
Revisit Byzantine Agreement in Hybrid Fallible Virtual Subnet Network

K.Q. Yan S.C. Wang* (Corresponding author) G.Y. Zheng
kqyan@cyut.edu.tw scwang@cyut.edu.tw s9414606@cyut.edu.tw

Chaoyang University of Technology, Taiwan, R.O.C

Abstract
A Mobile Ad-hoc Network (MANET) may suffer from

various types of processor failure. In order to enhance the
fault-tolerance and reliability of the Mobile Ad-hoc Networks,
the Byzantine Agreement problem in the virtual subnet
network of MANET is revisited in this paper. The proposed
protocol is called Hybrid Agreement Protocol for processor
(HAPp) which can make each correct mobile processor reach
an agreement value to cope with the faulty component in the
virtual subnet network.
Keywords: Byzantine agreement, fault-tolerance, distributed
system, virtual subnet, mobile ad-hoc network

1. Introduction
The mobile ad-hoc networks have attracted significant

attentions recently due to its features of infrastructure less,
quick deployment and automatic adaptation to changes in
topology. Therefore, mobile ad-hoc network suits for military
communication, emergency disaster rescue operation, and law
enforcement [1].

The reliability of the mobile processor is one of the most
important aspects in mobile ad-hoc networks. In order to
provide a reliable environment in a mobile ad-hoc network,
we need a mechanism to allow a set of mobile processors to
agree on an agreement value [8]. The Byzantine Agreement
(BA) problem [2.3.6-9] is one of the most fundamental
problems to reach an agreement value in a distributed system.

The original BA problem defined by Lamport et al. [3] is
assumed as follows: (BA1): There are n processors in a
synchronous distributed system, where n is a constant and
n≥4. (BA2): Each processor can communicate with each other
through reliable fully connected network. (BA3): One or more
of the processors might fail, so a faulty processor may
transmit incorrect message(s) to other processors. (BA4):
After message exchange, all correct processors should reach a
common agreement, if and only if the number of the faulty
processors t is less than one-third of the total number of
processors in the network (t≤(n-1)/3). Based on these
assumptions, the BA requirement can be satisfied when the
following constraints are met:

Agreement: All correct processors agree on an agreement
value.

Validity: If the source processor is correct, then all
correct processors agree on the initial value
sends by the source processor.

The traditional BA problem was focused on the fixed and
well-defined network [2.3.6-9]. However, the network
structure of mobile ad-hoc network is not fixed, and it can
change its topology at any time by the feature of mobility.
Hence, the tradition solutions for the BA problem were not
suited for the mobile ad-hoc network.

In this study, the BA problem in the virtual subnet
network of MANET is revisited. The proposed protocol is
called as the Hybrid Agreement Protocol for processor
(HAPp). HAPp can make each correct mobile processor in the
virtual subnet network of MANET reach an agreement value.

The remainder of this paper is organized as follows.
Section 2 discusses the virtual subnet network and the failure
type of a fallible mobile processor. Section 3 illustrates the
concept of HAPp by an example. Finally, we conclude in
Section 4.

2. Related work
Recent advances in technology have provided portable

processors with wireless interfaces that allow networked
communication among mobile users. The computing
environment, which refers to as mobile computing, no longer
requires users to maintain a fixed and universally known
position in the network and enables almost unrestricted
mobility.

Furthermore, each processor has highly mobility in
MANET, it will causes network topology changes of the
wireless mobile network. In addition, the limitation of power
leads processors disconnects mobile unit frequently in order
to save power consumption. On the other hand, processors
may immigrate into the network or move away from the
network at any time. In MANET, virtual subnet is composed
of several groups by overlay network approach [1.5]. Fig. 1 is
a topology of virtual subnet under the MANET. There are two
situations that the processors communicate underlying virtual
subnet:
Situation 1. Processors in the same group communicate to
each other directly by virtual backbone.
Situation 2. Processors in different groups are exchanging
messages with each other via virtual subnet or physical
communication media (such as the agent-based).

