

Content-based Workload-aware Request Distribution Policies in Cluster-based
Web Servers

Lian-Feng Guo, Mei-Ling Chiang, Shang-Yi Zhuang
Department of Information Management

National Chi-Nan University
Taiwan, R.O.C

E-mail: {s3213534, joanna, s1213018}@ncnu.edu.tw

ABSTRACT
How to efficiently dispatch requests from clients to

web servers and effectively utilize system resource are
crucial to the performance of a web cluster. In this
paper, we have proposed new Content-based
Workload-aware Request Distribution (CWARD)
policies on cluster-based web servers. These policies
take into account content in requests, workload
information, and web object characterization in
dispatching requests. Basically, the more frequently web
objects are accessed, the more servers will serve the
requests for these web objects. The experimental results
of practical implementation on Linux show that our
proposed Content-based Workload-aware Request
Distribution policies are efficient. The trace-driven
benchmarking with real-world traces of ClarkNet and
WorldCup98 demonstrates that our proposed CWARD
policies can effectively improve web cluster
performance. Especially, when using the proposed
CWARD policies, web clusters with content-aware
dispatching such as LVS-CAD and LVS-CAD/FC can
achieve up to 94% better performance than the Linux
Virtual Server (LVS) web cluster with content-blind
dispatching.

1. INTRODUCTION

Because of the rapid growth of Internet users, more
powerful web servers have to be adopted to deal with
the large amount of HTTP requests. To build a more
powerful web server, the cluster-based web systems
have been widely adopted because of the implicit
advantages of load sharing or balancing, scalability, and
high availability. One of the popularly used cluster
servers is Linux Virtual Server (LVS) which is
composed of one request dispatching front-end server
and several request handling back-end real servers.

Many researches [1, 5, 7, 9, 11] have focused on the
study of content-aware request distribution in which the
request dispatching server mainly bases on the content
of request packets (i.e. URL information) to dispatch
requests. Some researches further combine the use of the
content of requests and load information, or even the
workload information, to design their intelligent request
dispatching mechanisms. Their research results all show
that web clusters will be more efficient in handling
requests. Content-based request distribution also enables

the partitioning web contents, building specialized web
services among web servers, or maintaining session
integrity.

With the aims to achieve better cache hit rates to
reduce disk access and better cluster resource utilization
while maintaining load balancing among back-end real
servers, we have proposed several new content-based
request distribution policies named Content-aware
Workload-based Request Distribution policies
(CWARD). These proposed policies consider content in
requests, workload information, and web object
characterization in dispatching requests. Basically, the
more frequently web objects are accessed, the more
servers will serve the requests for these web objects.

To evaluate the effectiveness of our proposed
CWARD policies, we have implemented them in two
content-aware dispatching web clusters, i.e. LVS-CAD
[2] and LVS-CAD/FC [11], which are based on LVS
while implementing TCP Rebuilding [2] mechanism to
provide content-aware request distribution.

In the experiments, the trace-driven benchmarking
with real-world traces of ClarkNet [8] and WorldCup98
[8] demonstrates that our proposed CWARD policies
effectively improve web cluster performance. LVS-CAD
and LVS-CAD/FC with CWARD policies can achieve
up to 94% better performance than LVS with
content-blind dispatching.

2. BACKGROUND AND RELATED
WORK

This section introduces the content-blind dispatching
platform - Linux Virtual Server, two content-aware
dispatching platforms – LVS-CAD and LVS-CAD/FC,
and existing content-based request distribution policies.

2.1. The Content-blind Dispatching Web
Cluster – LVS

Linux Virtual Server (LVS) [4] is a highly scalable
and available cluster built by a set of real servers, based
on Linux. The LVS consists of a front-end server for
dispatching and routing requests from clients to
back-end real servers according to the designated
routing mechanisms and request scheduling algorithms.
With the direct routing mechanism, the back-end real

- 759 -

server processes these packets from the front-end server
and returns results directly to client.

