
Towards Malicious Agreement in a Scale Free Network

S.C. Wang S. C. Yang K.Q. Yan
scwang@cyut.edu.tw s9430619@cyut.edu.tw kqyan@cyut.edu.tw

Chaoyang University of Technology, Taiwan, R.O.C

Abstract
The fault-tolerance is an important research topic in the

study of distributed systems. To cope with the influence from
faulty processors, reaching a common agreement at the
presence of faults before performing some special tasks is
essential. Therefore, the Byzantine Agreement (BA) problem
has drawn more and more of the researchers’attention as they
explore deeper and deeper into the world of distributed
systems. There are significant studies on this BA problem in a
random network. Recently, many large complex networks
have emerged and displayed a scale-free feature, which
influences the system to reach a common value differently.
Unfortunately, existing BA problem and results cannot cope
with the new network environment and the BA problem thus
needs to be revisited. In this paper, we propose a new
protocol to adapt to the scale free network and derive its
bound of allowable faulty components.
Keywords: Byzantine agreement, fault-tolerance, distributed
system, scale free network, random network

1. Introduction
With the fast development of Internet, in order to increase

systematic operation ability, the distributed system has
replaced the traditional large-scale computer system
gradually. In a distributed computing system, processors
allocated in different places and connected together to create
greater power and ability [10]. It is an important topic for
represent the structure of highly fault-tolerant ability in the
Scale Free Network (SFN) [17] seems to provide a new topic.
SFN is universal in real world and each processor can infinite
link other processors. [4].

However, under a large amount of computation resource
requirement, the single processor has not been enough for the
requirement. The distributed system is mostly used in order to
increase systematic operation ability, the processors that
disperses to every place is considered as a virtual group, the
distributed system is the communication through different
ways each other and exchanges information [7]. To achieve a
common agreement when the distributed system is applied
and to confirm each other reference information of need when
transmits the file each other. It is necessity to develop a
highly fault-tolerant protocol of improve system security and
dependability.

The Byzantine Agreement (BA) problem is one of the
most fundamental problems to reach a common value in a
distributed system. The Byzantine Agreement problem was
first proposed by Lamport [14]. Traditionally, BA problem
defined by Lamport assumes [14]:
(1) There are n processors, of which at most tp (tp≤(n-1)/3)

processors could fail without breaking down a workable
network;

(2) The processors communicate with each other through
message exchange in a fully connected network;

(3) The message’s sender is always identifiable by the
receiver;

(4) An arbitrary processor is chosen as a source, and its initial
value vs is transmitted to other processors and itself for
executing the protocol.

Based on these assumptions, the BA requirement can be
satisfied when the following constraints are met:

(Agreement): All correct processors agree on a common
value.

(Validity): If the source processor is correct, then all
correct processors agree on the initial value
sent by the source processor.

Under such assumptions, several protocols [1,5,9,12]
have been proposed for solving the BA problem. Lamport has
also proved that the solution is impossible if the number of
faulty processors exceeds one-third of the total number of
processors in the network [14]. Further, Fischer and Lynch
[12] pointed out that t＋1 rounds are the minimum number of
rounds to get enough messages to achieve BA. However,
most of the distributed computing systems would not be fully
connected. The SFN has the property of virtual channel [17];
the system still executed message exchange through virtual
channel when it is not direct connection between processors.
How the processors reach an agreement in the SFN must also
be concerned deeply.

The symptom of a faulty processor is usually
unrestrained, and is commonly called malicious fault [6]. In
such a fault, a processor can withhold the messages to be sent
and send irregular message or collide with other faulty
processors. A malicious fault is unpredictable, and the

- 728 -

behaviors of the other failure types can be treated as special
cases of a malicious fault. However, if the malicious fault,
which is the thorniest fault, can be solved, then the other fault
types [6] can surely be solved. Therefore, in this paper we
just investigate the malicious fault and explore how
processors reach agreement in the SFN.

The rest of this paper is organized as follows: Section 2
describes the characteristic of SFN. Then, our new protocol
will be brought up and illustrated in detail in Section 3.
Section 4 gives an example of executing the proposed
protocols. Section 5 is responsible for proving the correctness
and complexity of our new protocols. Finally, in Section 6,
we shall come to the conclusion.

