
On the Independent Spanning Trees Problem in a Hypercube*

Jinn-Shyong Yang1, Shyue-Ming Tang2, Jou-Ming Chang1, and Yue-Li Wang3
1Department of Information Management,

National Taipei College of Business
2Department of Psychology, National Defense University

3Department of Computer Science and Information Engineering,
National Chi-Nan University

Abstract*

A set of spanning trees rooted at some vertex r in G
is said to be independent if for each vertex v in G, v≠r,
the paths from v to r in any two trees are vertex-disjoint.
If the connectivity of G is k, the independent spanning
trees problem is to construct k independent spanning
trees rooted at each vertex. This problem is still open
for general graph with connectivity greater than four.
However, it has been proved that a k-dimensional
hypercube (or Qk) has k independent spanning trees
rooted at an arbitrary vertex. In this paper, a simple
algorithm is proposed to construct k optimal
independent spanning trees on Qk . The algorithm is
also suitable for parallel or distributed system.

Keywords: independent spanning trees, vertex-disjoint
paths, hypercube, fault-tolerant broadcasting

1: INTRODUCTION

A k-dimensional hypercube, denoted by Qk , can be
represented by a graph G = (V, E) with V = {0,1,2,...,
2k−1} and E = {(u,v) | v ⊕ u = 2i, 0 ≤ i ≤ k−1}, where ⊕
denotes a k-bit exclusive or operation. Thus, if k is a
positive integer, then Qk is both k-connected and
k-regular. The hypercube is a well-known class of
graphs which may be described in terms of a product
operation; i.e., Qk = Qk−1 × K2 , and Q1 = K2 is a
complete graph with two vertices [4]. For example, Q4
is the product graph of Q3 and K2 , as shown in Figure 1.

Hypercubes (or hypercube networks) are important
due to their simple structure and suitability for
developing algorithms [1,2,6,8,12,13,14,17,18,21, 22].
There are commercially available parallel computers,
such as nCUBE, CM-5 and iPSC, which are equipped
with hypercube multiprocessor architectures.

A set of paths connecting two vertices in a graph is
said to be internally disjoint if any pair of paths in the
set have no common vertex except the two end vertices.
Considering a graph G=(V,E), a tree T is called a
spanning tree of G if T is a subgraph of G and T
contains all the vertices in V. A set of spanning trees of
G are said to be independent if they are rooted at the

* This research was supported by National Science
Council under the Grants NSC94-2115-M-135 -001

same vertex, say r, and for each vertex v ≠ r, the paths
from v to r, one path in each tree, are internally disjoint
(or vertex-disjoint). In this definition, we should note
that the one-step path (v,r) can appear at most once. If
the connectivity of G is k, the independent spanning
trees problem is to construct k independent spanning
trees rooted at an arbitrary vertex.

0

3

7

4

2

6

5

1

12

15

11

8

14

10

9

13

Figure 1 The 4-dimensional hypercube Q4 .

Let IST denote a set of k independent spanning
trees (if exists) rooted at a common vertex in G. For
example, two IST’s on Q4 are shown in Figure 2. In
each IST, the four paths from 0 to v (v = 1,2,...,15), one
path in each tree, are internally disjoint. Since
hypercubes are vertex-symmetric [9], an IST rooted at
one vertex is also a solution of IST for other vertices.
Thus, the two IST’s are two solutions for the
independent spanning trees problem of Q4 .

The study of independent spanning trees has
applications in fault-tolerant protocols for distributed
computing networks. For example, broadcasting in a
network is sending a message from a given node to all
the other nodes in the network. A fault-tolerant
broadcasting protocol can be designed by means of
independent spanning trees [3,11]. Fault-tolerance is
achieved by sending k copies of the message along k
independent spanning trees rooted at the source node. If
the source node is faultless, this scheme can tolerate up
to k−1 faulty nodes.

