
On the Independent Spanning Trees Problem in a Hypercube* 
 
 

Jinn-Shyong Yang1, Shyue-Ming Tang2, Jou-Ming Chang1, and Yue-Li Wang3 
1Department of Information Management, 

National Taipei College of Business 
2Department of Psychology, National Defense University 

3Department of Computer Science and Information Engineering, 
National Chi-Nan University 

 
Abstract* 

A set of spanning trees rooted at some vertex r in G 
is said to be independent if for each vertex v in G, v≠r, 
the paths from v to r in any two trees are vertex-disjoint. 
If the connectivity of G is k, the independent spanning 
trees problem is to construct k independent spanning 
trees rooted at each vertex. This problem is still open 
for general graph with connectivity greater than four. 
However, it has been proved that a k-dimensional 
hypercube (or Qk) has k independent spanning trees 
rooted at an arbitrary vertex. In this paper, a simple 
algorithm is proposed to construct k optimal 
independent spanning trees on Qk . The algorithm is 
also suitable for parallel or distributed system. 

 
Keywords: independent spanning trees, vertex-disjoint 
paths, hypercube, fault-tolerant broadcasting 

1: INTRODUCTION  

A k-dimensional hypercube, denoted by Qk , can be 
represented by a graph G = (V, E) with V = {0,1,2,..., 
2k−1} and E = {(u,v) | v ⊕ u = 2i, 0 ≤ i ≤ k−1}, where ⊕ 
denotes a k-bit exclusive or operation. Thus, if k is a 
positive integer, then Qk is both k-connected and 
k-regular. The hypercube is a well-known class of 
graphs which may be described in terms of a product 
operation; i.e., Qk = Qk−1 × K2 , and Q1 = K2 is a 
complete graph with two vertices [4]. For example, Q4 
is the product graph of Q3 and K2 , as shown in Figure 1. 

Hypercubes (or hypercube networks) are important 
due to their simple structure and suitability for 
developing algorithms [1,2,6,8,12,13,14,17,18,21, 22]. 
There are commercially available parallel computers, 
such as nCUBE, CM-5 and iPSC, which are equipped 
with hypercube multiprocessor architectures. 

A set of paths connecting two vertices in a graph is 
said to be internally disjoint if any pair of paths in the 
set have no common vertex except the two end vertices. 
Considering a graph G=(V,E), a tree T is called a 
spanning tree of G if T is a subgraph of G and T 
contains all the vertices in V. A set of spanning trees of 
G are said to be independent if they are rooted at the 
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same vertex, say r, and for each vertex v ≠ r, the paths 
from v to r, one path in each tree, are internally disjoint 
(or vertex-disjoint). In this definition, we should note 
that the one-step path (v,r) can appear at most once. If 
the connectivity of G is k, the independent spanning 
trees problem is to construct k independent spanning 
trees rooted at an arbitrary vertex. 
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Figure 1  The 4-dimensional hypercube Q4 . 
 

Let IST denote a set of k independent spanning 
trees (if exists) rooted at a common vertex in G. For 
example, two IST’s on Q4 are shown in Figure 2. In 
each IST, the four paths from 0 to v (v = 1,2,...,15), one 
path in each tree, are internally disjoint. Since 
hypercubes are vertex-symmetric [9], an IST rooted at 
one vertex is also a solution of IST for other vertices. 
Thus, the two IST’s are two solutions for the 
independent spanning trees problem of Q4 . 

The study of independent spanning trees has 
applications in fault-tolerant protocols for distributed 
computing networks. For example, broadcasting in a 
network is sending a message from a given node to all 
the other nodes in the network. A fault-tolerant 
broadcasting protocol can be designed by means of 
independent spanning trees [3,11]. Fault-tolerance is 
achieved by sending k copies of the message along k 
independent spanning trees rooted at the source node. If 
the source node is faultless, this scheme can tolerate up 
to k−1 faulty nodes. 

In [11], Itai and Rodeh gave a linear time algorithm 
for solving the independent spanning trees problem in a 
biconnected graph. In [5], Cheriyan and Maheshwari 
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showed that, for any 3-connected graph G and for any 
vertex r of G, three independent spanning trees rooted at 
r can be found in O(|V||E|) time. In [25], Zehavi and Itai 
conjectured that any k-connected graph has k 
independent spanning trees rooted at an arbitrary vertex 
r. In [10], Huck has proved that the conjecture holds for 
planar graphs. In [7], Curran et al. have presented an 
O(|V|3) time algorithm for solving the problem in 
4-connected general graphs. However, Zehavi and Itai’s 
conjecture is still open for general k-connected graphs 
with k > 4. 

