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ABSTRACT 

 
Next Generation Network (NGN) applications such 

as voice and data convergence, voice over packets and 
emerging new 3G mobile and WiFi/WiMax Wireless 
services demand fast time to market. A successful 
NGN switching software architecture must be able to 
quickly absorb new technologies and respond to new 
market needs. This presents a new challenge to 
switching software architects because a switching 
platform must also be able to meet very stringent 
reliability requirements. One such requirement is no 
more than 0.5 minute per year of total downtime 
(namely. better than six 9’s) as specified in Telcordia’s 
GR-929-CORE. 

  
Based on Markov modeling and reliability analysis, 

this paper demonstrates that judicious applications of 
software redundancy can cost-effectively transform a 
worse than five 9’s simplex software system into a 
better than six 9’s system and thus establishes an 
ultra-reliable cost-effective software architectural 
framework for NGN switching platform while meeting 
the needs of fast-time-to-market. 
 
 
1: INTRODUCTIONS 
 

The reliability requirements imposed on Public 

Switch Telephone Network elements are very stringent.   
One such requirement is no more than 0.5 minute per 
year of total downtime (i.e. better than six 9’s of total 
system availability) as specified in Telcordia’s 
GR-929-CORE. This includes all causes: hardware, 
software and procedural failures.    A common 
approach to meet this stringent requirement is to use 
some forms of redundancy.  This approach has been 
utilized ever since the development of AT&T's No. 1 
Electronic Switching System (ESS).  

 

Moore and Shannon noted over forty years ago that it 
was possible to obtain a reliable system by properly 
configuring unreliable components through the use of 
redundancy [2].  Redundancy enables switching 
system architects to cost effectively design a reliable 
switching system from a collection of not-so-reliable 
components.  They are often utilized in the 

construction of reliable hardware systems. Applications 
of redundant architectures in hardware reliability 
engineering are very well documented.  It was pointed 
out, however, that redundancy alone does not guarantee 
fault tolerance [3].  The only thing it does guarantee is 
a higher fault arrival rate compared to a non-redundant 
system of the same functionality.   Thus, proper 
management of redundancy is needed to improve fault 
tolerance.   

Based on Markov modeling and reliability analysis, 
this paper demonstrates via examples that judicious 
applications of physical software redundancy can easily 
and cost-effectively transform a worse than five 9’s 
simplex software system into a better than six 9’s 
system and thus establishes an ultra-reliable 
cost-effective software architectural framework for 
NGN switching platform while meeting the needs of 
fast-time-to-market. Two sets of Markov models will be 
presented for analyzing and evaluating the benefits of 
using loosely coupled duplicated software architecture, 
commonly known as active-standby pair architecture. 

The software redundancy considered here is physical 
redundancy. Namely, multiple duplicated copies of one 
software system run on multiple loosely coupled 
processors. This software architecture can be easily 
obtained by duplications. It is not the recovery block 
approach [8] nor the N-version programming [5,6, 7] 
which both use different programs to execute on the 
same set of data.  Also, it is not the on-line retry 
approach [9] that uses the same program to operate on a 
different but consistent set of data [10] obtained through 
message reordering.  
 

This paper shows that, by judiciously extrapolating 
proven results in hardware redundancy, physical 
software redundancy will provide a cost-effective 
solution to improve switching software reliability in the 
Next Generation Networks such as softswitches (a.k.a. 
media gateway controllers) and other network nodes 
where fast time to market is crucial.  
 

The aspect of software reliability we shall consider 
below is downtime/outages induced by software faults. 
 
2: SWITCHING SOFTWARE 
RELIABILITY KEY ATTRIBUTES: 
Faults, Errors, Failures, Recovery and 
Outages 
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Software and hardware outages differ drastically in 
nature. Before extrapolating proven hardware 
redundancy results to construct the aforementioned two 
sets of software redundancy Markov models, it is 
essential to understand the distinctions between 
hardware and software faults, failures, outages and 
recovery from switching system perspective.   
                                                                 
Hardware outages are mostly caused by hardware faults, 
due  to device aging and deterioration.  The nature of 
hardware faults is such that faulty devices cease 
functioning the  way  they  were designed  to 
perform. Stuck-at faults and bridge faults are good 
examples. Hardware faults can be repaired by replacing 
faulty devices with good ones.  When a repair is done, 
the system becomes free of hardware faults and the 
process  repeats.   
                                                                       
Device aging is very well understood.   It can be 
described by  a  'bath-tub' curve.  After an adequate 
burn-in, the probability of developing a failure is 
constant over time.  Namely, it is a random process.  
                                                                    
It should be pointed out, however, that the presence of a 
hardware fault does  not  necessarily bring the system 
down.  To bring down the system, the following 
conditions must be met:  
                                                                                     

C1 The hardware fault must be activated and 
induce errors.   