In [11], Itai and Rodeh gave a linear time algorithm
for solving the independent spanning trees problem in a
biconnected graph. In [5], Cheriyan and Maheshwari

- 734 -

showed that, for any 3-connected graph G and for any
vertex r of G, three independent spanning trees rooted at
r can be found in O(|V||E|) time. In [25], Zehavi and Itai
conjectured that any k-connected graph has k
independent spanning trees rooted at an arbitrary vertex
r. In [10], Huck has proved that the conjecture holds for
planar graphs. In [7], Curran et al. have presented an
O(|V|3) time algorithm for solving the problem in
4-connected general graphs. However, Zehavi and Itai’s
conjecture is still open for general k-connected graphs
with k > 4.

In [19], Obokata et al. have solved the independent
spanning trees problem by means of product graph
scheme. Based on their scheme, a k-dimensional
hypercube Qk can be viewed as the product graph of
Qk−1 and K2 , and an IST of Qk is recursively obtained
from an IST of Qk−1. However, an IST constructed using
Obokata's algorithm is not optimal in terms of its
average path length for k > 3. To make up this drawback,
Tang et al. propose another recursive algorithm to
construct an optimal IST on a k-dimensional hypercube
[24].

In [20], Ramanathan and Shin also presented an
algorithm for fault-tolerant broadcasting in a hypercube.
Based on their algorithm, the source node sends the
message to all its neighbors at first. Then, the neighbors
in turn send the message to adjacent nodes based on a
bit direction rule. The spirit of Ramanathan's algorithm
is to construct an IST in a top-down manner. In this
paper, we shall propose an algorithm that constructs an
IST in a bottom-up manner. We shall also prove that the
IST obtained from the proposed algorithm is the same

as that of Ramanathan's algorithm. Meanwhile, we show
that both results are optimal.

The remainder of this paper is organized as follows.

In Section 2, we introduce some notations and define
optimal criterion for an IST on a hypercube. In Section
3, we introduce Ramanathan's algorithm. In Section 4,
we propose our algorithm for constructing an IST on a
k-dimensional hypercube. The last section contains our
concluding remarks.

2: NOTATION AND DEFINITION

Without loss of generality, we simply consider
independent spanning trees rooted at vertex 0 of a
hypercube. Since vertex 0 has only one child in every
tree of an IST and the child must be a neighbor of vertex
0 [23], we denote a tree in an IST of Qk by Ti where
vertex 2i is the only child of vertex 0.

Then, we define parent(v,i) as the parent of vertex v
in Ti . The ancestor set of a vertex v in Ti , denoted by
ancestor(v,i), is the set of vertices in the path from r to
parent(v,i) in Ti . Based on the definition of independent
spanning trees and the ancestor set, we have the
following Lemma.

Lemma 1. [20] Let Ti and Tj (i≠j) be two spanning

trees rooted at vertex r in G. Ti and Tj are
independent if and only if for every vertex v in G, v
≠ r, ancestor(v,i) ∩ ancestor(v,j) = {r}.

T0 T1 T2 T3

0

3 5

1

9

7 11 132 4 8

15 6 12

14

10

0

6 10

2

3

14 7 114 8 1

15 12 9

13

5

0

12 5

4

6

13 14 78 1 2

15 9 3

11

10

0

9 10

8

12

11 13 141 2 4

15 3 6

7

5

0

3 5

1

9

7 11 132 4 8

15 6 12

14

10

0

3 5

1

9

7 11 132 4 8

15 6 12

14

10

0

6 10

2

3

14 7 114 8 1

15 12 9

13

5

0

6 10

2

3

14 7 114 8 1

15 12 9

13

5

0

12 5

4

6

13 14 78 1 2

15 9 3

11

10

0

12 5

4

6

13 14 78 1 2

15 9 3

11

10

0

9 10

8

12

11 13 141 2 4

15 3 6

7

5

0

9 10

8

12

11 13 141 2 4

15 3 6

7

5

(a)

