
A Study of Intrusion Prevention System against Collaborative and Inherited
Attacks*

Tsung-Yi Tsai, Chia-Ming Sung, Wen-Nung Tsai
Department of Computer Science, National Chiao Tung University

{tytsai, chiaming, tsaiwn}@cs.nctu.edu.tw

ABSTRACT

Based on the system call interception technique, we
develop a real-time intrusion prevention system to solve
both the collaborative and inherited attacks. This system
intercepts every system call invoked by application
programs and tries to match any penetration patterns.
Once there are evidences showing certain penetration is
happening, the system can terminate the penetration
process before it hurts the system. To improve detection
accuracy, we build an inspection model analogous to
the human-immunity concept that traces interactions
among processes that constitute a villain family. With
the help of these enhancements, our system can solve
the collaborative attack problems, and can also select
normal-behaved template genes to reduce false positive
alarm rate.

1: INTRODUCTION

The intrusion detection system by far is the most
important multi-function security tools. Based on the
detection methods, IDS systems are divided into two
types: the Anomaly IDS and the Misuse IDS. The Misuse
IDS is more prevalence and uses known and observed
attacking scenarios to build an intrusion characteristics
database. Therefore, the Misuse IDS is also called the
Signature-based IDS. When the monitored behavior
matches an intrusion pattern, the behavior will be judged
as an intrusion. In this manner, the Misuse IDS has the
benefit of low false positive alarm rate, but suffers from
the drawback of low detection rate to new kinds of
intrusions, since no patterns of new attacking scenarios
exist in the system’s signature database.

Similar to the Misuse IDS, the Anomaly IDS has a
database, too. The difference is that the database is used
to store normal behaviors. The Anomaly IDS will tag a
monitored action as abnormal when the action diverges
significantly with normal models in the database.
Although the Anomaly IDS can detect new attacking
scenarios, it also has to bear high erroneous judgment
rate. That is because it is quite hard and uncertain to
exactly define what the normal behaviors are in this
complicated computing world.

 * This work was supported in part by National Science Council,
Contract No. NSC 94-2213-E-009-006

In recent years, most researches on IDS are mainly
focusing on improving detection rate and lowering
erroneous judgment rate. However, some articles also
tried to give warnings to the potential attacks of IDS [3],
such as Mimicry Attacks [2].

In order to reduce the false alarm rate and enhance the
capability of wrapper-based IDS, we proposed and
implemented two improvements on the work of
STBIPW [1]. First, when the user-defined intrusion
template is used to monitor suspect processes, another
wrapper will be spawned to supervise each new-born
child process. Meanwhile, an extra family wrapper is
going to watch out for stealthy interactions among this
family. In this way, our work can prevent malicious
processes from escaping inspection either by single child
process or by collaboration of family process members.
Second, we introduced the Human-Immunity concept
into our system. We used negative selection mechanism
to test user-defined templates and filter out improper
ones to lower false alarm rate.

In this paper, we will first introduce several related
works about IDS systems, and give an overview of
human-immunity system. Then, we will discuss the
mimicry attacks that give several challenges to
signature-based IDS. In Section 3, we will describe how
to conquer several issues on signature-based IDS, and
follow that by the description of the system architecture
of our approach. In Section 5, we use our experimental
and evaluation results to show the detection capability
and the system efficiency of our method. Finally, we give
a brief discussion and conclusion.

2: Related Works

In this section, we first introduce several system call
based IDSs and state-based IDSs that are related to this
paper. Afterwards, we present the human immunity
concept and introduce one intrusion detection system
designed and implemented based on this concept. Finally,
we will discuss some possible attacks to host-based IDSs
and give ways to circumvent their detections.

2.1: System call based Detection Methods

In modern operating systems, user processes gain
access to system resources through system calls. To
provide security checking, it is quite practical to
examine the system calls invoked by suspected

 - 837 -

processes. Many IDS systems are designed with this
concept, such as STBIPW [1] and N-Gram [8][9].
Furthermore, there are two ways to inspect system calls
requested by applications. One way is to use user level
system call interception mechanisms, such as the ptrace
system call provided by OS to transfer execution from
the monitored process to the monitoring process [23]. In
this manner, security system programmers have the
benefit of simplicity since modifying kernel code is not
necessary. But high overhead is the fatal wound since
each execution transfer requires two context switches.
The other way is to intercept system calls via kernel
level mechanisms [5][6][7]. This kind of security
systems is resident mostly in the kernel and hijacks
system calls directly from the system call table. Only
jump instructions are needed to do this hijacking and
thus little overhead penalty are produced compared to
user level mechanisms.