C2 The induced errors are so severe that the 
system  can  not continue to perform its 
primary functions (e.g. call processing for 
softswitches).                                                                                         

 
The first condition C1 is traffic dependent.  In other 
word, a fault may  not  cause  any system outages 
during light traffic hours.  To simplify hardware 
reliability modeling and analyses, it is a common 
practice to assume that as soon as a critical fault occurs, 
it will be activated and induce severe and critical errors 
that will bring down the system in question.  This 
approximation approach is consistent with worst-case 
engineering practice.        
                                                              
Software outages, on the other hand, are  due  to  
software  faults which  are  either design errors,  
specification deficiencies  or  programming  bugs.   
Software faults can be characterized by the following 
attributes:                                              
                                                                     
Attr. 1 A certain number of software faults are loaded 

into the system since the system is  put  into  
service.   There would be no software 
outages if they were not  installed/loaded  
into  the  system.   Namely, there is no 
software fault-free state for most new systems.  

Attr. 2 Once a switching system reaches software 
fault-free state, it will no longer cause any 
software outages.           

Attr. 3 Software faults are loaded into the system due  
to  inadequate  system testing, design and/or 
programming mistakes or 
specification/requirement deficiencies.          

Attr. 4 Some software faults are severe; and, some are 
not.   Severe faults will cause system  
outages under certain conditions.  They do not 
always bring down the system.  Furthermore, 
we can not  assume  that the presence of a 
severe software fault will bring down the 
system  as  we  do  in  dealing  with  
critical hardware  faults.   The reason is that 
if we do so, the system would have been down 
permanently.            

Attr. 5 Software faults, design or programming bugs, 
are removed when they  are  discovered.   
Thus, they live  in the system long enough to 
induce  some  errors.   However, new 
software faults  may  be injected into the 
system while old ones are being removed.        

Attr. 6 Adding new software to introduce new features 
will most likely induce new software faults.          

 
Most software outages can be recovered 

automatically by some sequence  of  software 
recovery actions to remove the conditions which cause 
the system to go  down.   Normally, this can  be  
achieved within several minutes.             

 
Most switching systems are well tested before  being  

placed  into  services.  Therefore, most switching 
software faults function properly under   normal   
conditions.  For instance, software   faults inside 
infrequently exercised code segments handling 
abnormal conditions such as fault recovery or overload.  
They induce errors that lead to system failures  only  
under certain abnormal conditions.  If not detected and 
treated immediately, these errors could propagate and 
induce new software faults and eventually become so 
severe that the system cannot continue to function and 
lead to system outages. A famous example is a bug in a 
C switch statement in AT&T’s 4ESS® Switch that 
caused nine hours of telephone network outage in 1990 
[11]. With judicious  fault  tolerant designs,  these  
errors  can  often  be  recovered/reconciled and 
contained  without  further  causing  noticeable  
system  outages. 

 
Thus, under certain rare conditions severe software 

faults will induce errors which in turn will induce 
failures so severe that the system has to go down.   
Most likely, these conditions are unique for each severe 
software fault.  Once identified, severe software faults 
will very likely be permanently removed from the 
system.  From that point on, the system will function 
properly even if identical rare  conditions occur again. 
Consequently, the rate of occurrences of these severe 
errors is not as easily predictable as hardware faults. It, 
however, can be measured and observed over time.  
Nevertheless, it is a random process just the same as 
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incoming traffic. Thus, software outages can be 
modeled by a constant software failure rates. 

