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ABSTRACT 
How to efficiently dispatch requests from clients to 

web servers and effectively utilize system resource are 
crucial to the performance of a web cluster. In this 
paper, we have proposed new Content-based 
Workload-aware Request Distribution (CWARD) 
policies on cluster-based web servers. These policies 
take into account content in requests, workload 
information, and web object characterization in 
dispatching requests. Basically, the more frequently web 
objects are accessed, the more servers will serve the 
requests for these web objects. The experimental results 
of practical implementation on Linux show that our 
proposed Content-based Workload-aware Request 
Distribution policies are efficient. The trace-driven 
benchmarking with real-world traces of ClarkNet and 
WorldCup98 demonstrates that our proposed CWARD 
policies can effectively improve web cluster 
performance. Especially, when using the proposed 
CWARD policies, web clusters with content-aware 
dispatching such as LVS-CAD and LVS-CAD/FC can 
achieve up to 94% better performance than the Linux 
Virtual Server (LVS) web cluster with content-blind 
dispatching. 
 
 
1. INTRODUCTION 
 

Because of the rapid growth of Internet users, more 
powerful web servers have to be adopted to deal with 
the large amount of HTTP requests. To build a more 
powerful web server, the cluster-based web systems 
have been widely adopted because of the implicit 
advantages of load sharing or balancing, scalability, and 
high availability. One of the popularly used cluster 
servers is Linux Virtual Server (LVS) which is 
composed of one request dispatching front-end server 
and several request handling back-end real servers.  

Many researches [1, 5, 7, 9, 11] have focused on the 
study of content-aware request distribution in which the 
request dispatching server mainly bases on the content 
of request packets (i.e. URL information) to dispatch 
requests. Some researches further combine the use of the 
content of requests and load information, or even the 
workload information, to design their intelligent request 
dispatching mechanisms. Their research results all show 
that web clusters will be more efficient in handling 
requests. Content-based request distribution also enables 

the partitioning web contents, building specialized web 
services among web servers, or maintaining session 
integrity. 

With the aims to achieve better cache hit rates to 
reduce disk access and better cluster resource utilization 
while maintaining load balancing among back-end real 
servers, we have proposed several new content-based 
request distribution policies named Content-aware 
Workload-based Request Distribution policies 
(CWARD). These proposed policies consider content in 
requests, workload information, and web object 
characterization in dispatching requests. Basically, the 
more frequently web objects are accessed, the more 
servers will serve the requests for these web objects.  

To evaluate the effectiveness of our proposed 
CWARD policies, we have implemented them in two 
content-aware dispatching web clusters, i.e. LVS-CAD 
[2] and LVS-CAD/FC [11], which are based on LVS 
while implementing TCP Rebuilding [2] mechanism to 
provide content-aware request distribution. 

In the experiments, the trace-driven benchmarking 
with real-world traces of ClarkNet [8] and WorldCup98 
[8] demonstrates that our proposed CWARD policies 
effectively improve web cluster performance. LVS-CAD 
and LVS-CAD/FC with CWARD policies can achieve 
up to 94% better performance than LVS with 
content-blind dispatching. 
 
2. BACKGROUND AND RELATED 
WORK 
 

This section introduces the content-blind dispatching 
platform - Linux Virtual Server, two content-aware 
dispatching platforms – LVS-CAD and LVS-CAD/FC, 
and existing content-based request distribution policies.  
 
2.1. The Content-blind Dispatching Web 
Cluster – LVS 
 

Linux Virtual Server (LVS) [4] is a highly scalable 
and available cluster built by a set of real servers, based 
on Linux. The LVS consists of a front-end server for 
dispatching and routing requests from clients to 
back-end real servers according to the designated 
routing mechanisms and request scheduling algorithms. 
With the direct routing mechanism, the back-end real 

- 759 -



  

server processes these packets from the front-end server 
and returns results directly to client. 
 
