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ABSTRACT  

Based on the system call interception technique, we 
develop a real-time intrusion prevention system to solve 
both the collaborative and inherited attacks. This system 
intercepts every system call invoked by application 
programs and tries to match any penetration patterns. 
Once there are evidences showing certain penetration is 
happening, the system can terminate the penetration 
process before it hurts the system. To improve detection 
accuracy, we build an inspection model analogous to 
the human-immunity concept that traces interactions 
among processes that constitute a villain family. With 
the help of these enhancements, our system can solve 
the collaborative attack problems, and can also select 
normal-behaved template genes to reduce false positive 
alarm rate. 
 
 
1: INTRODUCTION 
 

The intrusion detection system by far is the most 
important multi-function security tools. Based on the 
detection methods, IDS systems are divided into two 
types: the Anomaly IDS and the Misuse IDS. The Misuse 
IDS is more prevalence and uses known and observed 
attacking scenarios to build an intrusion characteristics 
database. Therefore, the Misuse IDS is also called the 
Signature-based IDS. When the monitored behavior 
matches an intrusion pattern, the behavior will be judged 
as an intrusion. In this manner, the Misuse IDS has the 
benefit of low false positive alarm rate, but suffers from 
the drawback of low detection rate to new kinds of 
intrusions, since  no patterns of new attacking scenarios 
exist in the system’s signature database.  

Similar to the Misuse IDS, the Anomaly IDS has a 
database, too. The difference is that the database is used 
to store normal behaviors. The Anomaly IDS will  tag a 
monitored action as abnormal when the action diverges 
significantly with normal models in the database. 
Although the Anomaly IDS can detect new attacking 
scenarios, it also has to bear high erroneous judgment 
rate. That is because it is quite hard and uncertain to 
exactly define what the normal behaviors are in this 
complicated computing world.  
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In recent years, most researches on IDS are mainly 
focusing on improving detection rate and lowering 
erroneous judgment rate. However, some articles also 
tried to give warnings to the potential attacks of IDS [3], 
such as Mimicry Attacks [2].  

In order to reduce the false alarm rate and enhance the 
capability of wrapper-based IDS, we proposed and 
implemented two improvements on the work of 
STBIPW [1]. First, when the user-defined intrusion 
template is used to monitor suspect processes, another 
wrapper will be spawned to supervise each new-born 
child process. Meanwhile, an extra family wrapper is 
going to watch out for stealthy interactions among this 
family. In this way, our work can prevent malicious 
processes from escaping inspection either by single child 
process or by collaboration of family process members. 
Second, we introduced the Human-Immunity concept 
into our system. We used negative selection mechanism 
to test user-defined templates and filter out improper 
ones to lower false alarm rate.  

In this paper, we will first introduce several related 
works about IDS systems, and give an overview of 
human-immunity system. Then, we will discuss the 
mimicry attacks that give several challenges to 
signature-based IDS. In Section 3, we will describe how 
to conquer several issues on signature-based IDS, and 
follow that by the description of the system architecture 
of our approach. In Section 5, we use our experimental  
and evaluation results to show the detection capability 
and the system efficiency of our method. Finally, we give 
a brief discussion and conclusion. 
 
2: Related Works 
 

In this section, we first introduce several system call 
based IDSs and state-based IDSs that are related to this 
paper. Afterwards, we present the human immunity 
concept and introduce one intrusion detection system 
designed and implemented based on this concept. Finally, 
we will discuss some possible attacks to host-based IDSs 
and give ways to circumvent their detections. 
 
2.1: System call based Detection Methods 
 

In modern operating systems, user processes gain  
access to system resources through system calls. To 
provide security checking, it is quite practical to 
examine the system calls invoked by suspected 
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processes. Many IDS systems are designed with this 
concept, such as STBIPW [1] and N-Gram [8][9]. 
Furthermore, there are two ways to inspect system calls 
requested by applications. One way is to use user level 
system call interception mechanisms, such as the ptrace 
system call provided by OS to transfer execution from 
the monitored process to the monitoring process [23]. In 
this manner, security system programmers have the 
benefit of simplicity since modifying kernel code is not 
necessary. But high overhead is the fatal wound since 
each execution transfer requires two context switches. 
The other way is to intercept system calls via kernel 
level mechanisms [5][6][7]. This kind of security 
systems is resident mostly in the kernel and hijacks 
system calls directly from the system call table. Only 
jump instructions are needed to do this hijacking and 
thus little overhead penalty are produced compared to 
user level mechanisms.  