 
3: SIMPLEX FAULT-TOLERANT 
SOFTWARE ARCHITECTURE AND 
SOFTWARE FAILURE RECOVERY  

 
To repair hardware faults, a repair person must be 
physically present.  However, a switching system can 
automatically recover from most software failures 
without manual intervention.  To meet the LATA 
Switching Systems Generic Requirements (LSSGR), or 
equivalent, stringent downtime requirements, a 
switching system must automatically recover itself from 
most, if not all, software failures.  This software 
self-recovery can often be implemented in the form of 
multi-level recovery with abilities to automatically 
escalate to the next higher levels.   However, this 
ability can only be achieved with appropriate run-time 
software fault recovery architecture.  A proven 
architecture is multi-level software failure recovery 
which has been implemented in Lucent’s 5ESS® Switch 
[12] and Reliable Cluster Computing [13] product lines. 

 

 
Note that Ai+1 is a more severe recovery action than Ai 

for all i 
Figure 1   Switching Software recovery 

In general, a multi-level recovery begins with error 
counting and masking.  If the encountered software 
fault induces an error rate exceeding a pre-determined 
threshold, the system will attempt to recover from the 
failure by performing a higher level and more drastic 
recovery action.  In the 5ESS® Switch, a software 
recovery starts from Return To the points of Interrupts 
(RTIs).  The second level recovery is called a Single 
Process Purge (SPP).  Each SPP is expected to affect 
only one phone call.  RTIs and SPPs do not cause 
system outages.  If  SPPs still fail to recover from the 
failure, a next  higher level and more drastic recovery 
action called selective initialization is taken.  In this 
manner, a multi-level recovery progressively escalates 
itself from graceful to drastic in term of its impact, a 
measure of degradation to system’s call processing 
ability, to end-users.  A drastic impact means a loss of 
a large number of transient (in-progress) and/or stable 
(in talking state) calls for a sufficiently long duration; 
and, the system may be totally or partially down  
during this period.     

 
Figure 1 shows a switching software recovery schema 

as outlined above.   It should be pointed out that the 
initial actions of a software recovery, such as RTIs and 
SPPs,  may not cause outages and, thus, may not be the 
beginning of a software failure.  Software failure rate 
should be assessed accordingly. 

 
As reported by the author [1], a very common 

component of modern microprocessor called memory 
management unit can also be used to further improve 
software fault tolerance of a simplex processor. 

 
4: IMPROVING SOFTWARE 
RELIABILITY WITH 
ACTIVE-STANDBY PAIR 
 
The software architecture we shall consider is described 
below. There are two copies of one software system 
running on two loosely coupled processors – one is 
called the active processor and the other standby, 
referred to as the Active-Standby (AS) pair. 

                                                         
The basic recovery strategy is that, upon the 
presence of a software failure, as  long as the 
active processor is able to gracefully recover  
without adverse effects to end users (causing long 
system outages), let it remain as the active; 
otherwise, switch to the standby. 

 
In other words, we let the active take minor and graceful 
recovery actions such as error counting and single 
process purges, which affect only a small number of 
calls.  Suppose after performing several single process 
purges the active is still in trouble, we then invoke a 
switchover to the standby so that the old standby 
becomes the new active and the old active becomes the 
standby.  The new active immediately processes new 
calls while the new standby continues to recover   
itself from the pending failure.                                 
                                                         
In this way, more drastic software recovery actions are 
performed in the standby; and thus, the effects of drastic 
software recovery actions are hidden or shielded from 
the end customers.   This makes the system more 
robust and fault-tolerant; and, as a result, the system 
reliability should improve.                                    
 
In most cases, each copy is able to automatically 
recover from detectable software failures.  If a failure 
is neither detectable nor automatically recoverable, the 
failing processor will require either assistance from the 
mate processor or human interventions to restore it into 
normal operation. Human interventions prolong 
recovery time.  Thus, a reliable switching software 
system engineering should eliminate human 
interventions as much as possible. 
 
We shall construct two sets of Markov models to 
demonstrate the benefits of a loosely coupled 
active-standby software architecture. For the first set, 
we shall assume a perfect coverage. Then we will 
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remove the assumption and consider a more general 
model with imperfect coverage. A perfect coverage 
means all software failures are detectable and 
recoverable. 
 
5: MARKOV MODELS FOR 
ACTIVE-STANDBY PAIR WITH 
PERFECT COVERAGE  
 
Let’s consider a software system consisting of two 
identical copies of software.  Figure 2 presents two 
Markov models for comparing software reliability with 
and without Active-Standby pair software redundancy.  
We shall make the following assumptions: 
 

As.1 The failure processes of these two software 
copies are mutually independent with identical 
constant failure rates. 