In [19], Obokata et al. have solved the independent 
spanning trees problem by means of product graph 
scheme. Based on their scheme, a k-dimensional 
hypercube Qk can be viewed as the product graph of 
Qk−1 and K2 , and an IST of Qk is recursively obtained 
from an IST of Qk−1. However, an IST constructed using 
Obokata's algorithm is not optimal in terms of its 
average path length for k > 3. To make up this drawback, 
Tang et al. propose another recursive algorithm to 
construct an optimal IST on a k-dimensional hypercube 
[24]. 

In [20], Ramanathan and Shin also presented an 
algorithm for fault-tolerant broadcasting in a hypercube. 
Based on their algorithm, the source node sends the 
message to all its neighbors at first. Then, the neighbors 
in turn send the message to adjacent nodes based on a 
bit direction rule. The spirit of Ramanathan's algorithm 
is to construct an IST in a top-down manner. In this 
paper, we shall propose an algorithm that constructs an 
IST in a bottom-up manner. We shall also prove that the 
IST obtained from the proposed algorithm is the same 

as that of Ramanathan's algorithm. Meanwhile, we show 
that both results are optimal. 

 
The remainder of this paper is organized as follows. 

In Section 2, we introduce some notations and define 
optimal criterion for an IST on a hypercube. In Section 
3, we introduce Ramanathan's algorithm. In Section 4, 
we propose our algorithm for constructing an IST on a 
k-dimensional hypercube. The last section contains our 
concluding remarks. 

2: NOTATION AND DEFINITION  

Without loss of generality, we simply consider 
independent spanning trees rooted at vertex 0 of a 
hypercube. Since vertex 0 has only one child in every 
tree of an IST and the child must be a neighbor of vertex 
0 [23], we denote a tree in an IST of Qk by Ti where 
vertex 2i is the only child of vertex 0.  

Then, we define parent(v,i) as the parent of vertex v 
in Ti . The ancestor set of a vertex v in Ti , denoted by 
ancestor(v,i), is the set of vertices in the path from r to 
parent(v,i) in Ti . Based on the definition of independent 
spanning trees and the ancestor set, we have the 
following Lemma.  
 
Lemma 1. [20]  Let Ti and Tj (i≠j) be two spanning 

trees rooted at vertex r in G. Ti and Tj are 
independent if and only if for every vertex v in G, v 
≠ r, ancestor(v,i) ∩ ancestor(v,j) = {r}. 
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(b) 

Figure 2  Two solutions for the independent spanning trees problem in Q4 .  
(a) Solution 1. (b) Solution 2. 
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The distance between vertex u and v in a tree is the 
number of edges connecting the two vertices. In [16], 
the path length of a tree is defined as the summation of 
distance between each vertex to the root. An IST is 
optimal if the average path length of the trees in the IST 
is the minimum. In [24], the authors have given some 
sufficient conditions for identifying an optimal IST in a 
hypercube. The following lemma is of vital importance. 

 
Lemma 2. [24] Given an IST of Qk . For each Ti ∈ IST 

(i= 0, 1, …, k−1), if the distance between every 
vertex and the only child of the root is equal to their 
Hamming distance, the IST is optimal. 

 
The two IST’s shown in Figure 2 are both optimal 

since Lemma 2 holds. That is, for each vertex v, the 
distance between v and the only child of the root (i.e., 1, 
2, 4 and 8 in T0, T1 , T2 and T3 , respectively) is their 
Hamming distance. 

3: RAMANATHAN’S  ALGORITHM  

In this section, we introduce the algorithm proposed 
by Ramanathan and Shin [20]. The algorithm generates 
every tree of an IST from the root to the leaves. The 
root generates one child at first, the child then generates 
its own children in turn, and so forth. Since the vertices 
in a tree are generated in different phases, they are 
divided into generations. 

Each vertex in a Qk can be uniquely represented by 
a k-bit binary string, and the binary strings of two 
adjacent vertices differ in exactly one bit. For 
convenience, we number the binary string of a vertex in 
Qk from right to left as 0 to k−1. All already-existed 
vertices (except the root) are responsible for generating 
new vertices in a tree. The new vertices are determined 
by means of bit comparison. For a tree Ti in an IST, the 
(j+1)-th generation vertices is generated by differing 
from their parents at the [i+ j]k-th bit. Note that [y]x 

denotes y modulo x. Besides, a leaf v in Ti differs from 
its parent at the i-th bit. 

We rewrite the algorithm proposed by Ramanathan 
and Shin as follows.  
 
Algorithm IST_RAM 

Input: k. 
Output: An IST of Qk . 
Method: 

 Step 1. Generate the first-generation vertex which is 
the only child of root in Ti.. 