- 722 -

P1 P2

Gp1

P3

P4

P6

Gp2

P5

P7

P9

Gp3 P8

P10

P12Gp4

P11

LAYER 1

LAYER 2

LAYER 3

LAYER 1

LAYER 2

LAYER 3

Internet IP based

 : Correct processor

: A processor of physical communication media
(agent-based)

 : Virtual subnet
 : Virtual backbone

Fig. 1. The topology of virtual subnet
A mobile processor is said to be correct if it follows the

protocol specifications during the execution of a protocol;
otherwise, the mobile processor said to be faulty. The
symptoms of mobile processor failure can be classified into
two categories: dormant fault and malicious fault (also called
as Byzantine fault) [6]. The dormant faults of a fallible
mobile processor are crashes and omission. A crash fault
happens when a processor is broken. An omission fault takes
place when a processor fails to transmit or receive a message
on time or at all. However, the behavior of a mobile processor
with malicious fault is unpredictable. A mobile processor with
malicious fault may work in coordination with other faulty
mobile processor to prevent other correct mobile processors
to reach an agreement value. In this study, we will solve the
BA problem with mobile processor with malicious and
dormant fault.

3. The proposed protocol
This paper proposes a new protocol, Hybrid Agreement

Protocol for processor, called HAPp, to solve the BA problem
due to faulty processor(s), which may send wrong messages
to influence the system to reach agreement in a virtual subnet.

The notations and parameters of our protocols HAPp for
the virtual subnet network are shown in follow:

 Let x, y be the group identifier where 1≤ x, y ≤g and g ≥
4.

 Let fm be the total number of malicious faulty processors.
 Let fd be the total number of dormant faulty processors.
 Let FGm be the maximum number of malicious faulty

groups allowed.
 Let FGd be the maximum number of dormant faulty groups

allowed.
 Let TFP is the total number of allowable faulty processors,

TFP = fm + fd.
 Let TFG is the total number of allowable faulty groups, TFG

= FGm + FGd.

 Let ηx is the number of processors in Gx, 0 ≤ x ≤ g.
 Let c be the connectivity of the virtual subnet network,

where c is g – 1.

The proposed protocol HAPp is organized as two phases

with the procedure TRANSMISSION. In the first round of
the message exchange phase, the source processor sends its
initial value to all processors by using TRANSMISSION, and
then receiver processor stores the received value in the root of
its message-gathering tree (mg-tree). The mg-tree is a tree
structure that is used to store the received message [9]. If the
source processor is dormant fault, then the value “λ0” has
replaced the initial value from source processor. After the first
round of message exchange phase (θ > 1), each processor
without source processor uses TRANSMISSION to transmit
the value at level θ − 1 in its mg-tree to all processors. If the
value at level θ − 1 is λi (the value λi is used to report absent
value), then the value λi will be replaced by λi+1, where 0 ≤ i
≤ TFG – 1. At the end of each round, the receiver processor
uses the function RMAJ on it received VMAJ values, which
are from the same group by TRANSMISSION, to get a single
value. Moreover, each receiver processor stores the received
messages (VMAJ values) and function RMAJ value in its
mg-tree.

Subsequently, in the decision making phase, each
processor without the source processor reorganizes its
mg-tree into a corresponding information-collecting tree
(ic-tree). The ic-tree is a tree structure that has used to store a
received message without repeated group names [9].
Therefore, the common value VOTE(s) has obtained by using
function VOTE on the root s of each processor’s ic-tree. The
function VOTE counts the non-value λ0 (expert the last level
of the ic-tree) for all vertexes at the θ-th level of an ic-tree,
where 1 ≤ θ ≤ TFG + 1. The conditions in the function VOTE
are similar to conventional majority vote [7]. The detail steps
of the proposed protocol HAPp has presented in Fig. 2.

HAPp (source processor with initial value vs)
Pre-Execute. Computes the number of rounds required θ=⎣(g−1)/3⎦+1

Message Exchange Phase:
Case θ = 1, run
A) The source processor transmits its initial value vs to each group’s

processors by using TRANSMISSION.
B) Each receiver processor obtains the value and stores it in the root

of its mg-tree.
C) If the source processor is dormant fault, the value “λ0” has

replaced the initial value from source processor.
Case θ > 1, run
A) Each processor without the source processor uses

TRANSMISSION to transmit the values at level θ − 1 in its
mg-tree to each group’s processors. If the value at level θ − 1 is
“λi”, and the value λi will be replaced by λi+1, where 0 ≤ i ≤
TFG – 1.