N-gram used system call tracing technology to 
build the IDS system, and finally evolved into the 
pH-IDS in [10]. The pH-IDS verifies each system call 
invoked by the process and determine its status. The 
"N" in N-gram means that N continuous system calls are 
examined. Each fragment of system call sequence is 
matched against a database to detect intrusion. In this 
way, N-gram is simple and efficient, but the detection 
rate is dependent on the window size N. When N is 
large, the comparison result is more precise. However, 
the detection rate is also decreased. The other drawback 
of N-gram is that only system call sequences are 
checked, and system call parameters are not inspected. 
Some attacks can be carried out with valid system call 
sequences but harmful arguments to achieve the purpose 
of attacking. Furthermore, valid system call fragments 
can be chosen from normality database and inserted into 
intrusion sequence. In this way, the intrusion system 
calls are scattered within each fragment and beyond the 
scope of window size, thus successfully escaping the 
N-gram’s check. 

Another system call based IPS is the STBIPW [1]. 
The STBIPW was proposed and designed by the 
security research lab led by Wen-Nung Tsai in National 
Chiao Tung University. It is an Intrusion Prevention 
System (IPS) that uses the kernel level wrapper 
mechanisms to provide real-time prevention. 
 
2.2: FSM-based Detection Methods 
 

The STAT (State Transition Analysis Tool) 
[11][12][13] is one well-known IDS system that uses 
FSM to analyze intrusion behaviors. It has a modeling 
language that is used to describe penetration as a finite 
state machine. The STAT is a log investigation system, 
which uses FSM to describe attack scenarios and then 
feeds system logs into intrusion detection engine to 
determine whether the system has been attacked or not. 
However, attackers can stop being offensive and leave 
without being aware of.  

There are many researches that use the concept of 
STAT. For example, in the work on STBIPW, a security 

platform is provided to allow users to define their own 
intrusion templates and to load them into system to do 
real-time detection. This system combines both the 
concepts of STAT and kernel level system call tracing 
mechanisms. It decomposes a penetration event into 
many states linked with critical system call transition.  
 
2.3: Immunity-based Detection Methods 
 

Human body is always being in contact with 
external materials. All these foreign materials may 
contain harmful invaders to human bodies. Fortunately, 
we have biological immune system that would detect 
and eliminate those foreign intruders. The major player 
in our immune system is the lymphocyte, which is more 
commonly known as the antibody.  

To produce antibodies, the immune system first 
picks a random segment from the gene pool. However, 
not every gene segment is capable of being a 
lymphocyte. The gene segment is fitered with both 
positive selection and negative selection processes. The 
positive selection leaves behind those abnormal 
lymphocytes that cannot cooperate with other human 
cells. And the negative selection lets lymphocytes 
contact with human cells and filters out the active ones 
since they misjudge normal cells as enemies, producing 
the phenomenon of autoimmunity. The lymphocytes 
that pass both positive and negative selections are said 
to be mature and are able to shoulder the important duty 
of epidemic prevention.  

There are many researchers that proposed and 
designed IDS systems that embody the concept of 
human immunity [14][15][16]. The basic idea is to map 
certain computer characteristics as antibodies, and then 
cultivate random-chosen antibodies to be mature. For 
example, we can represent a network connection to be a 
byte stream with length L based on some basic 
information. We also define the sentries of IDS system 
as byte stream with length L. Those sentries correspond 
to lymphocytes in immune system and are responsible 
for detecting intrusions. When the byte stream 
representing certain network connection matches a 
detector, this connection might be dangerous.  
 
2.4: Weaknesses of Signature-based IDS 
 

To detect intrusions, signature-based IDS has to 
detect and match certain pattern exactly before it can 
judge the pattern as an attack. For this reason,  
attacking steps can be interleaved with normal patterns 
to accomplish invasion slowly and stealthily. These 
types of attacks are called Mimicry Attacks [2]. Another 
kind of mimicry attacks is called the collaborative attack. 
In order to escape detection, malicious process can fork 
another child process to carry out invasion. Most IDS 
systems will monitor related, forked actions and  
inspect child processes with equal emphasis to prevent 
such attacks. However, if both the parent and child 
processes finish parts of intrusion steps and exchange 
their results through Inter-Process Communication 
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(IPC), the attack will be undetectable by original 
methods. For example, if we define the following 
sequence of system calls as a simple intrusion pattern: 

open("/etc/passwd"); 
write("/etc/passwd"); 
close( ); 

It will be undetectable by general IDS systems if we let 
the parent process do the open system call and let the 
child process finish the write.  

 
3: System Requirements and Design Issues 
 

In this section, we first introduce how to use negative 
selection mechanism to filter out unsuitable detectors, 
and then propose solutions to dispute collaborative and 
inherited attacks, which are of mimicry attack type. 
 
3.1: Inspection of Improper Templates 
 

In order to lower the false positive rate, we collect 
normal system call sequences on a clean system and use 
this data to examine user-defined templates. There are 
two phases in this procedure: one is the training phase 
and the other is the testing phase. 