2.2. THE CONTENT-AWARE DISPATCHING
WEB CLUSTERS – LVS-CAD AND
LVS-CAD/FC

LVS-CAD [2] (i.e. LVS with Content-Aware

Dispatching) is based on LVS while implementing TCP
Rebuilding [2] mechanism to provide content-aware
dispatching. It develops a one-way kernel-level layer-7
front-end for examining the content of HTTP requests
and analyzing workload characterization in dispatching
requests from clients to servers. LVS-CAD/FC [11] (i.e.
LVS with Content-Aware Dispatching and File Caching)
extends LVS-CAD with web object caching mechanism,
in which a small amount of server RAM is dedicated to
cache the most frequently accessed web objects to reduce
disk access.

TCP Rebuilding [2] proposed in our previous study is
a light-weight TCP connection transfer technique that
enables a web cluster to be content-aware. The TCP
Rebuilding technique allows the front-end server to
transfer an established connection with a client to a
chosen back-end real server by rebuilding the TCP
connection in the back-end real server. After the TCP
connection has been built, the chosen back-end real
server could respond to the request of the client directly,
bypassing the front-end server. In particular, TCP
Rebuilding could rebuild the TCP connection at one
back-end real server using only the original HTTP
request packet and no extra packets for connection
transfer are required. This mechanism can be applied to
build a content-aware platform for developing more
complex dispatching policies. Therefore, TCP
Rebuilding is adopted to construct the content-aware
platform in this research.

2.3. EXISTING CONTENT-BASED REQUEST
DISTRIBUTION POLICIES

To improve cache hit rates, Locality-Aware Request
Distribution (LARD) [9] dispatches the requests to the
same web object to the same back-end server that will
most likely have the web object in RAM, unless the
back-end server is overloaded.

Workload-aware Request Distribution strategy
(WARD) [5] takes workload properties into account in
dispatching requests. It identifies a small set of most
frequent web objects, called core. The requests to core
web objects are processed by any server, while the rest
of the web objects, called part, are partitioned to be
served by different servers.

In our previously proposed Content-based
Workload-aware Request Distribution with Core
Replication (CWARD/CR) [11] strategy, the web cluster
uses a small amount of memory dedicated to cache a
small set of most frequently accessed web objects, called
core. The request to core web objects are processed by
any back-end real server’s RAM in a web cluster, while

the rest of the web objects are partitioned to be served by
different back-end real servers’ RAM. Hence, a small set
of most frequently accessed web objects are pre-fetched
into back-end real servers’ RAM to increase the
performance of the whole web cluster.

Client-aware Dispatching Policy (CAP) [1] classifies
requests from clients into four classes, namely normal,
CPU-bound, disk-bound, and disk- and CPU-bound.
When a HTTP request packet arrives, the web switch
distinguishes which class it belongs to, and schedules the
packet in this class with the Round-Robin manner.

3. PROPOSED CONTENT-BASED
WORKLOAD-AWARE REQUEST
DISTRIBUTION POLICIES

Previous studies on content-aware request
distribution [7, 9] have shown that policies distributing
the requests from clients based on the content of
requests lead to performance improvement compared
with the strategies taking into account only load
balancing. Therefore, content-aware request distribution
is considered in this research.

For a web cluster that consists of one
request-dispatching front-end server and several
request-handling back-end real servers, since all requests
from clients are sent to the front-end server, if the
front-end server is content-aware and is able to examine
the content of HTTP request, it can easily collect the
reference information of web objects and determine the
most frequently accessed web objects, and then decide
which back-end real server should serve the request.

According to these considerations, we use the web
clusters, LVS-CAD (i.e. LVS with Content-Aware
Dispatching) [2] and LVS-CAD/FC (i.e. LVS with
Content-Aware Dispatching and File Caching) [11] as
our research platforms to study the content-aware
request distribution policies. They all use a kernel-level
layer-7 front-end server that examines the content of
request (i.e. URI) and analyzes workload characteristic
when dispatching requests from clients.

In fact, not only content of request (i.e. URI) and
workload information are important factors in designing
content-aware request distribution policies, web object
characterization such as file size is also helpful.
Therefore, we propose new strategies related to
Content-based Workload-aware Request Distribution:
Frequency-based Replication (CWARD/FR),
Frequency-based Sized Replication (CWARD/FSR),
Partitioned Frequency-based Replication
(CWARD/PFR), and Partitioned Frequency-based Sized
Replication (CWARD/PFSR).