B) Each receiver processor applies RMAJ on its received messages
and stores RMAJ value in the corresponding vertices at level θ
of its mg-tree.

- 723 -

Decision Making Phase:
Step 1:

Reorganizing the mg-tree into a corresponding ic-tree. (The
vertices with repeated group names are deleted).

Step 2:
Using function VOTE on the root s of each processor’s ic-tree,
then the common value VOTE(s) has obtained.

Function RMAJ(V)
1. The majority value in the vector Vi = [v1, …, vηx-1, vηx], if it

exists.
2. Otherwise, choosing a default value (φ).

Function VOTE(μ)
1. If the μ is a leaf or the number of value λ0 is 3 * (TFG –θ + 1) +

(g – 1) % 3, then output μ.
2. Else if the majority value is not existed, then output φ.
3. Else if the majority value is λi, where 1≤i≤TFG, then output λi-1.

Otherwise, output m, where m ∈ {0, 1}

Fig. 2. HAPp protocol
The procedure TRANSMISSION used to transmit

messages in HAPp. Based on the distinctions of virtual subnet
network [1.5], TRANSMISSION can provide a virtual
channel for each processor to transmit messages to each other
without influence from faulty inter-communication medium.
The description of TRANSMISSION is shown in Fig. 3.

Procedure TRANSMISSION
Definition:

1. For the virtual subnet, each processor has the common
knowledge of entire graphic information Ĝ = (E, Gp), where
Gp is the set of groups in the network and E is a set of
group pairs (Gpx, Gpy) indicating a physical communication
medium (the sensing is covered) between group Gpx and
group Gpy.

2. Each processor communicates with all other processors via
virtual subnet, virtual backbone or physical communication
media [1][5].

3. The processor plays sender, receiver or agent, depends on
the behavior of which kinds of transmission [1].

4. The agent-based processor cannot garble the message
between the sender processor and receiver processor; this
assumption has achieved by the technology of encryption
(such as RSA [4]).

Step 1:
The sender processor i (1≤i≤n) transmits the value vi to the
receiver group.

Step 2:
If the group-disjoint path from sender processor to destination
group passes through any dormant faulty processor or if the
sender processor has dormant faults, then stores λ0 itself.

Step 3:
The processors in the receiver group take the local majority value
from the same group paths and then construct the vector Vi =
[vpath 1, vpath 2, …, vpath c-1, vpath c].

Step 4:
The processors in the destination group apply VMAJ on vector
Vi.

Function VMAJ (for each vector Vi)

1. Count the received value: Take the majority
2. If the majority value is λ0 and the number of value λ0 is

greater than or equal to c – ⎣(g − 1)/3⎦, then output the
value λ0.

3. Else set majority value m, where m ∈ {0, 1}
If the majority value does not exist, then

Output the majority value λ0.
Otherwise, output the majority m, where m ∈ {0, 1}.

Fig. 3. TRANSMISSION
An example is given to execute our protocol HAPp, the

virtual subnet network is shown in Fig. 4(a). There are 24
processors falling into seven groups. Gp1 includes source
processor Ps, P1 and P2. Gp2 includes P3, P4, P5 and P6. Gp3
includes P7, P8, P9 and P10. Gp4 includes P11 and P12. Gp5
includes P13 and P14. Gp6 includes P15 and P16. P17, P18, P19,
P20 and P21 belong to Gp7, P22 and P23 belong to Gp8.

In BA problem, the worst situation [3] is that the source
does not honest anymore. Simply, here the worst case of the
example, suppose the source processor Ps is malicious fault,
which means Ps may send arbitrarily different values to
different groups. Therefore, in order to solve the BA problem
among correct processors of the example, HAPp requires θ
(⎣(g – 1)/3⎦ + 1) rounds of message exchange phase.

In HAPp, Pre-Execute counts the number of rounds
required before message exchange phase. There is in need of
three rounds to message exchange for the example.

The source processor Ps uses TRANSMISSION to
transmit messages to all other processors in the first round of
the message exchange phase. The message obtained of each
correct processor is listed in Fig. 4(b). In the σ-th (1 < σ ≤ θ)
round of message exchange, except for the source processor,
each processor uses TRANSMISSION to transmit RMAJ
values at the (σ – 1)-th level in its mg-tree to all the others
and itself. Subsequently, each receiver processor applies
RMAJ to its received messages and stores the received
messages (VMAJ values) and RMAJ values at the
corresponding vertices at level σ of its mg-tree. The mg-tree
of correct processor P1 at the second and final round in the
message exchange phase is shown in Fig. 4(c) and 4(d).