N-gram used system call tracing technology to
build the IDS system, and finally evolved into the
pH-IDS in [10]. The pH-IDS verifies each system call
invoked by the process and determine its status. The
"N" in N-gram means that N continuous system calls are
examined. Each fragment of system call sequence is
matched against a database to detect intrusion. In this
way, N-gram is simple and efficient, but the detection
rate is dependent on the window size N. When N is
large, the comparison result is more precise. However,
the detection rate is also decreased. The other drawback
of N-gram is that only system call sequences are
checked, and system call parameters are not inspected.
Some attacks can be carried out with valid system call
sequences but harmful arguments to achieve the purpose
of attacking. Furthermore, valid system call fragments
can be chosen from normality database and inserted into
intrusion sequence. In this way, the intrusion system
calls are scattered within each fragment and beyond the
scope of window size, thus successfully escaping the
N-gram’s check.

Another system call based IPS is the STBIPW [1].
The STBIPW was proposed and designed by the
security research lab led by Wen-Nung Tsai in National
Chiao Tung University. It is an Intrusion Prevention
System (IPS) that uses the kernel level wrapper
mechanisms to provide real-time prevention.

2.2: FSM-based Detection Methods

The STAT (State Transition Analysis Tool)
[11][12][13] is one well-known IDS system that uses
FSM to analyze intrusion behaviors. It has a modeling
language that is used to describe penetration as a finite
state machine. The STAT is a log investigation system,
which uses FSM to describe attack scenarios and then
feeds system logs into intrusion detection engine to
determine whether the system has been attacked or not.
However, attackers can stop being offensive and leave
without being aware of.

There are many researches that use the concept of
STAT. For example, in the work on STBIPW, a security

platform is provided to allow users to define their own
intrusion templates and to load them into system to do
real-time detection. This system combines both the
concepts of STAT and kernel level system call tracing
mechanisms. It decomposes a penetration event into
many states linked with critical system call transition.

2.3: Immunity-based Detection Methods

Human body is always being in contact with
external materials. All these foreign materials may
contain harmful invaders to human bodies. Fortunately,
we have biological immune system that would detect
and eliminate those foreign intruders. The major player
in our immune system is the lymphocyte, which is more
commonly known as the antibody.

To produce antibodies, the immune system first
picks a random segment from the gene pool. However,
not every gene segment is capable of being a
lymphocyte. The gene segment is fitered with both
positive selection and negative selection processes. The
positive selection leaves behind those abnormal
lymphocytes that cannot cooperate with other human
cells. And the negative selection lets lymphocytes
contact with human cells and filters out the active ones
since they misjudge normal cells as enemies, producing
the phenomenon of autoimmunity. The lymphocytes
that pass both positive and negative selections are said
to be mature and are able to shoulder the important duty
of epidemic prevention.

There are many researchers that proposed and
designed IDS systems that embody the concept of
human immunity [14][15][16]. The basic idea is to map
certain computer characteristics as antibodies, and then
cultivate random-chosen antibodies to be mature. For
example, we can represent a network connection to be a
byte stream with length L based on some basic
information. We also define the sentries of IDS system
as byte stream with length L. Those sentries correspond
to lymphocytes in immune system and are responsible
for detecting intrusions. When the byte stream
representing certain network connection matches a
detector, this connection might be dangerous.

2.4: Weaknesses of Signature-based IDS

To detect intrusions, signature-based IDS has to
detect and match certain pattern exactly before it can
judge the pattern as an attack. For this reason,
attacking steps can be interleaved with normal patterns
to accomplish invasion slowly and stealthily. These
types of attacks are called Mimicry Attacks [2]. Another
kind of mimicry attacks is called the collaborative attack.
In order to escape detection, malicious process can fork
another child process to carry out invasion. Most IDS
systems will monitor related, forked actions and
inspect child processes with equal emphasis to prevent
such attacks. However, if both the parent and child
processes finish parts of intrusion steps and exchange
their results through Inter-Process Communication

 - 838 -

(IPC), the attack will be undetectable by original
methods. For example, if we define the following
sequence of system calls as a simple intrusion pattern:

open("/etc/passwd");
write("/etc/passwd");
close();

It will be undetectable by general IDS systems if we let
the parent process do the open system call and let the
child process finish the write.