3.1. FREQUENCY-BASED REPLICATION –
CWARD/FR

The basic idea of CWARD/FR is to let web objects

cached in back-end real servers according to their access
frequencies, such that the more frequently web objects

- 760 -

are accessed, the more back-end real servers can serve
these frequently accessed web objects.

Since CWARD/FR takes workload properties into
account, CWARD/FR policy first determines the number
of back-end real servers that can serve a specific web
object according to equation 1. In the equation 1, let αi
denote the number of times the specific web object i was
accessed. This access information can be easily collected
by the front-end server since all requests from clients are
sent to it. Besides, the total amount of back-end real
servers is assumed to be γ. The number of the back-end
real servers that can serve this web object i is λi. The total
amount of web objects served in web cluster is n. In our
experiment described in Section 4, the value of access
times is normalized by the log10 function.

{ }
i

i
n

i

i λγ
α

α
 =

=

*
max

1

(1)

After the number of back-end real servers that can

serve a specific web object i is determined, then the
front-end server uses the Round-Robin manner to assign
a set of back-end real servers for serving each web
object i.

The proposed CWARD/FR policy is illustrated in
Figure 1. The requests for the same web object will be
distributed to one of the set of back-end real servers that
most likely have the web object cached in the main
memory according to the designated request scheduling
algorithm.

Figure 1: CWARD/FR Policy

When the web object caching is used in the web

cluster such as LVS-CAD/FC, the proposed
CWARD/FR policy with web object caching can work
in the same way as the basic CWARD/FR does. The
most frequently accessed web objects will be
cached/pre-fetched in the most back-end real servers;
whereas, the lesser frequently accessed web objects will
be cached/pre-fetched in the lesser amount of back-end
real servers.

Figure 2 illustrates the principle of CWARD/FR
strategy with web object caching in a web cluster that
contains a front-end server, four back-end real servers,
and six web objects (A, B, C, D, E, F) in the incoming
request stream. In Figure 2, γ is assumed to be four and
λ can be one to four. For example, λ equal to four
means that the web object should be cached/pre-fetched
into four back-end real servers’ RAM.

Figure 2: CWARD/FR Policy with Web Object

Caching

The CWARD/FR policy with web object caching is

detailed as follows. First of all, because frequently
accessed web objects must be pre-fetched into back-end
real servers’ RAM, λ in the equation 1 is calculated to
decide the amount of back-end real servers by which the
web object can be served. For example, if the web
object A in Figure 2 is the hottest web object, A is
pre-fetched into λ back-end real servers’ RAM. When
the front-end server receives a sequence of the requests,
it will examine the content of the HTTP request. If the
requested content belongs to the web object pre-fetched,
e.g., the web object A in Figure 2, the front-end server
will modify the URI in the content of the HTTP request
to appropriate path for routing the HTTP request to the
designated back-end real server’s cache according to the
traditional Round-Robin strategy. Secondly, if the
requested content is not pre-fetched, e.g., the web
objects E or F in Figure 2, the front-end server routes
the HTTP request to the back-end real server according
to the designated request scheduling algorithm.

3.2. FREQUENCY-BASED SIZED
REPLICATION – CWARD/FSR

According to the traffic characterization of a modern

web site [6], large web objects (up to 64 KB) make up
only 0.3% of the working set but consume 53.9% of
required storage space. In addition, these large web
objects occupy only 0.1% of all client requests. Thus,
full replication of these web objects is not cost-effective.
It is better to cache the frequently accessed and smaller
sized web objects.

According to this consideration, we propose another
Content-based Workload-aware Request Distribution

- 761 -

policy named Frequency-based Sized Replication
(CWARD/FSR). Similar to the CWARD/FR strategy,
the basic idea is to let web objects cached in back-end
real servers according to their access frequencies. The
difference is that the most frequently accessed and
smaller sized web objects are replicated in the most of
back-end real servers; whereas, the lesser frequently
accessed and larger sized web objects are replicated in
the lesser amount of back-ends.