2. Network topology
In the past, the complex network is regarded as a random

network [8]. Random network theory maintains that though
the processor linking is random, but will present the regular
system finally, in other words the number of most processor
connective are similar, the way of processor distribution will
be present Poisson Distribution [8] in Fig. 1.

Fig. 1 Poisson Distribution

There are some processors can link unrestrictedly any
other processors in the Scale Free Network (SFN). If has
deleted gradually processor of smaller connection until 20%
of the processors exist in the scale free network topology, the
system was still normal operate, in other word, in the
condition of the processor damage 80%, the system was also
still normal operate [3]. Basically, the WWW and Internet is
linked together by web servers of several high connection, it
connectivity distribution conform to Power Law within
characteristic of exponential decay [2]. Any processors and
other k processors connectively probabilities are proportional
and described as function has shown decrease continually.

When most processors were attacked by virus in the
random network, the system would be paralysis. However,
80% of the processors in the SFN were attacked, the system
still normal working. SFN owns virtual cannel property; even
if it is not keep connect between any two processors. SFN
explained very strong ability to support for accidental
breakdown.

If new processors unlimited increase which linear speed in
SFN model, Growth that is SFN own property New

processor will be connected other exist processors that high
connectivity,

Preferential Attachment that is SFN own property.
SFN is shown in Fig. 2. The rule of SFN own processor
connective quantity as shown in Formula (1). The purport of
processors of own much connection degree in network could
more connect with new processors.

 
j j

i
i k

kK)(
… … … .. Formula (1)

Fig. 2 SFN

3. The definitions and condition for BA problem
In this study, the BA problem is discussed in a

synchronous environment. In order to solve the BA problem,
the system model, the number of rounds of message exchange
required, and the number of tolerable faulty processors should
be considered.

An example of SFN is shown in Fig. 2. In a synchronous
network, the bounds of delay for each correct component are
finite [11,13,16]. The assumptions and parameters of our
protocols are listed as follows:
 The underlying network is synchronous.
 Each processor in the network can be identified

uniquely.
 Let N be the set of all processors in the network and

|N|=n, where n is the number of processors in the
underlying network.

 The processors of the underlying network are assumed
to be fallible.

 A processor that transmits messages is called a source
processor. There is only one source processor who
transmits the message at the first round in the BA
problem.

 Let fm be the maximum number of malicious faulty
processors.

 Let c be the connectivity of the SFN.
 A processor does not know the faulty status of other

processors.

- 729 -

In Lamport’s protocol [14], the fallible component is
processor only, the failure type of the fallible processor is
malicious and network topology is fully connected. So that,
the constraints of Lamport [14] is n>3fm and c=n-1. In Meyer
[15], the assumption of failure types of the fallible processor
is malicious faults, and the underlying network topology may
not be fully connected. So, the constraint of Meyer [18] is
n>3fm and c>2fm. However, Siu et al. [18] find that the correct
constraint on number of processors required should be n >
(n-1)/3+2fm.

In this paper, our protocol is used to solve the BA
problem in a SFN with fallible processors and the assumption
of the fallible components is malicious faults. Therefore, the
constraints are as follows:

(Constraint 1): fm(n-1)/3.
(Constraint 2): c>2 fm .

The constraint with the connectivity of an SFN is based
on the number of malicious faults, In addition, the total
number of malicious faults must be smaller than half of c.
Hence, the constraint as to the connectivity of a SFN is c>2fm.

There are two phases in our protocol SFNPP (Scale Free
Network Protocol for processor): the message exchange
phase and the decision making phase. The SFNPp is shown in
Fig. 3.

Protocol SFNPP

Definition
n: the number of processors in the SFN
γ: the number of rounds required
vs: the initial value of source
: the default value
Message Exchange Phase:
γ=1 do: 1) The source processor transmits its value vs to other

processors and itself through virtual channel.
2) Each processor stores vs received through virtual

channel in the root of its ms-tree.
For γ>1,
do:

1) Each processor transmits the value at (γ-1)-th of its
ms-tree to other processors and itself through virtual
channel.

2) Each processor stores the received values through
virtual channel in the corresponding vertices at level of
γ its ms-tree.