T0 T1 T2 T3
0

9 5

1

3

13 11 78 4 2

15 12 6

14

10

0

3 10

2

6

11 7 141 8 4

15 9 12

13

5

0

6 5

4

12

7 14 132 1 8

15 3 9

11

10

0

12 10

8

9

14 13 114 2 1

15 6 3

7

5

0

9 5

1

3

13 11 78 4 2

15 12 6

14

10

0

9 5

1

3

13 11 78 4 2

15 12 6

14

10

0

3 10

2

6

11 7 141 8 4

15 9 12

13

5

0

3 10

2

6

11 7 141 8 4

15 9 12

13

5

0

6 5

4

12

7 14 132 1 8

15 3 9

11

10

0

6 5

4

12

7 14 132 1 8

15 3 9

11

10

0

12 10

8

9

14 13 114 2 1

15 6 3

7

5

0

12 10

8

9

14 13 114 2 1

15 6 3

7

5

(b)

Figure 2 Two solutions for the independent spanning trees problem in Q4 .
(a) Solution 1. (b) Solution 2.

- 735 -

The distance between vertex u and v in a tree is the
number of edges connecting the two vertices. In [16],
the path length of a tree is defined as the summation of
distance between each vertex to the root. An IST is
optimal if the average path length of the trees in the IST
is the minimum. In [24], the authors have given some
sufficient conditions for identifying an optimal IST in a
hypercube. The following lemma is of vital importance.

Lemma 2. [24] Given an IST of Qk . For each Ti ∈ IST

(i= 0, 1, …, k−1), if the distance between every
vertex and the only child of the root is equal to their
Hamming distance, the IST is optimal.

The two IST’s shown in Figure 2 are both optimal

since Lemma 2 holds. That is, for each vertex v, the
distance between v and the only child of the root (i.e., 1,
2, 4 and 8 in T0, T1 , T2 and T3 , respectively) is their
Hamming distance.

3: RAMANATHAN’S ALGORITHM

In this section, we introduce the algorithm proposed
by Ramanathan and Shin [20]. The algorithm generates
every tree of an IST from the root to the leaves. The
root generates one child at first, the child then generates
its own children in turn, and so forth. Since the vertices
in a tree are generated in different phases, they are
divided into generations.

Each vertex in a Qk can be uniquely represented by
a k-bit binary string, and the binary strings of two
adjacent vertices differ in exactly one bit. For
convenience, we number the binary string of a vertex in
Qk from right to left as 0 to k−1. All already-existed
vertices (except the root) are responsible for generating
new vertices in a tree. The new vertices are determined
by means of bit comparison. For a tree Ti in an IST, the
(j+1)-th generation vertices is generated by differing
from their parents at the [i+ j]k-th bit. Note that [y]x

denotes y modulo x. Besides, a leaf v in Ti differs from
its parent at the i-th bit.

We rewrite the algorithm proposed by Ramanathan
and Shin as follows.

Algorithm IST_RAM

Input: k.
Output: An IST of Qk .
Method:

 Step 1. Generate the first-generation vertex which is
the only child of root in Ti..

 For i = 0 to k−1 do
 parent(2i, i) = 0.
 Enddo
 Step 2. Generate next k−1 generations of vertices

from already-existed vertices in Ti .
 For j = 1 to k−1 do
 For i = 0 to k−1 do

 For each already-existed vertex v in Ti (v
≠ 0) do

 Let u be a neighbor of v and its
[i+j]k-th bit differs from v.

 parent(u, i) = v.
 Enddo
 Enddo
 Enddo
 Step 3. Generate the last generation vertices, or

leaves, in Ti .
 For i = 0 to k−1 do
 For each already-existed vertex v in Ti (v ≠

0, 2i) do

 parent(v−2i, i) = v.
 Enddo
 Enddo
End of Algorithm IST_RAM

Consider the hypercube Q4 in Figure 1. The IST in
Figure 2(a) is generated as follows. In Step 1, the root
generates vertices 1, 2, 4 and 8 in T0, T1, T2 and T3,
respectively. Using T0 as an example, the second
generation vertices are {5,7}, the third generation
vertices are {9,11,13,15}, and other vertices are leaves.

Theorem 3. [20] Algorithm IST_RAM correctly

constructs an IST of Qk in O(kn) time, where n = 2k.

Theorem 4. The IST constructed by Algorithm

IST_RAM is optimal.

Proof: We prove this theorem by Lemma 2. For each
tree in the IST, the distance between every vertex and
the only child of the root is their Hamming distance.
Thus, the output IST is optimal.