As.2 Each copy is able to automatically recover 
from all software failures. Namely, every 
failure is induced by detectable errors and 
every failure is recoverable 

 
Figure 2-(a) depicts a Markov reliability model for a 
simplex software system.  It is a two-state model. State 
0 denotes the normal condition while State 1 represents 
the condition that the software develops a failure.  The 
software failure rate is denoted by λ.  The recovery 
rate is denoted by r2.  Thus, State 1 denotes the 
condition that system is unavailable.  Let pi denotes the 
probability that the system is in State i, for i=0,1.  Also, 
let y be the probability that the software fails. We have,   

2
12 ),( rpry +== λ

λλ  

Figure 2(b) depicts a Markov reliability model for a 
system with the AS pair software redundancy.  It is a 
five-state model. State 0 denotes the normal condition 
while States 1~4 represent the condition that the software 
develops some failures.  The software failure rate is 
denoted by λ.  The switchover and recovery rates are 
denoted by r1 and r2, respectively 

 

 
Figure 2  Markov Models for Perfect Coverage 
 

These five states represent the following conditions. 
 

1) State 0: normal condition. 

2) State 1: Active copy develops a failure and 
initiates a switchover to the standby copy 
with a rate of r1 including failure detection. 

3) State 2: Standby becomes the Active and the 
recovery in the failing copy is in progress. 

4) State 3: Both copies are failing.  This 
represents the condition that the system is 
unavailable. 

5) State 4: Standby copy develops a failure and 
initiates a recovery. 

 
Again, let Pi denotes the probability that the system is in 
State i, for i=0, 1,…, 4.  To determine these P’s, one 
can apply the “rates in equal rates out” property of a 
Markov chain to obtain a set of five simultaneous 
equations, one for each state. After some manipulations, 
the following set of equations can readily be obtained: 

 
The notation a>> b indicates that a is many orders of 

magnitude larger than b.  Thus, a+b can be 
approximated by a.  Namely, a+b≅ a 

 
Thus, the probability of software system unavailability, 
denoted by x, is the probability that the software is in 
State 1 or State 3.  Namely, x = P1+ P3. 

 
Let’s define a software redundancy gain function, G, as 

follows: 
 

To illustrate the usefulness of this gain function, let us 
consider the following example. 
 
Example 1 

 
Supposed it is desired to determine the gain for using 
the AS pair to improve software unavailability.  Let’s 
assume the failure rate is one failure per four months 
and switchover times from the failing active to the 
standby of 1, 2 and 10 seconds are to be evaluated.  
Three plots of the gain as a function of recovery rate, r2, 
are shown on Figure 3.  The x-axis shows the recovery 
rate in terms of number of recoveries per hour. Thus, x 
= 100 is equivalent to a recovery time of 36 seconds. All 
three plots start from a recovery time of 20 minutes 
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Figure 3  Software Redundancy Gain with Perfect 
Coverage 
 
The bottom curve of Figure 3 corresponds to 10-second 
switchover time; the middle one is 2 seconds; and, the 
top one is one second.  A study of these three plots 
reveals that 

1) The shorter the switchover time, the higher the 
gain is. 

2) The faster the recovery speed in each copy, the 
lower the gain is. 

3) A gain of 100X can be achieved if the recovery 
takes an average of 20 minutes and a switchover 
time of 10 seconds.  Namely, by using a 
duplicated software, a software availability of 
about 60.8 minutes per year, or 0.999842 (almost 
four 9’s), can be improved to better than 0.61 
minute per year, or 0.99999842 (near six 9’s). 

4) There is no gain, if the recovery speed equals the 
switchover speed.  

 
6: MARKOV MODELS FOR 
DUPLICATED SOFTWARE WITH 
IMPERFECT FAILURE RECOVERY 
 
We shall now consider a more general situation by 
allowing imperfect failure recovery with distinct failure 
rates, λ and λ2,  and coverage factors, c and c2,  for 
the active and the standby copies respectively.   A 
coverage factor is defined here as the fraction of 
software failures in the processor in question that can 
 

 
 

Figure 4   Imperfect Coverage Markov Models 

automatically recover by itself. Reasons for the 
imperfections are: (a) imperfect failure detections - in 
either the active or the standby software copies and in 
the simplex case as well, or (b) unsuccessful automatic 
fault recovery in either copy.  Thus, software failures 
in this class require either assistance from the mate 
processor or human interventions (i.e. manual 
restorations/repairs) to recover with a rate denoted by γ3 
and R, respectively.  Detectable and recoverable 
software failures are recovered automatically with a rate 
of γ2 for both simplex and duplicated software.  Finally, 
the switchover rate is noted by γ1 
 