Therefore, CWARD/FSR is an extension of
CWARD/FR. In addition to the access times,
CWARD/FSR also takes the file size of a web object
into account in determining the number of back-end real
servers to serve the web object according to equation 2.
In equation 2, βi denotes the corresponding file size of
the specific web object i. In our experiment described in
Section 4.3, the value of access times divided by file
size is also normalized by the log10 function.

()1,......,
max

i

i
i

i

i

i n

α
β γ λ

α
β

∗ = =
⎧ ⎫
⎨ ⎬
⎩ ⎭

(2)

3.3. PARTITIONED FREQUENCY-BASED
REPLICATION – CWARD/PFR

If some frequently accessed web objects are

extremely large size, most of the back-end real servers
would cache these web objects under the proposed
CWARD/FR policy described in Section 3.1, which
would occupy the large amount of back-end real
servers’ caches. Thus, replication of caching these
large-sized web objects is not cost-effective.

To address this problem, we propose another
Content-based Workload-aware Request Distribution
policy named Partitioned Frequency-based Replication
(CWARD/PFR). The CWARD/PFR strategy is designed
to combine the advantages of CWARD/FR and LARD
policies. Basically, it partitions the working set into two
object groups: the group with large-sized web objects
and the group with small-sized web objects. The
threshold to determine whether the size of a web object
is large is set to the average size of web objects in our
experiment.

Figure 3: CWARD/PFR Policy

Figure 3 shows how the CWARD/PFR works. At
first, web objects are sorted by their sizes. The front-end
server examines the requests from clients and
determines which group the requests belong to. Then the
requests belonging to the group with small-sized web
objects will be distributed to the chosen back-end real
server according to CWARD/FR policy. Otherwise,
LARD [9] policy will be used.

For web objects belonging to the small-sized group,
the most frequently accessed web objects will be
cached/pre-fetched in the most back-end real servers,
whereas the lesser frequently accessed web objects will
be cached/pre-fetched in the lesser amount of back-end
real servers, according to CWARD/FR policy. This is
intended to achieve load balancing of a web cluster
because the replication of small-sized web objects will
not occupy the large amount of back-end real servers’
caches. However, the group with large-sized web
objects is cached/pre-fetched in back-end real servers’
caches according to LARD with Threshold
(LARD-Threshold) strategy, which is the variation of
LARD [9]. The LARD-Threshold strategy uses a
threshold to decide whether the web objects belonging
to the group with large-sized web objects should be
cached/pre-fetched at one back-end real server’s cache.

3.4. PARTITIONED FREQUENCY-BASED
SIZED REPLICATION – CWARD/PFSR

To take the file sizes of web objects into account and

combine the advantages of CWARD/FSR and
CWARD/PFR, we propose another Content-based
Workload-aware Request Distribution policy named
Partitioned Frequency-based Sized Replication
(CWARD/PFSR). Similar to the CWARD/PFR strategy,
web objects are partitioned into the group with
large-sized web objects and the group with small-sized
web objects. The difference is that requests from the
clients belonging to the group with small-sized web
objects are distributed to the chosen back-end real
servers according to CWARD/PFR policy and the
requests belonging to the group with large-sized web
objects are distributed according to LARD-Threshold
policy as showed in Figure 4.

Figure 4: CWARD/PFSR Policy

- 762 -

4. PERFORMANCE EVALUATION

In this section, we present performance evaluation of
our proposed Content-based Workload-aware Request
Distribution policies under two content-aware
dispatching platforms: LVS-CAD and LVS-CAD/FC
clusters. LVS is used as the performance comparison.

4.1. EXPERIMENTAL ENVIRONMENT

The experimental environment consists of one
front-end server, eight back-end real servers, and ten
clients connected through a single 24-port Fast-Ethernet
switch. The hardware and software environment are
shown in Table 1. Each back-end real server is
configured with 256MB and 512MB RAM in the
experiments with ClarkNet trace [8] and WorldCup98
trace [8], respectively. The request routing mechanism is
set to be direct routing [4] and the request scheduling
algorithm used is set to be Weighted Round Robin [4].