3: System Requirements and Design Issues

In this section, we first introduce how to use negative
selection mechanism to filter out unsuitable detectors,
and then propose solutions to dispute collaborative and
inherited attacks, which are of mimicry attack type.

3.1: Inspection of Improper Templates

In order to lower the false positive rate, we collect
normal system call sequences on a clean system and use
this data to examine user-defined templates. There are
two phases in this procedure: one is the training phase
and the other is the testing phase.

In the training phase, we collect system call
sequences of normal actions to build the Normal
Database. This is much like the method used in
Anomaly IDS. However, the normal database in
Anomaly IDS is used for intrusion detection. Contrarily,
we use normal database to inspect user-defined patterns,
as shown in Figure 1.

Figure 1. The negative selection procedure.

In the testing phase, if the comparison gets

positive reactions, it means that this template might
cause normal behaviors to be misinterpreted as
abnormal ones. In this case, the system will warn users
of this event. With the testing procedure inspired from

human immune system, we can diminish the loss caused
by improper template detectors.

3.2: Prevention of Collaborative and Inherited
Attacks

When a process is being monitored, one FSM
instance is created for each possible intrusion path to
trace the process’s status. All these related instances
will be updated according to their execution situations.
If this process issues a fork system call, its set of
instances is duplicated to monitor its child. These newly
created instances would all be in the initial state and the
execution of child processes are traced independently.
To prevent collaborative attack, our system will create
another instance called the family instance. Each family
instance will be in the same state the parent is in at the
time the fork system call is issued. An example isshown
in Figure 2.

Figure 2. Example of family instance

After the fork system call, both the parent and child

processes will have an individual set of monitoring
instances to prevent them from launching independent
attacks. In addition, the family instance is used instead
to prevent collaborative attack. The instance will be
updated when either the parent or the child requests a
system call. In this way, no matter how this family
divides their intrusion steps, the intrusion will be
detected by our system.

4: System Architecture

Extending from STBIPW, our system is divided into
two segments; one is the user level components and the
other is the kernel-level components. We use a device
driver to act as a bridge between these two segments. On
one side, the driver passes commands and data to the
underlying core engine for user configuration. On the
other side, it also returns execution information back to
users.

 - 839 -

Figure 3. System Architecture.

4.1: User Level Components

The main user level module other than STBIPW is
the Template Testing Module. The purpose is to make
sure that no inappropriate attack templates are defined
by the State-based Rule Configuration Interface that
may cause a high false positive alarm rate.

The Template Testing Module first selects the
normal system call sequence from the Normal Behavior
Database, and then tests to see if it could transform the
attack template to the template’s ultimate condition. The
flow is shown in the figure below. The template will be
inserted into the Wrapper Driver after it is verified.
Then the kernel modules will execute the monitoring
program according to the user defined template, and
detect attack behaviors which match with those ones
that the users have defined.

Figure 4. Template Testing Modules.

4.2: Kernel-Level Components

The main function of the kernel level module is to
detect real-time attacks. This includes generating an
FSM object, intercepting system calls, executing the
state-transition of the attack FSM object, dealing with
collaborative attacks, and also training the Normal
Behavior Database.

The Normal Behavior Database is constructed by
the Normal Behavior Collector. This collector records
the system call sequence requested by a normal user

program in a secure environment. Via the Wrapper
Driver, a user could set up capturing constraints in the
Wrapper Manager to record normal system calls. The
Wrapper Manager could then demand the Normal
Behavior Collector to train an exclusive Normal
Behavior Database for any application program
according to the constraints. The user could decide both
the duration of training and the size of the database. The
longer the duration, or the larger the size, the more
accurate the attack template test can be, resulting in
reduced false positive alarm rate.

When the Wrapper Manager intercepts an exec
system call and compares it with the supervising
characteristics of the attack template, the manager can
decide whether this process should be monitored or not.
If the answer is positive, the Wrapper Manager will
generate an FSM instance to monitor this process.
Whenever the wrapped process requests the fork system
call, the anti-collaborative attack module will generate
an FSM instance for this newly created child process,
and also generate an FSM family instance when this
leading process forms a family. Afterwards, once the
system intercepts a system call invoked by any process
in this family, the collaborative attack module will
verify the FSM instance for that specific process, as
well as the family instance.