Decision Making Phase:
Step 1: Reorganizing the ms-tree into a corresponding ic-tree.

(The vertices with repeated names are deleted)
Step 2: The root s of each processor’s ic-tree and obtaining the

common value VOTE(s) by using function VOTE.
Function VOTE(α)
1. val(α), if the α is a leaf.
2. The majority value in the set of {VOTE(αi)|1≤i≤n, and vertex αi

is a child of vertex α}, if such a majority value exists.
3. A default value  is chosen, otherwise.

Fig. 3 The proposed protocol SFNPP

In the message exchange phase, we collect enough
messages through virtual channel, which needs fm+1 rounds
of message exchange, where fm=(n-1)/3. In the first round
of message exchange (γ=1), the source processor transmits its
initial value to each processor through virtual channel and
then each receiver processor stores the value from in the root
s of its ms-tree [19]. The ms-tree is a tree structure that is
used to store the received message. After the first round of
message exchange (γ>1), each processor transmits the value
at (γ-1)-th of its ms-tree to other processors and itself, than
stores the received values at level of γ its ms-tree.

In the decision making phase, all correct processors
reorganize the ms-tree into a corresponding ic-tree by
deleting vertices with repeated group names [19]. Finally, all
correct processors use function VOTE to remove the faulty
influence from malicious faulty processors to obtain the
common value. Since VOTE is a common value, each correct
processor can agree on the value, and the agreement is
reached. An example of executing SFNPP is in Section 4.

4. An example of executing Protocol SFNPP
An example for executing SFNPP is given in this section.

An SFN is shown in Fig. 2, there are 9 processors falling in
an SFN. The malicious faulty processors are processor PS and
P2, others are correct. The worst case of the BA problem is
that the source processor is a malicious faulty processor. If
the BA problem can be solved in the worst case, the BA
problem also can be solved in other cases. In this example,
we suppose processor PS is the source processor that is a
malicious faulty processor. In this case, the number of rounds
of messages exchange is 3 ((n-1)/3+1=(9-1)/3+1).

In the first round of the message exchange phase, the
source processor PS transmits messages to other processors
through virtual channel. The messages sent by the source
processor PS are shown in Fig. 4(a). The message stored by
each correct processor in the first round of the message
exchange phase is illustrated in Fig. 4(b). In the γ-th (γ>1)
round of message exchange, each processor transmits values
at the (γ-1)-th level in its ms-tree to the others and itself
through virtual channel. Then, Each processor stores the
received values at level of γ its ms-tree. The ms-tree of
correct processor P1 at the second and third round in the
message exchange phase is shown in Fig. 4(c) and Fig. 4(d).

In the decision making phase, each correct processor turns
its ms-tree into a corresponding ic-tree by deleting the
vertices with duplicated names. An example of processor P1

reorganizes its ms-tree into the corresponding ic-tree is
illustrated in Fig. 4(c) and Fig. 4(d). Finally, using function
VOTE to root s of each processor’s ic-tree and the common
value 1 is obtained. An example of correct processor P1 uses
function VOTE to root s is shown in Fig. 4(f).

- 730 -

5. The correctness and complexity of SFNPP
In this section, the correctness and complexity will be

proved. The first subsection will prove the correctness of
SFNPP, and the complexity will be proved in the next
subsection.

To prove protocol’s correctness, a vertex  is called
common [9] if  of each correct processor has the same value.
Thus the agreements, (Agreement) and (Validity), can be
rewritten as:

(Agreement’): Root s is common, and
(Validity’): VOTE(s)=vs for each correct processor, if

the commander is correct.

To prove that a vertex is common, the term common
frontier [7] is defined as: When every root-to-leaf path of the
mg-tree contains a common vertex, then the collection of the
common vertices forms a common frontier. Based on these
two terms, the correctness of SFNPP can be examined as
follows. Before proving the correctness of SFNPP, the term
correct vertex is defined as: Vertex i is a correct vertex if Pi
is correct.

Lemma 1 All correct vertices of the ic-tree are common.
Proof: After reorganization, no repeatable vertices are in an
ic-tree. At the level fm+1 or above, the correct vertex has at
least 2fm+1 children, in which at least fm+1 children are
correct. The true value of these fm+1 correct vertices is
common, and the majority value of vertex is common. The
correct vertex is common in the ic-tree if the level is less than
fm+1. As a result, all correct vertices of the ic-tree are
common.