In the training phase, we collect system call 
sequences of normal actions to build the Normal 
Database. This is much like the method used in 
Anomaly IDS. However, the normal database in 
Anomaly IDS is used for intrusion detection. Contrarily, 
we use normal database to inspect user-defined patterns, 
as shown in Figure 1. 
 

 
Figure 1. The negative selection procedure. 

 
In the testing phase, if the comparison gets 

positive reactions, it means that this template might 
cause normal behaviors to be misinterpreted as 
abnormal ones. In this case, the system will warn users 
of this event. With the testing procedure inspired from 

human immune system, we can diminish the loss caused 
by improper template detectors. 
 
3.2: Prevention of Collaborative and Inherited 
Attacks 
 

When a process is being monitored, one FSM 
instance is created for each possible intrusion path to 
trace the process’s status. All these related instances 
will be updated according to their execution situations. 
If this process issues a fork system call, its set of 
instances is duplicated to monitor its child. These newly 
created instances would all be in the initial state and the 
execution of child processes are traced independently. 
To prevent collaborative attack, our system will create 
another instance called the family instance. Each family 
instance will be in the same state the parent is in at the 
time the fork system call is issued. An example isshown 
in Figure 2. 
 

 
Figure 2. Example of family instance 

 
After the fork system call, both the parent and child 

processes will have an individual set of monitoring 
instances to prevent them from launching independent 
attacks. In addition, the family instance is used instead 
to prevent collaborative attack. The instance will be 
updated when either the parent or the child requests a 
system call. In this way, no matter how this family 
divides their intrusion steps, the intrusion will be 
detected by our system. 

 
4: System Architecture 
 

Extending from STBIPW, our system is divided into 
two segments; one is the user level components and the 
other is the kernel-level components. We use a device 
driver to act as a bridge between these two segments. On 
one side, the driver passes commands and data to the 
underlying core engine for user configuration. On the 
other side, it also returns execution information back to 
users.  
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Figure 3. System Architecture. 

 
4.1: User Level Components 
 

The main user level module other than STBIPW is 
the Template Testing Module. The purpose is to make 
sure that no inappropriate attack templates are defined 
by the State-based Rule Configuration Interface that 
may cause a high false positive alarm rate.  

The Template Testing Module first selects the 
normal system call sequence from the Normal Behavior 
Database, and then tests to see if it could transform the 
attack template to the template’s ultimate condition. The 
flow is shown in the figure below. The template will be 
inserted into the Wrapper Driver after it is verified. 
Then the kernel modules will execute the monitoring 
program according to the user defined template, and 
detect attack behaviors which match with those ones 
that the users have defined. 
 

 
Figure 4. Template Testing Modules. 

 
4.2: Kernel-Level Components 
 

The main function of the kernel level module is to 
detect real-time attacks. This includes generating an 
FSM object, intercepting system calls, executing the 
state-transition of the attack FSM object, dealing with 
collaborative attacks, and also training the Normal 
Behavior Database. 

The Normal Behavior Database is constructed by 
the Normal Behavior Collector. This collector records 
the system call sequence requested by a normal user 

program in a secure environment. Via the Wrapper 
Driver, a user could set up capturing constraints in the 
Wrapper Manager to record normal system calls. The 
Wrapper Manager could then demand the Normal 
Behavior Collector to train an exclusive Normal 
Behavior Database for any application program 
according to the constraints. The user could decide both 
the duration of training and the size of the database. The 
longer the duration, or the larger the size, the more 
accurate the attack template test can be, resulting in 
reduced false positive alarm rate. 

When the Wrapper Manager intercepts an exec 
system call and compares it with the supervising 
characteristics of the attack template, the manager can 
decide whether this process should be monitored or not. 
If the answer is positive, the Wrapper Manager will 
generate an FSM instance to monitor this process. 
Whenever the wrapped process requests the fork system 
call, the anti-collaborative attack module will generate 
an FSM instance for this newly created child process, 
and also generate an FSM family instance when this 
leading process forms a family. Afterwards, once the 
system intercepts a system call invoked by any process 
in this family, the collaborative attack module will 
verify the FSM instance for that specific process, as 
well as the family instance.  
 
5: Experimental Result 
 

In this section, experimental results are used to 
illustrate the efficiency and practicability of our system.  
 
5.1: Runtime Overhead 
 

The runtime overhead of our system is mainly due 
to state-transition. The first testing program opens a text 
file and copies it to another. All the read and write 
system calls will cause state-transitions in the FSM 
objects of the supervising program. The result is shown 
in Figure 5. The state-transition time is a stable constant 
around 1300μs. Therefore, the larger the file, the longer 
the time used for I/O operations; and the smaller the 
system’s runtime overhead relatively, as shown in 
Table 1. 
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Figure 5. File size vs. Elapsed time. 