  For i = 0 to k−1 do 
   parent(2i, i) = 0. 
  Enddo 
 Step 2. Generate next k−1 generations of vertices 

from already-existed vertices in Ti . 
  For j = 1 to k−1 do 
   For i = 0 to k−1 do 

     For each already-existed vertex v in Ti (v 
≠ 0) do 

    Let u be a neighbor of v and its 
[i+j]k-th bit differs from v. 

    parent(u, i) = v. 
     Enddo 
   Enddo 
  Enddo 
 Step 3. Generate the last generation vertices, or 

leaves, in Ti . 
  For i = 0 to k−1 do 
   For each already-existed vertex v in Ti (v ≠ 

0, 2i) do 

     parent(v−2i, i) = v. 
   Enddo 
  Enddo 
End of Algorithm IST_RAM 
 

Consider the hypercube Q4 in Figure 1. The IST in 
Figure 2(a) is generated as follows. In Step 1, the root 
generates vertices 1, 2, 4 and 8 in T0, T1, T2 and T3, 
respectively. Using T0 as an example, the second 
generation vertices are {5,7}, the third generation 
vertices are {9,11,13,15}, and other vertices are leaves. 
 
Theorem 3. [20] Algorithm IST_RAM correctly 

constructs an IST of Qk in O(kn) time, where n = 2k. 
 
Theorem 4. The IST constructed by Algorithm 

IST_RAM is optimal. 
 
Proof:  We prove this theorem by Lemma 2. For each 
tree in the IST, the distance between every vertex and 
the only child of the root is their Hamming distance. 
Thus, the output IST is optimal. 
 

If we number the binary string of a vertex in Qk 
from left to right as 0 to k−1, the output of Algorithm 
IST_RAM will be another one. For example, the IST 
shown in Figure 2(b) is another solution when Q4 is 
given. 

4: THE PROPOSED ALGORITHM  

The main idea of our algorithm is to compare the 
binary bit string of a vertex v with one neighbor of the 
root in a hypercube. Then, we can determine the parent 
of v in every tree and make all paths from v to root (one 
path in each tree) internally disjoint. Similar to previous 
section, we number the binary string of a vertex in Qk 
from right to left as 0 to k−1. Suppose we compare two 
different vertices bit by bit. Let bit i be the starting bit. 
The comparison is performed from bit i rightward to bit 
0, and then from bit k−1 rightward to bit i+1. If bit p is 
the first different bit encountered, then bit p is named as 
the vital bit of the comparison. 
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Algorithm IST_YTCW 
Input: k. 
Output: An IST of Qk . 

 Step 1. Connect every vertex to its parent in Ti. 
  For i = 0 to k−1 do 
    For each vertex v in Ti (v ≠ 0, 2i) do 
   Compare vertices 2i and v from bit i. 
   Let bit p be the vital bit of the comparison. 

   If p = i then 
     parent(v, i) = v + 2p 
   Else 
     parent(v, i) = v − 2p 
   Endif  
    Enddo 
  Enddo 
 Step 2. Connect vertex 2i to the root in Ti.. 
  For i = 0 to k−1 do 
    parent(2i, i) = 0. 
  Enddo 
End of Algorithm IST_YTCW 

We use the IST shown in Figure 2(a) to illustrate 
Algorithm IST_YTCW. In T0 , for example, the binary 
string of vertex 11 is 1011. As comparing with vertex 1 
from bit 0, the vital bit is bit 3. Since the vital bit is not 
the starting bit, parent(11, 0) = 11 −−−− 23 = 3. In T1 , for 
another example, the binary string of vertex 13 is 1101. 
As comparing with vertex 2 from bit 1, the vital bit is 
bit 1. Since the vital bit is the starting bit, parent(13, 1) 
= 13 + 21 = 15.  

Then, we have to prove the correctness of 
Algorithm IST_YTCW. 
 
Theorem 5. [23]  Algorithm IST_YTCW correctly 

constructs an IST of Qk in O(kn) time, where n = 2k. 
 
Proof:  Every vertex in the path from v to the only 
child of the root variates according to an ordered 
sequence {ap2

p, ap+12
p+1,… , ak−22

k−2, ak−12
k−1, a02

0, 
a12

1, …, ap−12
p−1}, where ai is −1, 0 or 1 and bit p is the 

vital bit. Since the prefix sums of the sequence in one 
tree is never the same as those in another tree, Lemma 1 
holds for every vertex in Qk .               Q.E.D. 
 
Theorem 6. The IST constructed by Algorithm 

IST_YTCW is optimal. 
 
Proof: We prove this theorem also by Lemma 2.Q.E.D. 

 
Similarly, if we number the binary string of a 

vertex in Qk from left to right as 0 to k−1, the output of 
Algorithm IST_YTCW will be another one. 

5: CONCLUDING REMARKS  

In this paper, we have presented a simple algorithm 
for constructing an IST in a hypercube. This result is 
optimal since the average path length of the IST is the 
minimum. Meanwhile, the algorithm is suitable for 
parallel and distributed system. 
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