2.2. THE CONTENT-AWARE DISPATCHING 
WEB CLUSTERS – LVS-CAD AND 
LVS-CAD/FC 

 
LVS-CAD [2] (i.e. LVS with Content-Aware 

Dispatching) is based on LVS while implementing TCP 
Rebuilding [2] mechanism to provide content-aware 
dispatching. It develops a one-way kernel-level layer-7 
front-end for examining the content of HTTP requests 
and analyzing workload characterization in dispatching 
requests from clients to servers. LVS-CAD/FC [11] (i.e. 
LVS with Content-Aware Dispatching and File Caching) 
extends LVS-CAD with web object caching mechanism, 
in which a small amount of server RAM is dedicated to 
cache the most frequently accessed web objects to reduce 
disk access. 

TCP Rebuilding [2] proposed in our previous study is 
a light-weight TCP connection transfer technique that 
enables a web cluster to be content-aware. The TCP 
Rebuilding technique allows the front-end server to 
transfer an established connection with a client to a 
chosen back-end real server by rebuilding the TCP 
connection in the back-end real server. After the TCP 
connection has been built, the chosen back-end real 
server could respond to the request of the client directly, 
bypassing the front-end server. In particular, TCP 
Rebuilding could rebuild the TCP connection at one 
back-end real server using only the original HTTP 
request packet and no extra packets for connection 
transfer are required. This mechanism can be applied to 
build a content-aware platform for developing more 
complex dispatching policies. Therefore, TCP 
Rebuilding is adopted to construct the content-aware 
platform in this research. 
 
2.3. EXISTING CONTENT-BASED REQUEST 
DISTRIBUTION POLICIES 
 

To improve cache hit rates, Locality-Aware Request 
Distribution (LARD) [9] dispatches the requests to the 
same web object to the same back-end server that will 
most likely have the web object in RAM, unless the 
back-end server is overloaded. 

Workload-aware Request Distribution strategy 
(WARD) [5] takes workload properties into account in 
dispatching requests. It identifies a small set of most 
frequent web objects, called core. The requests to core 
web objects are processed by any server, while the rest 
of the web objects, called part, are partitioned to be 
served by different servers.  

In our previously proposed Content-based 
Workload-aware Request Distribution with Core 
Replication (CWARD/CR) [11] strategy, the web cluster 
uses a small amount of memory dedicated to cache a 
small set of most frequently accessed web objects, called 
core. The request to core web objects are processed by 
any back-end real server’s RAM in a web cluster, while 

the rest of the web objects are partitioned to be served by 
different back-end real servers’ RAM. Hence, a small set 
of most frequently accessed web objects are pre-fetched 
into back-end real servers’ RAM to increase the 
performance of the whole web cluster.  

Client-aware Dispatching Policy (CAP) [1] classifies 
requests from clients into four classes, namely normal, 
CPU-bound, disk-bound, and disk- and CPU-bound. 
When a HTTP request packet arrives, the web switch 
distinguishes which class it belongs to, and schedules the 
packet in this class with the Round-Robin manner. 
 
3. PROPOSED CONTENT-BASED 
WORKLOAD-AWARE REQUEST 
DISTRIBUTION POLICIES 
 

Previous studies on content-aware request 
distribution [7, 9] have shown that policies distributing 
the requests from clients based on the content of 
requests lead to performance improvement compared 
with the strategies taking into account only load 
balancing. Therefore, content-aware request distribution 
is considered in this research. 

For a web cluster that consists of one 
request-dispatching front-end server and several 
request-handling back-end real servers, since all requests 
from clients are sent to the front-end server, if the 
front-end server is content-aware and is able to examine 
the content of HTTP request, it can easily collect the 
reference information of web objects and determine the 
most frequently accessed web objects, and then decide 
which back-end real server should serve the request. 

According to these considerations, we use the web 
clusters, LVS-CAD (i.e. LVS with Content-Aware 
Dispatching) [2] and LVS-CAD/FC (i.e. LVS with 
Content-Aware Dispatching and File Caching) [11] as 
our research platforms to study the content-aware 
request distribution policies. They all use a kernel-level 
layer-7 front-end server that examines the content of 
request (i.e. URI) and analyzes workload characteristic 
when dispatching requests from clients. 

