repeated names. 
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 VOTE(s1) = (VOTE(s12), VOTE(s13), VOTE(s14), VOTE(s15), VOTE(s16), VOTE(s17), VOTE(s18)) 

VOTE(s1) = (0, 0, 0, 0, 0, 1, λ0) = 0 
 VOTE(s2) = (VOTE(s21), VOTE(s23), VOTE(s24), VOTE(s25), VOTE(s26), VOTE(s27), VOTE(s28)) 

VOTE(s2) = (1, 1, 1, 1, 1, 0, λ0) = 1 
 VOTE(s3) = (VOTE(s31), VOTE(s32), VOTE(s34), VOTE(s35), VOTE(s36), VOTE(s37), VOTE(s38)) 

VOTE(s3) = (0, 0, 0, 0, 0, 0, λ0) = 0 
 VOTE(s4) = (VOTE(s41), VOTE(s42), VOTE(s43), VOTE(s45), VOTE(s46), VOTE(s47), VOTE(s48)) 

VOTE(s4) = (1, 1, 1, 1, 1, 1, λ0) = 1 
 VOTE(s5) = (VOTE(s51), VOTE(s52), VOTE(s53), VOTE(s54), VOTE(s56), VOTE(s57), VOTE(s58)) 

VOTE(s5) = (1, 1, 1, 1, 1, 0, λ0) = 1 
 VOTE(s6) = (VOTE(s61), VOTE(s62), VOTE(s63), VOTE(s64), VOTE(s65), VOTE(s67), VOTE(s68)) 

VOTE(s6) = (1, 1, 1, 1, 1, 1, λ0) = 1 
 VOTE(s7) = (VOTE(s71), VOTE(s72), VOTE(s73), VOTE(74), VOTE(s75), VOTE(s76), VOTE(s78)) 

VOTE(s7) = (0, 1, 0, 1, 0, 1, λ0) = φ 
 VOTE(s8) = (VOTE(s81), VOTE(s82), VOTE(s83), VOTE(84), VOTE(s85), VOTE(s86), VOTE(s87)) 

VOTE(s7) = (0, 1, 0, 1, 0, 1, λ0) = φ 
 

 
 VOTE(s) = (VOTE(s1), VOTE(s2), VOTE(s3), VOTE(s4), VOTE(s5), VOTE(s6), VOTE(s7), VOTE(s8)) 

VOTE(s) = (0, 1, 0, 1, 1, 1, φ, φ) = 1 
 

Fig. 4(f). The common value VOTE(s) by correct processor P1

Fig. 4. An example of HAPp execution (cont’) 
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