Table1: Hardware/Software Environment
Item Front-end Back-end Client

Processor(MHz) Intel P4 3.4G Intel P4 3.4G Intel P4 2.4G

Memory (MB) DDR 256/512 DDR 256/512 DDR 256

NIC (Mbps) Intel Pro 100/1000Intel Pro 100/1000 Reltek RTL8139

OS Red Hat Linux 8.0 Red Hat Linux 8.0 Red Hat Linux 8.0

Kernel 2.4.18 2.4.18 2.4.18-14

IPVS 1.0.4 X X

Web Server X Apache 2.0.40 X

Benchmark X X http_load

Number of PCs 1 8 10

4.2. ACCESS LOG

We use publicly obtainable traces from the Internet
Traffic Archive [8]: ClarkNet and WorldCup98. The
working sets used in the research are derived from these
two logs. Because the WorldCup98 trace contains a huge
amount of requests, so we use only six hours’ requests on
the day July 12, 1998 from AM 09:00 to PM 03:00.

Because the degree of locality of reference in
ClarkNet trace is high, so when caching 18% of most
frequently accessed web objects, it could achieve 90% of
cache hit ratio. The degree of locality of reference is also
high and file size is quite large in WorldCup98 trace.
When caching 20% of most frequently accessed web
objects, it could achieve 81% of cache hit ratio and
occupy 61% of file size.

4.3. EXPERIMENTAL RESULTS

This purpose of experiments in this section is to
evaluate the effect of the proposed CWARD policies. In
Figures 5 and 6, the CWARD/CR (core5%/part4%)
means that LVS-CAD and LVS-CAD/FC clusters use
CWARD/CR (i.e. CWARD with Core Replication)

policy [11], in which the core set (i.e. the most
frequently accessed web objects) has 5% of working set
web objects, and the part set (i.e. the less frequently
accessed web objects) in each back-end real server has
4% of working set web objects. In this experiment,
LVS-CAD/FC’s web object cache is set to occupy
15.63% of system RAM and the same amount of web
objects are pre-fetched into each back-end real server’s
RAM before the web cluster is evaluated.

ClarkNet

0
1000
2000
3000
4000
5000
6000

LVS

CWARD/CR (core5%/part4%)
CWARD/FR

CWARD/FSR
CWARD/PFR

CWARD/PFSR

Web clusters with various policies
Th

ro
ug

hp
ut

 (r
eq

ue
st

/s
ec

)

Figure 5: Comparison of Various Policies under

LVS-CAD/FC (ClarkNet Trace)

The performance gain of our proposed CWARD
policies is obviously large. Figure 5 shows that the
performance of LVS-CAD/FC with various CWARD
policies is 43-66% better than LVS. In Figure 6, though
web objects are not pre-fetched into each back-end real
server’s RAM, LVS-CAD still performs 1-7.6% better
than the LVS.

ClarkNet

2900
2950
3000
3050
3100
3150
3200
3250
3300

LVS

CWARD/CR (core5%/part4%)
CWARD/FR

CWARD/SFR
CWARD/PFR

CWARD/PFSR

Web clusters with various policies

Th
ro

ug
hp

ut
 (r

eq
ue

st/
se

c)

Figure 6: Comparison of Various Policies under

LVS-CAD (ClarkNet Trace)

In Figures 7 and 8, the WorldCup98 trace is used in

the experiment. Because file size is quite large in
WorldCup98 trace, when caching 20% of the most
frequently accessed web objects, it could achieve 81%
cache hit ratio and occupy 61% file size. Because most
frequently accessed and large-sized web objects could
occupy the huge amount of back-end real servers’ cache,
so CWARD/PFR and CWARD/PFSR are used in
evaluating the web cluster performance. The
CWARD/PCR means that the working set is partitioned
into two groups. The group with large-sized web objects

- 763 -

uses the LARD-Threshold policy and the group with
small-sized web objects uses the CWARD/CR
(core3%/part1%) in which the core set has 3% of
working set web objects, and the part set in each
back-end real server has 1% of working set web objects.

WorldCup98

0
500

1000
1500
2000
2500
3000
3500
4000
4500

LVS CWARD/PFR

Web clusters with various policies

Th
ro

ug
hp

ut
 (r

eq
ue

st
/s

ec
)

Figure 7: Comparison of Various Policies under

LVS-CAD/FC (WorldCup98 Trace)

In Figure 7, LVS-CAD/FC’s web object cache is set
to occupy 60% of system RAM and web objects of
approximately 18% of total web object size are
pre-fetched into each back-end real server’s RAM before
the web cluster is evaluated. The performance gain of our
proposed CWARD policies is quite large. As shown in
Figure 7, the performance of our LVS-CAD/FC with
various CWARD policies is 61-94% better than the LVS.