After the message exchange phase, the tree structure of
each correct processor is converted from mg-tree to ic-tree by
deleting the vertices with duplicated names. The example
ic-tree has showed in Fig. 4(e). Eventually, using the function
VOTE to root the value s for each correct processor’s ic-tree
{VOTE(s) = VOTE(s1), …, VOTE(s8) = 1}, an agreement
value 1 can be obtained, as shown in Fig. 4(f), and the
decision making phase has completed.

4. Conclusion
In the previous work, the complex networks had studied

in a branch of mathematics known as graph theory. The
network topology developed in recent years [1.5] shows a
mobile feature. The previous protocols such as [2.3.6-9]
cannot adapt to solve BA problem in MANET, and none of
the BA protocol is designed for the virtual subnet of MANET.
Therefore, the BA problem in virtual subnet network with

- 724 -

dual failure mode on fallible processor has revisited. The
proposed protocol can tolerate the most damaging failure type
of fallible processors. The proposed HAPp can take the
minimum number of required rounds to achieve an
agreement, and tolerate the maximum number of faulty
components.

Furthermore, in a generalized case, there are not only
processors may be crash, omission or malicious, but also
communication medium. On other hand, our protocol will be
extend to solve when dormant or malicious communication
media or processors are existed simultaneously underlying
virtual subnet network of MANET in future work.

Reference
[1] T.C. Chiang, H.M. Tsai and Y.M. Huang, A Partition

Network Model for Ad Hoc Networks, IEEE
International Conference on Wireless and Mobile
Computing, Networking and Communications, Vol. 3,
pp.467-472, 2005.

[2] M. Fischer, The Consensus Problem in Unreliable
Distributed Systems (A Brief Survey), Technical report,
Department of Computer Science, Yale University,
2000.

[3] L. Lamport, R. Shostak and M. Pease, The Byzantine
General Problem, ACM Transactions on Programming

Language and Systems, Vol. 4, No. 3, pp. 382-401,
1982.

[4] B. Lehane and L. Doyle, Shared RSA Key Generation In
A Mobile Ad Hoc Network, in the Military
Communications of IEEE Conference, Vol. 2, pp
814-819, 2003.

[5] M. Min, F. Wang, D. Z. Du and P. M. Pardalos, A
Reliable Virtual Backbone Scheme in Mobile Ad-hoc
Networks, IEEE International Conference on Mobile
Ad-hoc and Sensor Systems, pp. 60-69, 2004.

[6] M. Pease, R. Shostak and L. Lamport, Reaching
Agreement in Presence of Faults, Journal of ACM, Vol.
27, No. 2, pp. 228-234, 1980.

[7] S. C. Wang and K. Q Yan, Revisit Consensus Problem
on Dual Link Failure Modes, in the Proceedings of
International Computer Software & Applications
Conference, Vienna, Austria, pp. 84-89, 1998.

[8] S.C. Wang, K.Q. Yan and G.Y. Zheng, Reaching
Consensus Underlying Fallible Virtual Subnet of Mobile
Ad-Hoc Network, Twelfth Mobile Computing
Workshop, pp. 257-263, 2006.

[9] K.Q. Yan, S.C Wang, Group Byzantine Agreement, in
Computer Standards & Interfaces, pp. 75-92, 2005.

The symbol notations:

: Correct processor
: Malicious faulty processor
: Dormant faulty processor
: Physical communication media (agent-based)

The messages sent from the source processor by
TRANSMISSION and then start to execute HAPp.

 The source processor, Ps is a malicious faulty
processor.

 Ps sends value 1 to Gp2, Gp4, Gp5, Gp6, Gp7 and
Gp8.

 Ps sends value 0 to Gp1 and Gp3.