In fact, not only content of request (i.e. URI) and 
workload information are important factors in designing 
content-aware request distribution policies, web object 
characterization such as file size is also helpful. 
Therefore, we propose new strategies related to 
Content-based Workload-aware Request Distribution: 
Frequency-based Replication (CWARD/FR), 
Frequency-based Sized Replication (CWARD/FSR), 
Partitioned Frequency-based Replication 
(CWARD/PFR), and Partitioned Frequency-based Sized 
Replication (CWARD/PFSR). 
 
3.1. FREQUENCY-BASED REPLICATION – 
CWARD/FR 

 
The basic idea of CWARD/FR is to let web objects 

cached in back-end real servers according to their access 
frequencies, such that the more frequently web objects 
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are accessed, the more back-end real servers can serve 
these frequently accessed web objects.  

Since CWARD/FR takes workload properties into 
account, CWARD/FR policy first determines the number 
of back-end real servers that can serve a specific web 
object according to equation 1. In the equation 1, let αi 
denote the number of times the specific web object i was 
accessed. This access information can be easily collected 
by the front-end server since all requests from clients are 
sent to it. Besides, the total amount of back-end real 
servers is assumed to be γ. The number of the back-end 
real servers that can serve this web object i is λi. The total 
amount of web objects served in web cluster is n. In our 
experiment described in Section 4, the value of access 
times is normalized by the log10 function. 
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After the number of back-end real servers that can 

serve a specific web object i is determined, then the 
front-end server uses the Round-Robin manner to assign 
a set of back-end real servers for serving each web 
object i. 

The proposed CWARD/FR policy is illustrated in 
Figure 1. The requests for the same web object will be 
distributed to one of the set of back-end real servers that 
most likely have the web object cached in the main 
memory according to the designated request scheduling 
algorithm. 

 

Figure 1: CWARD/FR Policy 
 
When the web object caching is used in the web 

cluster such as LVS-CAD/FC, the proposed 
CWARD/FR policy with web object caching can work 
in the same way as the basic CWARD/FR does. The 
most frequently accessed web objects will be 
cached/pre-fetched in the most back-end real servers; 
whereas, the lesser frequently accessed web objects will 
be cached/pre-fetched in the lesser amount of back-end 
real servers. 

Figure 2 illustrates the principle of CWARD/FR 
strategy with web object caching in a web cluster that 
contains a front-end server, four back-end real servers, 
and six web objects (A, B, C, D, E, F) in the incoming 
request stream. In Figure 2, γ is assumed to be four and 
λ can be one to four. For example, λ equal to four 
means that the web object should be cached/pre-fetched 
into four back-end real servers’ RAM. 

 

Figure 2: CWARD/FR Policy with Web Object 

Caching 
 
The CWARD/FR policy with web object caching is 

detailed as follows. First of all, because frequently 
accessed web objects must be pre-fetched into back-end 
real servers’ RAM, λ in the equation 1 is calculated to 
decide the amount of back-end real servers by which the 
web object can be served. For example, if the web 
object A in Figure 2 is the hottest web object, A is 
pre-fetched into λ back-end real servers’ RAM. When 
the front-end server receives a sequence of the requests, 
it will examine the content of the HTTP request. If the 
requested content belongs to the web object pre-fetched, 
e.g., the web object A in Figure 2, the front-end server 
will modify the URI in the content of the HTTP request 
to appropriate path for routing the HTTP request to the 
designated back-end real server’s cache according to the 
traditional Round-Robin strategy. Secondly, if the 
requested content is not pre-fetched, e.g., the web 
objects E or F in Figure 2, the front-end server routes 
the HTTP request to the back-end real server according 
to the designated request scheduling algorithm. 

 
3.2. FREQUENCY-BASED SIZED 
REPLICATION – CWARD/FSR 

 
According to the traffic characterization of a modern 

web site [6], large web objects (up to 64 KB) make up 
only 0.3% of the working set but consume 53.9% of 
required storage space. In addition, these large web 
objects occupy only 0.1% of all client requests. Thus, 
full replication of these web objects is not cost-effective. 
It is better to cache the frequently accessed and smaller 
sized web objects. 