If we number the binary string of a vertex in Qk
from left to right as 0 to k−1, the output of Algorithm
IST_RAM will be another one. For example, the IST
shown in Figure 2(b) is another solution when Q4 is
given.

4: THE PROPOSED ALGORITHM

The main idea of our algorithm is to compare the
binary bit string of a vertex v with one neighbor of the
root in a hypercube. Then, we can determine the parent
of v in every tree and make all paths from v to root (one
path in each tree) internally disjoint. Similar to previous
section, we number the binary string of a vertex in Qk
from right to left as 0 to k−1. Suppose we compare two
different vertices bit by bit. Let bit i be the starting bit.
The comparison is performed from bit i rightward to bit
0, and then from bit k−1 rightward to bit i+1. If bit p is
the first different bit encountered, then bit p is named as
the vital bit of the comparison.

- 736 -

Algorithm IST_YTCW
Input: k.
Output: An IST of Qk .

 Step 1. Connect every vertex to its parent in Ti.
 For i = 0 to k−1 do
 For each vertex v in Ti (v ≠ 0, 2i) do
 Compare vertices 2i and v from bit i.
 Let bit p be the vital bit of the comparison.

 If p = i then
 parent(v, i) = v + 2p
 Else
 parent(v, i) = v − 2p
 Endif
 Enddo
 Enddo
 Step 2. Connect vertex 2i to the root in Ti..
 For i = 0 to k−1 do
 parent(2i, i) = 0.
 Enddo
End of Algorithm IST_YTCW

We use the IST shown in Figure 2(a) to illustrate
Algorithm IST_YTCW. In T0 , for example, the binary
string of vertex 11 is 1011. As comparing with vertex 1
from bit 0, the vital bit is bit 3. Since the vital bit is not
the starting bit, parent(11, 0) = 11 −−−− 23 = 3. In T1 , for
another example, the binary string of vertex 13 is 1101.
As comparing with vertex 2 from bit 1, the vital bit is
bit 1. Since the vital bit is the starting bit, parent(13, 1)
= 13 + 21 = 15.

Then, we have to prove the correctness of
Algorithm IST_YTCW.

Theorem 5. [23] Algorithm IST_YTCW correctly

constructs an IST of Qk in O(kn) time, where n = 2k.

Proof: Every vertex in the path from v to the only
child of the root variates according to an ordered
sequence {ap2

p, ap+12
p+1,… , ak−22

k−2, ak−12
k−1, a02

0,
a12

1, …, ap−12
p−1}, where ai is −1, 0 or 1 and bit p is the

vital bit. Since the prefix sums of the sequence in one
tree is never the same as those in another tree, Lemma 1
holds for every vertex in Qk . Q.E.D.

Theorem 6. The IST constructed by Algorithm

IST_YTCW is optimal.

Proof: We prove this theorem also by Lemma 2.Q.E.D.

Similarly, if we number the binary string of a

vertex in Qk from left to right as 0 to k−1, the output of
Algorithm IST_YTCW will be another one.

5: CONCLUDING REMARKS

In this paper, we have presented a simple algorithm
for constructing an IST in a hypercube. This result is
optimal since the average path length of the IST is the
minimum. Meanwhile, the algorithm is suitable for
parallel and distributed system.

REFERENCES

[1] B. Abali, F. Ozguner, and A. Bataineh, Balanced Parallel Sort on
Hypercube Multiprocessors, IEEE Transactions on Parallel and
Distributed Systems, Vol. 4, No. 5, 1993, pp.572-581.

[2] C. Aykanat, F. Ozguner, F. Ercal, and P. Sadayappan, Iterative
Algorithms for Solution of Large Sparse Systems of Linear
Equations on Hypercubes, IEEE Transactions on Computers, Vol.
37, No. 12, 1988, pp.1554-1567.

[3] F. Bao, Y. Igarashi, and S.R. Ohring, Reliable Broadcasting in
Product Networks , Discrete Applied Mathematics, Vol. 83, 1998,
pp.3-20.