Fig. 4(a). The initial status of executing HAPp in a virtual subnet of MANET.
 Level 1

root
s

Gp1’s correct processors 0
Gp2’s correct processors 1
Gp3’s correct processors 0
Gp4’s correct processors 1
Gp5’s correct processors 1
Gp6’s correct processors 1
Gp7’s correct processors 1
Gp8’s correct processors 1

VMAJ values

Level 1
root

s

Level 2 Function RMAJ

Val(S)=1 s1 0 (0,0)
 s2 1 (1,1,0,1)
 s3 0 (0,0,0,0)
 s4 1 (1,1)
 s5 1 (1,1)
 s6 1 (1,1)
 s7 0 (0,0,1,0,1)
 s8 λ0 (λ0, λ0)

VMAJ values

Fig. 4(b). The mg-tree of each processor at the 1st round Fig. 4(c). The mg-tree of correct processor P1 at the 2nd round

- 725 -

Level 1
root

Level 2

Level 3

Function RMAJ

s s1 s11 0 (0,0)
0 0(0) s12 0 (0,0,0,0)
 s13 0 (0,1,0,0)
 s14 0 (0,0)
 s15 0 (0,0)
 s16 0 (0,0)
 s17 1 (1,1,1,0,1)
 s18 λ0 (λ0,λ0)

 s2 s21 1 (1,1)
 1(1,1,1,1) s22 1 (1,1,1,1)
 s23 1 (1,1,1,1)
 s24 1 (1,1)
 s25 1 (1,1)
 s26 1 (1,1)
 s27 0 (0,0,1,0,1)
 s28 λ0 (λ0,λ0)

 s3 s31 0 (0,0)
 0(0,0,0,0) s32 0 (0,0,1,0)
 s33 0 (0,1,0,0)
 s34 0 (0,0)
 s35 0 (0,0)
 s36 0 (0,0)
 s37 0 (0,0,1,0,1)
 s38 λ0 (λ0,λ0)

 s4 s41 1 (1,1)
 1(1,1) s42 1 (1,1,0,1)
 s43 1 (1,1,1,1)
 s44 1 (1,1)
 s45 1 (1,1)
 s46 1 (1,1)
 s47 1 (1,1,1,0,1)
 s48 λ0 (λ0,λ0)

 s5 s51 1 (1,1)
 1(1,1) s52 1 (1,1,1,1)
 s53 1 (1,0,1,1)
 s54 1 (1,1)
 s55 1 (1,1)
 s56 1 (1,1)
 s57 0 (0,0,1,0,1)
 s5 8 λ0 (λ0,λ0)

 s6 s61 1 (1,1)
 1(1,1) s62 1 (1,1,1,1)
 s63 1 (1,1,1,1)
 s64 1 (1,1)
 s65 1 (1,1)
 s66 1 (1,1)
 s67 1 (1,1,1,1,1)
 s68 λ0 (λ0,λ0)

 s7 s71 0 (0,0)
 0(0,0,1,0,1) s72 1 (1,1,1,1)
 s73 0 (0,0,0,0)
 s74 1 (1,1)
 s75 0 (0,0)
 s76 1 (1,1)
 s77 0 (0,0,1,0,1)
 s78 λ0 (λ0, λ0)

 s8 s81 λ1 (λ1,λ1)
 λ0(λ0, λ0) s82 λ1 (λ1,λ1,λ1,λ1)
 s83 λ1 (λ1,λ1,λ1,λ1)
 s84 λ1 (λ1,λ1)
 s85 λ1 (λ1,λ1)
 s86 λ1 (λ1,λ1)
 s87 0 (0,0, λ0,0,λ0)
 s88 λ0 (λ0,λ0)

Level 1
root

Level 2

Level 3

Function RMAJ

s s1
0 0(0) s12 0 (0,0,0,0)
 s13 0 (0,1,0,0)
 s14 0 (0,0)
 s15 0 (0,0)
 s16 0 (0,0)
 s17 1 (1,1,1,0,1)
 s18 λ0 (λ0,λ0)

 s2 s21 1 (1,1)
 1(1,1,1,1)
 s23 1 (1,1,1,1)
 s24 1 (1,1)
 s25 1 (1,1)
 s26 1 (1,1)
 s27 0 (0,0,1,0,1)
 s28 λ0 (λ0,λ0)

 s3 s31 0 (0,0)
 0(0,0,0,0) s32 0 (0,0,1,0)

 s34 0 (0,0)
 s35 0 (0,0)
 s36 0 (0,0)
 s37 0 (0,0,1,0,1)
 s38 λ0 (λ0,λ0)

