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Abstract

A set of spanning trees rooted at some vertex3@ in
is said to be independent if for each vertex v jn@,
the paths from v to r in any two trees are vertesfetht.
If the connectivity of G is k, the independent syiram
trees problem is to construct k independent spannin
trees rooted at each vertex. This problem is sfién
for general graph with connectivity greater tharufo
However, it has been proved that a k-dimensional
hypercube (or Q has k independent spanning trees
rooted at an arbitrary vertex. In this paper, a pim
algorithm is proposed to construct k optimal
independent spanning trees or .QThe algorithm is
also suitable for parallel or distributed system.

same vertex, say, and for each vertex # r, the paths
fromv tor, one path in each tree, are internally disjoint
(or vertex-disjoint). In this definition, we shoulibte
that the one-step path,) can appear at most once. If
the connectivity ofG is k, the independent spanning
trees problemis to constructk independent spanning
trees rooted at an arbitrary vertex.

Keywords: independent spanning trees, vertex-disjoint
paths, hypercube, fault-tolerant broadcasting

1: INTRODUCTION

A k-dimensionahypercube denoted byQy, can be
represented by a gragh = (V, E) with V = {0,1,2,...,
2-1} andE = {(uv) [vO u =2, 0<i < k-1}, where[
denotes &-bit exclusive or operation. Thus, kfis a
positive integer, thenQy is both k-connected and
k-regular. The hypercube is a well-known class o
graphs which may be described in terms of a product
operation; i.e.,.Qx= Qi1 X K, , andQ; = K; is a

Figure 1 The 4-dimensional hyperculgd, .

Let IST denote a set ok independent spanning
trees (if exists) rooted at a common vertexGn For
f example, two IST's orQ, are shown in Figure 2. In
each IST, the four paths from Ovdv = 1,2,...,15), one
path in each tree, are internally disjoint. Since

complete graph with two vertices [4]. For exampilg,
is the product graph @s;andK,, as shown in Figure 1.

Hypercubes (or hypercube networks) are important
due to their simple structure and suitability for
developing algorithms [1,2,6,8,12,13,14,17,18,22]. 2
There are commercially available parallel computers
such as nCUBE, CM-5 and iPSC, which are equipped
with hypercube multiprocessor architectures.

A set of paths connecting two vertices in a graph i
said to beinternally disjointif any pair of paths in the
set have no common vertex except the two end esttic
Considering a graptG=(V,E), a treeT is called a
spanning treeof G if T is a subgraph ofs and T
contains all the vertices M. A set of spanning trees of
G are said to béndependenif they are rooted at the
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hypercubes are vertex-symmetric [9], an IST roaied
one vertex is also a solution of IST for other wed.
Thus, the two IST'sare two solutions for the
independent spanning trees problenQgpf

The study of independent spanning trees has
applications in fault-tolerant protocols for dibuted
computing networks. For example, broadcasting in a
network is sending a message from a given noddl to a
the other nodes in the network. A fault-tolerant
broadcasting protocol can be designed by means of
independent spanning trees [3,11]. Fault-toleraisce
achieved by sendinly copies of the message alokg
independent spanning trees rooted at the source tod
the source node is faultless, this scheme canatelep
to k-1 faulty nodes.

In [11], Itai and Rodeh gave a linear time algarith
for solving the independent spanning trees prohbiem
biconnected graph. In [5], Cheriyan and Maheshwari



showed that, for any 3-connected grapland for any  as that of Ramanathan's algorithm. Meanwhile, veavsh
vertexr of G, three independent spanning trees rooted atthat both results are optimal.
r can be found in O{J|E|) time. In [25], Zehavi and Itai
conjectured that anyk-connected graph hask The remainder of this paper is organized as follows
independent spanning trees rooted at an arbitrentgx In Section 2, we introduce some notations and defin
r. In [10], Huck has proved that the conjecture bdtut optimal criterion for an IST on a hypercube. In Bat
planar graphs. In [7], Curran et al. have preselsted 3, we introduce Ramanathan's algorithm. In Secfion
O(VP) time algorithm for solving the problem in we propose our algorithm for constructing an 1STaon
4-connected general graphs. However, Zehavi aiiid Ita k-dimensional hypercube. The last section contains o
conjecture is still open for genericonnected graphs concluding remarks.
with k > 4,

In [19], Obokata et al. have solved the independent
spanning trees problem by means of product graph2: NOTATION AND DEFINITION
scheme. Based on their scheme, kalimensional
hypercubeQ, can be viewed as the product graph of Without loss of generality, we simply consider
Qw1 andK,, and an IST of) is recursively obtained independent spanning trees rooted at vertex O of a
from an IST ofQ.. However, an IST constructed using hypercube. Since vertex 0 has only one child imeve
Obokata's algorithm is not optimal in terms of its tree ofanIST and the child must be a neighbaeotex
average path length fér> 3. To make up this drawback, O [23], we denote a tree in an IST Qf by T; where
Tang et al. propose another recursive algorithm toVertex 2is the only child of vertex 0.

construct an optimal IST onkadimensional hypercube ~_Then, we define parem) as theparentof vertexv

[24]. in T;. Theancestor sebf a vertexv in T;, denoted by
In [20], Ramanathan and Shin also presented anancestor;i), is the set of vertices in the path franto

algorithm for fault-tolerant broadcasting in a hyee. ~ Parenty,i) in T;. Based on the definition of independent

Based on their algorithm, the source node sends theésPanning trees and the ancestor set, we have the
message to all its neighbors at first. Then, tighteors ~ following Lemma.

in turn send the message to adjacent nodes basad on

bit direction rule. The spirit of Ramanathan's aiyon Lemma 1.[20] Let T andT; (i#j) be two spanning

is to construct an IST in a top-down manner. Irs thi trees rooted at vertex r in G.;Tand T; are
paper, we shall propose an algorithm that constrant independent if and only if for every vertex v invG
IST in a bottom-up manner. We shall also prove theat # 1, ancesto(v,i) n ancestofv,j) = {r}.