According to this consideration, we propose another 
Content-based Workload-aware Request Distribution 

- 761 -



  

policy named Frequency-based Sized Replication 
(CWARD/FSR). Similar to the CWARD/FR strategy, 
the basic idea is to let web objects cached in back-end 
real servers according to their access frequencies. The 
difference is that the most frequently accessed and 
smaller sized web objects are replicated in the most of 
back-end real servers; whereas, the lesser frequently 
accessed and larger sized web objects are replicated in 
the lesser amount of back-ends.  

Therefore, CWARD/FSR is an extension of 
CWARD/FR. In addition to the access times, 
CWARD/FSR also takes the file size of a web object 
into account in determining the number of back-end real 
servers to serve the web object according to equation 2. 
In equation 2, βi denotes the corresponding file size of 
the specific web object i. In our experiment described in 
Section 4.3, the value of access times divided by file 
size is also normalized by the log10 function. 
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3.3. PARTITIONED FREQUENCY-BASED 
REPLICATION – CWARD/PFR 

 
If some frequently accessed web objects are 

extremely large size, most of the back-end real servers 
would cache these web objects under the proposed 
CWARD/FR policy described in Section 3.1, which 
would occupy the large amount of back-end real 
servers’ caches. Thus, replication of caching these 
large-sized web objects is not cost-effective. 

To address this problem, we propose another 
Content-based Workload-aware Request Distribution 
policy named Partitioned Frequency-based Replication 
(CWARD/PFR). The CWARD/PFR strategy is designed 
to combine the advantages of CWARD/FR and LARD 
policies. Basically, it partitions the working set into two 
object groups: the group with large-sized web objects 
and the group with small-sized web objects. The 
threshold to determine whether the size of a web object 
is large is set to the average size of web objects in our 
experiment. 

 

 
Figure 3: CWARD/PFR Policy 

Figure 3 shows how the CWARD/PFR works. At 
first, web objects are sorted by their sizes. The front-end 
server examines the requests from clients and 
determines which group the requests belong to. Then the 
requests belonging to the group with small-sized web 
objects will be distributed to the chosen back-end real 
server according to CWARD/FR policy. Otherwise, 
LARD [9] policy will be used. 

For web objects belonging to the small-sized group, 
the most frequently accessed web objects will be 
cached/pre-fetched in the most back-end real servers, 
whereas the lesser frequently accessed web objects will 
be cached/pre-fetched in the lesser amount of back-end 
real servers, according to CWARD/FR policy. This is 
intended to achieve load balancing of a web cluster 
because the replication of small-sized web objects will 
not occupy the large amount of back-end real servers’ 
caches. However, the group with large-sized web 
objects is cached/pre-fetched in back-end real servers’ 
caches according to LARD with Threshold 
(LARD-Threshold) strategy, which is the variation of 
LARD [9]. The LARD-Threshold strategy uses a 
threshold to decide whether the web objects belonging 
to the group with large-sized web objects should be 
cached/pre-fetched at one back-end real server’s cache.  

 
3.4. PARTITIONED FREQUENCY-BASED 
SIZED REPLICATION – CWARD/PFSR 

 
To take the file sizes of web objects into account and 

combine the advantages of CWARD/FSR and 
CWARD/PFR, we propose another Content-based 
Workload-aware Request Distribution policy named 
Partitioned Frequency-based Sized Replication 
(CWARD/PFSR). Similar to the CWARD/PFR strategy, 
web objects are partitioned into the group with 
large-sized web objects and the group with small-sized 
web objects. The difference is that requests from the 
clients belonging to the group with small-sized web 
objects are distributed to the chosen back-end real 
servers according to CWARD/PFR policy and the 
requests belonging to the group with large-sized web 
objects are distributed according to LARD-Threshold 
policy as showed in Figure 4. 
 

 
Figure 4: CWARD/PFSR Policy 
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4. PERFORMANCE EVALUATION 
 

In this section, we present performance evaluation of 
our proposed Content-based Workload-aware Request 
Distribution policies under two content-aware 
dispatching platforms: LVS-CAD and LVS-CAD/FC 
clusters. LVS is used as the performance comparison. 
 