Lemma 2 The common frontier exists in the ic-tree.
Proof: There are fm+1 vertices along each root-to-leaf path of
an ic-tree in which the root is labeled by the source name, and
the others are labeled by a sequence of group names.
Inasmuch as most fm processors can be failed, at least one
vertex is correct along each root-to-leaf path of the ic-tree. By
Lemma 1, the correct vertex is common, and the common
frontier exists in each correct processor’s ic-tree.

Lemma 3 Let α be a vertex, if there is a common frontier
in the subtree rooted at α, then α is common.
Proof: If the height of α is 0 and the common frontier (α
itself) exists, then α is common. If the height of α is r, the
children of α are all in common by using induction hypothesis
with the height of the children at r-1, and then the vertex α is
common.

Corollary 1 If the common frontier exists in the ic-tree,
then the root is common.

Theorem 1 The root of a correct processor’s ic-tree is
common.
Proof: By Lemma 2 and Corollary 1, the theorem is proved.

Theorem 2 Protocol SFNPP can solve the BA problem in
the SFN.
Proof: To prove the theorem, it has to show that SFNPP

meets the constraints (Agreement’) and (Validity’).

(Agreement’): Root s is common. By Theorem 1, it is
satisfied.

(Validity’): VOTE(s) = v for all correct processors, if the
initial value of the source is vs, say v=vs.

Since most of processors are correct, they transmit the
message to all others. The value of correct vertices for all
correct processors’ ms-tree is v. When the ms-tree is
reorganized to an ic-tree, the correct vertices still exist. As a
result, each correct vertices of the ic-tree is common (Lemma
1), and its true value is v. By Theorem 1, this root is common.
The computed value VOTE(s) = v is stored in the root for all
correct processors. (Validity’) is satisfied.

The complexity of SFNPP is evaluated in terms of (1) the
number of rounds required, and (2) the number of allowable
faulty processors.

Theorem 3 SFNPP requires (fm+1) of message exchanges
and can tolerate fm ≤(n-1)/3 faulty processors.
Proof: By Lemma 1, the ambiguity due to at most fm

(≤(n-1)/3) faulty processors can be resolved. Hence, the
theorem is proved.

Theorem 4 Protocol SFNPP solves BA problem by using
the number of message exchanges and it is minimum.
Proof: Fischer [9] pointed out that fm+1 rounds are the
minimum number of rounds to get enough messages to
achieve BA. The unit of Fischer is same with SFNPP. Thus,
the number of required rounds of message exchange in the
SFNPP is (fm+1) and this number is the minimum.

Theorem 5 The number of allowable faulty processors fm

((n-1)/3) in SFNPP I is the maximum.
Proof: According to Lamport [14], the total number of
allowable faulty processors cannot exceeds (n-1)/3.

6. Conclusion
BA is a fundamental problem in distributed system; there

are many relative literatures in the past [1,7,14]. Network
topology is an important cause when we discuss BA.
However, all past literatures investigate in random network,
different from Internet network scale free characteristic
appeared at present. In this paper, a new protocol SFNPP is

- 731 -

proposed to solve BA in a SFN. The SFNPP protocol
redefines the BA in a SFN and can achieve a common value
if the constraint on number of processors required should be
fm(n-1)/3.is satisfied.

Reference
[1] A. Bar-Noy, et al., “Shifting gears: changing algorithms on

the fly to expedite byzantine agreement,” Proceedings of the
Symposium on Principles of Distributed Computing, 1987, pp.
42–51.

[2] A. L. Barabàsi, R. Albert, and H. Jeong, “Mean-field Theory
for Scale-free Random Networks,” Physica A, vol.272,
pp.173-187, 1999.

[3] A. L. Barabàsi, R. Albert, and H. Jeong, “Scale-free
Characteristics of Random Network: the Topology of the
World-wide Web,” Physica A, vol.281, pp.69-77, 2000.

[4] A. L. Barabàsi and R. Albert, “Statistic Mechanics of
Complex Networks,” Reviews of Modern Physics, vol.48-94,
2002.