IST obtained from the proposed algorithm is the esam

(b)
Figure 2 Two solutions for the independent spanning tpgeblem inQ, .
(a) Solution 1. (b) Solution 2.

-735 -



Thedistancebetween vertex andv in a tree is the
number of edges connecting the two vertices. Iri,[16
the path lengthof a tree is defined as the summation of
distance between each vertex to the root. An IST is
optimalif the average path length of the trees in the IST
is the minimum. In [24], the authors have given som
sufficient conditions for identifying an optimal TSn a
hypercube. The following lemma is of vital importan

Lemma 2.[24] Given an IST of Q For each TO IST
(i=0, 1, ..., k1), if the distance between every
vertex and the only child of the root is equalheit
Hamming distancehe IST is optimal.

The two IST’s shown in Figure 2 are both optimal
since Lemma 2 holds. That is, for each vengexhe
distance betweenandthe only child of the root (i.e., 1,
2, 4 and 8 inTy, Ty, T, andTs, respectively) is their
Hamming distance.

3: RAMANATHAN'S ALGORITHM

For each already-existed vertexn T; (v
#0)do
Let u be a neighbor ofv and its
[i+]]-th bit differs fromv.

parent(, i) = v.
Enddo
Enddo
Enddo
Step 3Generate the last generation vertices, or
leaves, ir; .

Fori=0tok-1do
For each already-existed vertexn T; (v #
0, 2)do
parent¢—2',i) =v.
Enddo
Enddo
End of Algorithm IST_RAM

Consider the hypercub@,in Figure 1. The IST in
Figure 2(a) is generated as follows. In Step 1,rtu
generates vertices 1, 2, 4 and 8T Ty, T, and T,
respectively. UsingT, as an example, the second
generation vertices are {5,7}, the third generation

In this section, we introduce the algorithm prombse vertices are {9,11,13,15}, and other vertices asvés.

by Ramanathan and Shin [20]. The algorithm gensrate
every tree of an IST from the root to the leavele T
root generates one child at first, the child thenagates
its own children in turn, and so forth. Since tlegtices
in a tree are generated in different phases, they a
divided into generations.

Each vertex in &y can be uniquely represented by
a k-bit binary string, and the binary strings of two
adjacent vertices differ in exactly one bit. For
convenience, we number the binary string of a xere
Q« from right to left as 0 tdk-1. All already-existed
vertices (except the root) are responsible for gime
new vertices in a tree. The new vertices are détean
by means of bit comparison. For a tfgen an IST, the
(j+1)-th generation vertices is generated by diffgrin
from their parents at the4 j]-th bit. Note that ¥,
denotesy modulox. Besides, a leaf in T, differs from
its parent at theth bit.

We rewrite the algorithm proposed by Ramanathan
and Shin as follows.

Algorithm IST_RAM
Input: k.
Output: An IST of Q.
Method:
Step 1Generate the first-generation vertex which is
the only child of root iff;.
Fori=0to k-1do
parent(2 i) = 0.
Enddo
Step 2Generate nexk-1 generations of vertices
from already-existed vertices .
Forj=1tok-1do
Fori =0to k-1do
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Theorem 3. [20] Algorithm IST_RAM correctly
constructs an IST of @ O(kn) time, where n =%

Theorem 4. The IST constructed byAlgorithm
IST_RAM is optimal

Proof: We prove this theorem by Lemma 2. For each
treein the IST, the distance between every vertex and
the only child of the root is their Hamming distanc
Thus, the output IST is optimal.

If we number the binary string of a vertex @k
from left to right as 0 tk-1, the output of Algorithm
IST_RAM will be another one. For example, the IST
shown in Figure 2(b) is another solution whépis
given.

4: THE PROPOSED ALGORITHM

The main idea of our algorithm is to compare the
binary bit string of a vertex with one neighbor of the
root in a hypercube. Then, we can determine therpar
of vin every tree and make all paths frerto root (one
path in each tree) internally disjoint. Similargrevious
section, we number the binary string of a vertexQin
from right to left as O t&-1. Suppose we compare two
different vertices bit by bit. Let bitbe the starting bit.
The comparison is performed from bitightward to bit
0, and then from bik-1 rightward to biti+1. If bit p is
the first different bit encountered, then piis named as
thevital bit of the comparison.



Algorithm IST_YTCW
Input: k.
Output: An IST of Q.
Step 1Connect every vertex to its parenfTin
Fori =0to k-1do .
For each vertex in T; (v Z0, 2) do
Compare vertices andv from biti.
Let bit p be thevital bit of the comparison.
If p=ithen
parenty, i) =v + 2P
Else
parenty, i) =v -2°
Endif
Enddo
Enddo .
Step 2Connect vertex'2o the root inT;..
Fori=0to k-1do
parent(2 i) = 0.
Enddo
End of Algorithm IST_YTCW
We use the IST shown in Figure 2(a) to illustrate
Algorithm IST_YTCW. InT, , for example, the binary
string of vertex 11 is 1011. As comparing with eertl
from bit 0, the vital bit is bit 3. Since the vitiait is not
the starting bit, parent(11, 0) = ¥12® = 3. InT, , for
another example, the binary string of vertex 13161.
As comparing with vertex 2 from bit 1, the vitak I
bit 1. Since the vital bit is the starting bit, pat(13, 1)
=13+2'=15,
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