In Figure 4-a), the probability of the simplex software 
unavailability, denoted by y2,  is the probability that 
the software is in State 1 or State 2.  Namely, y2 = p1+ 
p2. 
                                         (1) 

 
For Figure 4-b), the probability of the software 
unavailability being analyzed, denoted by x2,  is the 
probability that the software is in States 1, 3, 4, 6, 8, 9 
or 10.  Namely, x2 = P1+ P3+P4+ P6+ P8+ P9+ P10.  
To determine these P’s, at each state, one can apply the 
“rates in equal rates out” property of a Markov chain to 
obtain a set of 12 equations.  After some manipulations, 
the following set of equations can readily be obtained: 
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For switching applications, the following relations apply:  
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7: BENEFITS OF AS PAIR SOFTWARE 
REDUNDANCY WITH IMPERFECT 
COVERAGE 
 
To study the potential benefits of utilizing AS pair 
software redundancy with imperfect coverage, we shall 
consider the following gain function:          

),,,,,,(

),2,,(2),,,,,,(
21222

21222 Rrrccx

Rrcy
RrrccG

λλ

λ
λλ =  

By substituting Equations (1), (2) into 2G , we can 
readily obtain expressions for ),,,,,,( 21222 RrrccG λλ  
 
Example 2 

To illustrate how this gain function can be utilized to 
optimize fault tolerance, a plot of G2 as a function of 
coverage factor c is given in Figure 5.  These two 
curves were obtained by setting the remaining 
parameters as below:  
 

a) c2=0.95;  

b) λ=λ2=1/(24*120), a failure rate of one failure 
per 120 days, about four months;  

c) R=0.25, mean manual repair time of 4 hours 
for software failures; 

d) r1=3600, mean switchover time of 1 second; 
e) r2=12, mean auto software failure recovery 

time of 5 minutes; and, 
f)  r3=3, mean software failure recovery time of 

20 minutes with assistance from the mate 
processor. If the failing processor is the active, 
a switchover of the standby to the active will 
occur  

 
 This G2 plot reveals that the gain is a monotonic 

increasing function of c  starting at around 12.5, more 
than one order of magnitude, at c=0.7 and ending near 
60 at c=1.  

 
Figure 5  Software Redundancy Gain with 

Imperfect Coverage 
 
Also, two plots of software unavailability for a simplex 
system and an AS pair software redundancy with 
imperfect coverage are given in Figure 6. This figure 
clearly demonstrates that an AS pair loosely coupled 
software architecture can transform a  simplex 
software system worse than five 9’s into a better than 
six 9’s software system. 
 
8:  SUMMARY AND DISCUSSIONS               

                                                         
By extrapolating proven  results with hardware 
redundancy, this paper has shown that  judicious 
applications of software redundancy can drastically and 
cost-effectively improve software availability of a  
loosely coupled switching system with active-standby 
pair software redundancy. 
 
It is also important to point out that a large portion of 
procedural errors cause only software failures.  Thus, 
effective use of software redundancy can, as a 
by-product, further improve system reliability by 
avoiding total system outages caused by some otherwise 
severe procedural errors. 
 
In summary, Next Generation Network (NGN) 
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applications such as voice and data convergence, voice 
over packets and emerging new 3G mobile and 
WiFi/WiMax Wireless and other innovative services 
demand fast time to market. To succeed in the global 
market, switching software architectures must be able to 
quickly absorb new technologies and respond to new 
market needs.  This presents a new challenge to 
switching software architects because a switching 
platform must also be able to meet very stringent 
reliability requirements.  Based on Markov modeling 
and reliability analysis, this paper has demonstrated that 
judicious applications of physical software redundancy 
can cost-effectively transform a simplex software 
system worse than five 9’s into a better than six 9’s 
system and thus establishes a cost-effective 
ultra-reliable software architectural framework for NGN 
switching platform while meeting the needs of 
fast-time-to-market. 
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Figure 6    Software Unavailability Comparison:  

Simplex vs. AS Pair Software Redundancy with 
Imperfect Coverage  
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