 s4 s41 1 (1,1)
 1(1,1) s42 1 (1,1,0,1)
 s43 1 (1,1,1,1)

 s45 1 (1,1)
 s46 1 (1,1)
 s47 1 (1,1,1,0,1)
 s48 λ0 (λ0,λ0)

 s5 s51 1 (1,1)
 1(1,1) s52 1 (1,1,1,1)
 s53 1 (1,0,1,1)
 s54 1 (1,1)

 s56 1 (1,1)
 s57 0 (0,0,1,0,1)
 s5 8 λ0 (λ0,λ0)

 s6 s61 1 (1,1)
 1(1,1) s62 1 (1,1,1,1)
 s63 1 (1,1,1,1)
 s64 1 (1,1)
 s65 1 (1,1)

 s67 1 (1,1,1,1,1)
 s68 λ0 (λ0,λ0)

 s7 s71 0 (0,0)
 0(0,0,1,0,1) s72 1 (1,1,1,1)
 s73 0 (0,0,0,0)
 s74 1 (1,1)
 s75 0 (0,0)
 s76 1 (1,1)

 s78 λ0 (λ0, λ0)

 s8 s81 λ1 (λ1,λ1)
 λ0(λ0, λ0) s82 λ1 (λ1,λ1,λ1,λ1)
 s83 λ1 (λ1,λ1,λ1,λ1)
 s84 λ1 (λ1,λ1)
 s85 λ1 (λ1,λ1)
 s86 λ1 (λ1,λ1)
 s87 0 (0,0, λ0,0,λ0)

Fig. 4(d). The final mg-tree of processor P1 after the
message exchange phase

Fig. 4(e). The ic-tree of processor P1

The tree structure
has converted from
mg-tree to ic-tree
by erasing the
vertices with
repeated names.

- 726 -

 VOTE(s1) = (VOTE(s12), VOTE(s13), VOTE(s14), VOTE(s15), VOTE(s16), VOTE(s17), VOTE(s18))

VOTE(s1) = (0, 0, 0, 0, 0, 1, λ0) = 0
 VOTE(s2) = (VOTE(s21), VOTE(s23), VOTE(s24), VOTE(s25), VOTE(s26), VOTE(s27), VOTE(s28))

VOTE(s2) = (1, 1, 1, 1, 1, 0, λ0) = 1
 VOTE(s3) = (VOTE(s31), VOTE(s32), VOTE(s34), VOTE(s35), VOTE(s36), VOTE(s37), VOTE(s38))

VOTE(s3) = (0, 0, 0, 0, 0, 0, λ0) = 0
 VOTE(s4) = (VOTE(s41), VOTE(s42), VOTE(s43), VOTE(s45), VOTE(s46), VOTE(s47), VOTE(s48))

VOTE(s4) = (1, 1, 1, 1, 1, 1, λ0) = 1
 VOTE(s5) = (VOTE(s51), VOTE(s52), VOTE(s53), VOTE(s54), VOTE(s56), VOTE(s57), VOTE(s58))

VOTE(s5) = (1, 1, 1, 1, 1, 0, λ0) = 1
 VOTE(s6) = (VOTE(s61), VOTE(s62), VOTE(s63), VOTE(s64), VOTE(s65), VOTE(s67), VOTE(s68))

VOTE(s6) = (1, 1, 1, 1, 1, 1, λ0) = 1
 VOTE(s7) = (VOTE(s71), VOTE(s72), VOTE(s73), VOTE(74), VOTE(s75), VOTE(s76), VOTE(s78))

VOTE(s7) = (0, 1, 0, 1, 0, 1, λ0) = φ
 VOTE(s8) = (VOTE(s81), VOTE(s82), VOTE(s83), VOTE(84), VOTE(s85), VOTE(s86), VOTE(s87))

VOTE(s7) = (0, 1, 0, 1, 0, 1, λ0) = φ

 VOTE(s) = (VOTE(s1), VOTE(s2), VOTE(s3), VOTE(s4), VOTE(s5), VOTE(s6), VOTE(s7), VOTE(s8))

VOTE(s) = (0, 1, 0, 1, 1, 1, φ, φ) = 1

Fig. 4(f). The common value VOTE(s) by correct processor P1

Fig. 4. An example of HAPp execution (cont’)

- 727 -