[4] G. Chartrand and O. R. Oellermann, Applied and Algorithmic
Graph Theory, McGraw-Hill, Inc., 1993, pp.29-30.

[5] J. Cheriyan, S. N. Maheshwari, Finding Nonseparating Induced
Cycles and Independent Spanning Trees in 3-connected Graphs,
Journal of Algorithms 9, 1988, pp.507-537.

[6] G.-M. Chiu, A Fault-tolerant Broadcasting Algorithm for
Hypercubes, Information Processing Letters, Vol. 66, 1998,
pp.93-99.

[7] S. Curran, O. Lee and X. Yu, Finding Four Independent Trees,
SIAM Journal on Computing, Vol. 35, No. 5, 2006, pp.1023-1058.

[8] A. K. Gupta and S. E. Hambrusch, Multiple Network Embeddings
into Hypercubes, Journal of Parallel and Distributed Computing,
Vol. 19, 1993, pp.73-82.

[9] F. Harary, Graph Theory, Addison-Wesley, 1968, pp.171-173.
[10] A. Huck, Independent Trees in Planar Graphs, Graphs and

Combinatorics 15, 1999, pp.29-77.
[11] A. Itai and M. Rodeh, The Multi-tree Approach to Reliability in

Distributed Networks, in Proceedings of the 25th Annual IEEE
Symposium on Foundation of Computer Science, 1984,
pp.137-147. (Seen also in Information and Computation, Vol. 79,
1988, pp.43-59.)

[12] S. L. Johnsson, Communication Efficient Basic Linear Algebra
Computations on Hypercube Architectures, Journal of Parallel
and Distributed Computing, Vol. 4, 1987, pp.133-172.

[13] S. L. Johnsson and C. T. Ho, Optimum Broadcasting and
Personalized Communication in Hypercubes, IEEE Transactions
on Computers, Vol. 38, No. 9, 1989, pp.1249-1268.

[14] J. F. Jenq and S. Sahni, All Pairs Shortest Paths on a Hypercube
Multiprocessor, Proceedings of the International Conference on
Parallel Processing, 1987, pp.713-716.

[15] S. Khuller and B. Schieber, On Independent Spanning Trees,
Information Processing Letters, Vol. 42, 1992, pp.321-323.

[16] D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting
and Searching, Addison-Wesley, 1973, pp.194-198.

[17] P.-Z. Lee, Parallel Matrix Multiplication Algorithms on
Hypercube Multicomputers, International Journal of High Speed
Computing, Vol. 7, No. 3, 1995, pp.391-406.

[18] F. T. Leighton, Hypercubes and Related Networks, Chapter 3 in
Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes, Morgan Kaufmann Publishers, Inc., 1992.

[19] K. Obokata, Y. Iwasaki, F. Bao, and Y. Igarashi, Independent
Spanning Trees of Product Graphs, Lecture Notes in Computer
Science 1197, 1996, pp.338-351.

[20] P. Ramanathan and K. G. Shin, Reliable Broadcast in Hypercube
Multicomputers, IEEE Transactions on Computers, Vol. 37, No.
12, 1988, pp.1654-1657.

[21] Y. Saad and M. H. Schultz, Topological Properties of Hypercube,
IEEE Transactions on Computers, Vol. 37, No. 7, 1988,
pp.867-872.

[22] T.-Y. Sung, M.-Y. Lin, and T.-Y. Ho, Multiple-edge-fault
Tolerance with respect to Hypercubes, IEEE Transactions on
Parallel and Distributed Systems, Vol. 8, 1997, pp.187-192.

[23] S.-M. Tang, , Y.-L. Wang, and J.-X. Lee, On the Height of
Independent Spanning Trees of A k-connected k-regular Graph,
Proceedings of National Computer Symposium, Taipei, 2001,
pp.A159-A164.

[24] S.-M. Tang, Y.-L. Wang, and Y.-H. Leu, Optimal Independent
Spanning Trees on Hypercubes, Journal of Information Science
and Engineering, Vol. 20, No. 1, 2004, pp.143-155.

[25] A. Zehavi, A. Itai, Three Tree-paths, Journal of Graph Theory 13,
1989, pp.175-188.

- 737 -