[5] M. Barborak, M. Malek, A. Dahbura, “The consensus
problem in fault-tolerant computing,” ACM Computing
Surveys 25 (1993) 171– 220.

[6] O. Babaoglu, R. Drummond, “Streets of Byzantium: network
architectures for fast reliable broadcasts,” IEEE Transactions
on Software Engineering SE-11 (6) (1985 June) 546– 554.

[7] M. Correia, L. C. Lung, N. F. Neves, and P. Verıssimo,
“Efficient Byzantine-resilient reliable multicast on a hybrid
failure model,” In Proceedings of the 21st IEEE Symposium
on Reliable Distributed Systems, pp. 2–11, 2002.

[8] M. Correia, N. F. Neves, L. C. Lung and P. Verıssimo, “Low
Complexity Byzantine-Resilient Consensus,” Distributed
Computing, vol. 17, pp. 237-249, 2005.

[9] P. Dasgupta, Agreement under faulty interfaces, Information
Processing Letters 65 (1998) 125– 129.

[10] P. Erdos and A. Renyi, “On the Evolution of Random
Graphs,” Pub. Math. Inst. Hung. Acad. Sci., vol. 5, pp. 17-60,
1960.

[11] M. Fischer, M. Paterson, N. Lynch, “Impossibility of
distributed consensus with one faulty process,” Journal of
ACM 32 (1985) 374–382.

[12] M. Fischer, N. Lynch, “A lower bound for the assure
interactive consistency,” Information Processing Letters 14 (4)
(1982 June) 183–186.

[13] F. Halsall, “Data Links, Computer Networks and Open
Systems,” 4th ed., Addison-Wesley Publishers, 1995, pp.
112–125 Ch. 3.

[14] L. Lamport, R. Shostak and M. Pease, “The Byzantine
Generals Problem,” ACM Transactions on Programming
Languages and System, vol. 4, no. 3, pp.384-401, 1982.

[15] F.J. Meyer, D.K. Pradhan, “Consensus with dual failure
modes,” IEEE Transactions on Parallel and Distributed
Systems 2 (2)(1991 April) 214– 222.

[16] A. Silberschatz, P.B. Galvin, G. Gagne, Operating System
Concepts, 6th ed., John Wiley & Sons, 2002.

[17] D. S. Suk, and S. M. Reddy, “Test Procedures for a Class of
Pattern-Sensitive Faults in Semiconductor Random-Access
Memories,” IEEE Transactions on Computers, vol. C-29, no.
6, pp. 419-429, 1980.

[18] H.S. Siu, Y.H. Chin, W.P. Yang, A note on consensus on dual
failure modes, IEEE Transactions on Parallel and Distributed
System 7 (3) (1996) 225–230.

[19] K.Q. Yan and S.C. Wang, “The Bounds of Faulty Components
on Consensus with Dual Failure Modes,” in ACM Operating
Systems Review, Vol. 39, No.3, July 2004, pp. 82-89.

Fig. 4(a) The message sent from the source processor

Fig. 4(b) The message received by each correct processor in
the first round

Fig. 4(c) The ms-tree of processor P1 at the second round of
message exchange phase

- 732 -

Fig. 4(d) The final ms-tree of processor P1 after the message exchange phase Fig. 4(e) The ic-tree of processor P1

VOTE(s1)= VOTE(0,1,1,1,1,1,0)=1 VOTE(s4)= VOTE(1,0,1,1,1,1,1)=1 VOTE(s7)= VOTE(0,1,0,0,0,0,0)=0
VOTE(s2)= VOTE(0,1,0,1,0,1,0)=0 VOTE(s5)= VOTE(1,0,1,1,1,0,0)=1 VOTE(s8)= VOTE(0,0,0,0,0,0,0)=0
VOTE(s3)= VOTE(1,1,1,1,1,0,0)=1 VOTE(s6)= VOTE(1,1,1,1,1,0,0)=1

VOTE(s)=VOTE(1,0,1,1,1,1,0,0)=1
Fig. 4(f) The common value VOTE(s) by correct processor P1

Fig. 4. An example of reaching an agreement in SFN

Turn the ms-tree into the cor-
responding ic-tree by deleting

the vertices with repeated
names

- 733 -