4.1. EXPERIMENTAL ENVIRONMENT 
 

The experimental environment consists of one 
front-end server, eight back-end real servers, and ten 
clients connected through a single 24-port Fast-Ethernet 
switch. The hardware and software environment are 
shown in Table 1. Each back-end real server is 
configured with 256MB and 512MB RAM in the 
experiments with ClarkNet trace [8] and WorldCup98 
trace [8], respectively. The request routing mechanism is 
set to be direct routing [4] and the request scheduling 
algorithm used is set to be Weighted Round Robin [4]. 
 

Table1: Hardware/Software Environment 
Item Front-end Back-end Client 

Processor(MHz) Intel P4 3.4G Intel P4 3.4G Intel P4 2.4G 

Memory (MB) DDR 256/512 DDR 256/512 DDR 256 

NIC (Mbps) Intel Pro 100/1000Intel Pro 100/1000 Reltek RTL8139

OS Red Hat Linux 8.0 Red Hat Linux 8.0 Red Hat Linux 8.0

Kernel 2.4.18 2.4.18 2.4.18-14 

IPVS 1.0.4 X X 

Web Server X Apache 2.0.40 X 

Benchmark X X http_load 

Number of PCs 1 8 10 

 
4.2. ACCESS LOG 
 

We use publicly obtainable traces from the Internet 
Traffic Archive [8]: ClarkNet and WorldCup98. The 
working sets used in the research are derived from these 
two logs. Because the WorldCup98 trace contains a huge 
amount of requests, so we use only six hours’ requests on 
the day July 12, 1998 from AM 09:00 to PM 03:00.  

Because the degree of locality of reference in 
ClarkNet trace is high, so when caching 18% of most 
frequently accessed web objects, it could achieve 90% of 
cache hit ratio. The degree of locality of reference is also 
high and file size is quite large in WorldCup98 trace. 
When caching 20% of most frequently accessed web 
objects, it could achieve 81% of cache hit ratio and 
occupy 61% of file size. 
 
4.3. EXPERIMENTAL RESULTS 
 

This purpose of experiments in this section is to 
evaluate the effect of the proposed CWARD policies. In 
Figures 5 and 6, the CWARD/CR (core5%/part4%) 
means that LVS-CAD and LVS-CAD/FC clusters use 
CWARD/CR (i.e. CWARD with Core Replication) 

policy [11], in which the core set (i.e. the most 
frequently accessed web objects) has 5% of working set 
web objects, and the part set (i.e. the less frequently 
accessed web objects) in each back-end real server has 
4% of working set web objects. In this experiment, 
LVS-CAD/FC’s web object cache is set to occupy 
15.63% of system RAM and the same amount of web 
objects are pre-fetched into each back-end real server’s 
RAM before the web cluster is evaluated.  
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Figure 5: Comparison of Various Policies under 

LVS-CAD/FC (ClarkNet Trace) 
 

The performance gain of our proposed CWARD 
policies is obviously large. Figure 5 shows that the 
performance of LVS-CAD/FC with various CWARD 
policies is 43-66% better than LVS. In Figure 6, though 
web objects are not pre-fetched into each back-end real 
server’s RAM, LVS-CAD still performs 1-7.6% better 
than the LVS. 
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Figure 6: Comparison of Various Policies under 

LVS-CAD (ClarkNet Trace) 

 
In Figures 7 and 8, the WorldCup98 trace is used in 

the experiment. Because file size is quite large in 
WorldCup98 trace, when caching 20% of the most 
frequently accessed web objects, it could achieve 81% 
cache hit ratio and occupy 61% file size. Because most 
frequently accessed and large-sized web objects could 
occupy the huge amount of back-end real servers’ cache, 
so CWARD/PFR and CWARD/PFSR are used in 
evaluating the web cluster performance. The 
CWARD/PCR means that the working set is partitioned 
into two groups. The group with large-sized web objects 
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uses the LARD-Threshold policy and the group with 
small-sized web objects uses the CWARD/CR 
(core3%/part1%) in which the core set has 3% of 
working set web objects, and the part set in each 
back-end real server has 1% of working set web objects.  
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Figure 7: Comparison of Various Policies under 

LVS-CAD/FC (WorldCup98 Trace) 
 

In Figure 7, LVS-CAD/FC’s web object cache is set 
to occupy 60% of system RAM and web objects of 
approximately 18% of total web object size are 
pre-fetched into each back-end real server’s RAM before 
the web cluster is evaluated. The performance gain of our 
proposed CWARD policies is quite large. As shown in 
Figure 7, the performance of our LVS-CAD/FC with 
various CWARD policies is 61-94% better than the LVS. 