 
File Size (MB) 0.5 1 2 3 4 5 
Overhead Percentage 36% 18% 11% 8% 6% 4% 

Table 1. File size vs. System overhead. 
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However, the penalty increases if every system 
calls invoked by processes make FSM instances alter 
their states. In general, when the user customizes attack 
templates to detect intrusions, not every invoked system 
call of suspected process should make the FSM do 
transition. The critical number of key events that would 
change the status of the FSM instance when running in 
real situation should be relatively small compared with 
the total amount of invoked system calls of the 
monitored process. Therefore, in the second evaluation 
experiment, the program behaves the same as in the first 
experiment, but some extra behaviors are added to 
reduce the fraction of the key system calls that cause the 
state-transition in attack templates. Figure 6 shows the 
result, which allows us to claim that the runtime 
overhead is approximately 0 while the ratio of the 
system calls causing the state-transition in attack 
templates is kept under 8%. 

 

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

0 10 20 40 60 80 100
state transition percentage(%)

ru
nt

im
e 

ov
er

he
ad

.

 
Figure 6. Percentage of critical system calls vs. 

overhead. 
 

Next, the file-copying program is used again but 
we increased the number of monitoring templates to 
measure the variation of the runtime overhead against 
the number of monitoring templates. As shown in 
Figure 7, the runtime overhead remains roughly 
constant as the number of FSM instances increases. This 
is because even though the program is being monitored 
by many monitoring FSM instances, not many instances 
transit states simultaneously if the program is normally 
executed since different templates describe different 
intrusion behaviors and thus constitutes  different 
system call sequences.  
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Figure 7. Number of monitored templates vs. 

overhead. 
 

In the third experiment, we study the overhead 
variation due to the number of concurrently running 
processes and give the result in Figure 8. Each process 
is monitored by a single FSM instance derived from an 

identical template. We can see that while many 
processes are running simultaneously, the runtime 
overhead can also remain stable since only one system 
call is invoked by one process at any given time and the 
ratio of critical system calls for certain monitored 
process is fixed. Therefore, the overall runtime 
overhead is nearly fixed. 
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Figure 8. Number of concurrent monitored 

processes vs. overhead. 
 
5.2: Experiments on Intrusion Detection of 
Collaborative Attacks 
 

To detect collaborative attack, we assume that one 
simple attack template is defined as the figure below. 
 

 
Figure 9. Original experiment template on 

collaborative attack. 
 

We use one forged program to launch the 
following attacking system call sequence intended to 
test the anti-collaborative module. 
 
Before fork： 

setreuid(0,0); 
After fork： 

parent process： 
open("/etc/passwd"); 

child proces： 
setreuid(0,0)  
write("/etc/passwd"); 

 
In this experiment, after the parent process 

executes the setreuid system call, the family FSM 
instance transits to state-2. Then, the open request of the 
parent process makes the instance to move to state-3. 
Finally, the write system call issued from the child 
process will update the family instance to move to the 
final state of “being compromised”.  
 
5.3: Precaution Test of Improper Templates 
 

In this section, we use the sftp-server program as 
an example to demonstrate the capability of our 
proposed system in preventing improper user-defined 
templates from violating the usage patterns in a normal 
environment. In order to inspect the sftp-server program, 
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the Normal Behavior Collector is used to collect two 
days worth of normal behavior training session into a 
2MB Normal Behavior Database. Then, we define an 
attack template, as shown in Figure 10, to prevent 
attackers from gaining the root authority and installing 
malicious Trojan horse programs by exploiting the 
loophole of the sftp-server program.  

The attack template we defined is intended to 
prevent attackers from using loopholes to get the root 
authority. Attackers may create new file folders, modify 
privileges, and write invading programs, etc. However, 
after passing through Template Testing Modules, the 
FSM may still move to the final state under normal use. 
This shows that the attack template is not accurate 
enough and may sometimes treat a normal behavior as 
an assault, contributing to the rise of false positives.  
 

 
Figure 10. Improper sftp-server intrusion 

template. 
 
6: Discussions and Conclusions 
 

In this paper, continuing on the work on STBIPW, 
we come up with an intrusion prevention system which 
has the following two advantages over STBIPW:  
(1) The reduction on the false positive rate. We use the 
negative selection mechanism to train a Normal 
Behavior Database to discriminate inappropriate attack 
templates defined by users.  
(2) The discovery of collaborative attacks. Our system 
analyzes the original attack templates and constructs a 
monitoring FSM family instance that enables the 
detection of collaborative attacks. 
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