 In Figure 8, though web objects are not pre-fetched
into each back-end real server’s RAM, the performance
of our LVS-CAD with various CWARD policies is still
27-32% better than the LVS.

WorldCup98

0

500

1000

1500

2000

2500

3000

3500

LVS CWARD/PCR
(core15%/part10%)

CWARD/PFR CWARD/PFSR

Web clusters with various policies

Th
ro

ug
hp

ut
 (r

eq
ue

st
/s

ec
)

Figure 8: Comparison of Various Policies under

LVS-CAD (WorldCup98 Trace)

5. CONCLUSION

With the aims to achieve better load balancing among
servers, efficient memory usage, and better cache hit
rates to reduce disk I/O in a web cluster, we have
proposed new Content-based Workload-aware Request
Distribution policies which consider content in requests,
workload information, and web object characteristic in
distributing requests of web objects to back-end real
servers. The basic idea is to let web objects cached in
back-end real servers according to their access

frequencies and file sizes, such that the more frequently
accessed and smaller sized web objects can be served
among the more back-end real servers. Basically, the
more frequently web objects are accessed, the more
back-end real servers will serve the requests for these
web objects.

We have implemented the proposed policies in two
content-aware dispatching web clusters on Linux.
Experimental results show that our LVS-CAD/FC with
the proposed CWARD policies are efficient and can
achieve up to 94% better performance than the layer-4
LVS web cluster. Our LVS-CAD with the proposed
CWARD policies can still outperform LVS by 32%.

Based on this research and our content-aware
dispatching platforms, several issues could be further
explored, such as support of quality of service, adaptive
content-aware dispatching algorithms, and efficiently
support of dynamic web contents.

REFERENCES

[1] Emiliano Casalicchio and Michele Colajanni, “A

Client-Aware Dispatching Algorithm for Web Clusters
Providing Multiple Services,” Proc. of 10th Int'l World
Wide Web Conf., Hong Kong, pp. 535-544, May 1-5,
2001.

[2] H. H. Liu and Mei-Ling Chiang, “TCP Rebuilding for
Content-aware Request Dispatching in Web Clusters,”
Journal of Internet Technology, Vol. 6, No. 2, pp. 231-240,
April 2005.

[3] Http_load, http://www.acme.com/software/http_load/.
[4] Linux Virtual Server Website,

http://www.linuxvirtualserver.org/.
[5] Ludmila Cherkasova and Magnus Karlsson, “Scalable Web

Server Cluster Design with Workload-Aware Request
Distribution Strategy WARD,” In Proceedings of the 3rd
International Workshop on Advanced Issues of
E-Commerce and Web-Based Information Systems, San
Jose, CA, pp. 212-221, June 2001.

[6] M. Arlitt and T. Jin, “Workload Characterization of the
1998 World Cup Web site,” Hewlett-Packard Technical
Report, February 1999.

[7] M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel,
“Scalable content-aware request distribution in
cluster-based network servers,” In Proceedings of the
USENIX 2000 Annual Technical Conference.

[8] The Internet Traffic Archive Website, http://ita.ee.lbl.gov/.
[9] V. S. Pai, et al, “Locality-Aware Request Distribution in

Cluster-based Network Servers,” Eighth International
Conference on Architectural Support for Programming
Languages and Operating Systems, San Jose, CA, Oct.
1998.

[10] Valeria Cardellini, Emiliano Casalicchio, Michele
Colajanni, and Philip S. Yu, “The State of the Art in
Locally Distributed Web-Server Systems,” ACM
Computing Surveys, Vol. 34, No. 2, pp. 263-311, June
2002.

[11] Yu-Chen Lin, Mei-Ling Chiang, and Lian-Feng Gu,
“System Support for Workload-aware Content-based
Request Distribution in Web Clusters,” Journal of Internet
Technology, Vol. 7, No. 3, 2006.

- 764 -