 In Figure 8, though web objects are not pre-fetched 
into each back-end real server’s RAM, the performance 
of our LVS-CAD with various CWARD policies is still 
27-32% better than the LVS. 
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Figure 8: Comparison of Various Policies under 

LVS-CAD (WorldCup98 Trace) 
 
5. CONCLUSION 
 

With the aims to achieve better load balancing among 
servers, efficient memory usage, and better cache hit 
rates to reduce disk I/O in a web cluster, we have 
proposed new Content-based Workload-aware Request 
Distribution policies which consider content in requests, 
workload information, and web object characteristic in 
distributing requests of web objects to back-end real 
servers. The basic idea is to let web objects cached in 
back-end real servers according to their access 

frequencies and file sizes, such that the more frequently 
accessed and smaller sized web objects can be served 
among the more back-end real servers. Basically, the 
more frequently web objects are accessed, the more 
back-end real servers will serve the requests for these 
web objects. 

We have implemented the proposed policies in two 
content-aware dispatching web clusters on Linux. 
Experimental results show that our LVS-CAD/FC with 
the proposed CWARD policies are efficient and can 
achieve up to 94% better performance than the layer-4 
LVS web cluster. Our LVS-CAD with the proposed 
CWARD policies can still outperform LVS by 32%. 

Based on this research and our content-aware 
dispatching platforms, several issues could be further 
explored, such as support of quality of service, adaptive 
content-aware dispatching algorithms, and efficiently 
support of dynamic web contents.  
 
REFERENCES 
 
[1] Emiliano Casalicchio and Michele Colajanni, “A 

Client-Aware Dispatching Algorithm for Web Clusters 
Providing Multiple Services,” Proc. of 10th Int'l World 
Wide Web Conf., Hong Kong, pp. 535-544, May 1-5, 
2001. 

[2] H. H. Liu and Mei-Ling Chiang, “TCP Rebuilding for 
Content-aware Request Dispatching in Web Clusters,” 
Journal of Internet Technology, Vol. 6, No. 2, pp. 231-240, 
April 2005. 

[3] Http_load, http://www.acme.com/software/http_load/. 
[4] Linux Virtual Server Website, 

http://www.linuxvirtualserver.org/. 
[5] Ludmila Cherkasova and Magnus Karlsson, “Scalable Web 

Server Cluster Design with Workload-Aware Request 
Distribution Strategy WARD,” In Proceedings of the 3rd 
International Workshop on Advanced Issues of 
E-Commerce and Web-Based Information Systems, San 
Jose, CA, pp. 212-221, June 2001. 

[6] M. Arlitt and T. Jin, “Workload Characterization of the 
1998 World Cup Web site,” Hewlett-Packard Technical 
Report, February 1999. 

[7] M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel, 
“Scalable content-aware request distribution in 
cluster-based network servers,” In Proceedings of the 
USENIX 2000 Annual Technical Conference. 

[8] The Internet Traffic Archive Website, http://ita.ee.lbl.gov/. 
[9] V. S. Pai, et al, “Locality-Aware Request Distribution in 

Cluster-based Network Servers,” Eighth International 
Conference on Architectural Support for Programming 
Languages and Operating Systems, San Jose, CA, Oct. 
1998. 

[10] Valeria Cardellini, Emiliano Casalicchio, Michele 
Colajanni, and Philip S. Yu, “The State of the Art in 
Locally Distributed Web-Server Systems,” ACM 
Computing Surveys, Vol. 34, No. 2, pp. 263-311, June 
2002. 

[11] Yu-Chen Lin, Mei-Ling Chiang, and Lian-Feng Gu, 
“System Support for Workload-aware Content-based 
Request Distribution in Web Clusters,” Journal of Internet 
Technology, Vol. 7, No. 3, 2006. 

- 764 -