5: Experimental Result

In this section, experimental results are used to
illustrate the efficiency and practicability of our system.

5.1: Runtime Overhead

The runtime overhead of our system is mainly due
to state-transition. The first testing program opens a text
file and copies it to another. All the read and write
system calls will cause state-transitions in the FSM
objects of the supervising program. The result is shown
in Figure 5. The state-transition time is a stable constant
around 1300μs. Therefore, the larger the file, the longer
the time used for I/O operations; and the smaller the
system’s runtime overhead relatively, as shown in
Table 1.

0

10000

20000

30000

40000

50000

512k 1M 2M 3M 4M 5M
file size

ru
nt

im
e(

μ
 s

ec
on

d)
.

without monitor
with monitor

Figure 5. File size vs. Elapsed time.

File Size (MB) 0.5 1 2 3 4 5
Overhead Percentage 36% 18% 11% 8% 6% 4%

Table 1. File size vs. System overhead.

 - 840 -

However, the penalty increases if every system
calls invoked by processes make FSM instances alter
their states. In general, when the user customizes attack
templates to detect intrusions, not every invoked system
call of suspected process should make the FSM do
transition. The critical number of key events that would
change the status of the FSM instance when running in
real situation should be relatively small compared with
the total amount of invoked system calls of the
monitored process. Therefore, in the second evaluation
experiment, the program behaves the same as in the first
experiment, but some extra behaviors are added to
reduce the fraction of the key system calls that cause the
state-transition in attack templates. Figure 6 shows the
result, which allows us to claim that the runtime
overhead is approximately 0 while the ratio of the
system calls causing the state-transition in attack
templates is kept under 8%.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

0 10 20 40 60 80 100
state transition percentage(%)

ru
nt

im
e

ov
er

he
ad

.

Figure 6. Percentage of critical system calls vs.

overhead.

Next, the file-copying program is used again but
we increased the number of monitoring templates to
measure the variation of the runtime overhead against
the number of monitoring templates. As shown in
Figure 7, the runtime overhead remains roughly
constant as the number of FSM instances increases. This
is because even though the program is being monitored
by many monitoring FSM instances, not many instances
transit states simultaneously if the program is normally
executed since different templates describe different
intrusion behaviors and thus constitutes different
system call sequences.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

10 20 30 40 50

Number of active templates used for testing process

Ru
nt

im
e

O
ve

rh
ea

d

Figure 7. Number of monitored templates vs.

overhead.

In the third experiment, we study the overhead
variation due to the number of concurrently running
processes and give the result in Figure 8. Each process
is monitored by a single FSM instance derived from an

identical template. We can see that while many
processes are running simultaneously, the runtime
overhead can also remain stable since only one system
call is invoked by one process at any given time and the
ratio of critical system calls for certain monitored
process is fixed. Therefore, the overall runtime
overhead is nearly fixed.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

1 2 3 4 5 10

Number of processes being monitored

R
u

n
tim

e
O

ve
rh

ea
d

Figure 8. Number of concurrent monitored

processes vs. overhead.

5.2: Experiments on Intrusion Detection of
Collaborative Attacks

To detect collaborative attack, we assume that one
simple attack template is defined as the figure below.

Figure 9. Original experiment template on

collaborative attack.

We use one forged program to launch the
following attacking system call sequence intended to
test the anti-collaborative module.

Before fork：

setreuid(0,0);
After fork：

parent process：
open("/etc/passwd");

child proces：
setreuid(0,0)
write("/etc/passwd");

In this experiment, after the parent process

executes the setreuid system call, the family FSM
instance transits to state-2. Then, the open request of the
parent process makes the instance to move to state-3.
Finally, the write system call issued from the child
process will update the family instance to move to the
final state of “being compromised”.

5.3: Precaution Test of Improper Templates

In this section, we use the sftp-server program as
an example to demonstrate the capability of our
proposed system in preventing improper user-defined
templates from violating the usage patterns in a normal
environment. In order to inspect the sftp-server program,

 - 841 -

the Normal Behavior Collector is used to collect two
days worth of normal behavior training session into a
2MB Normal Behavior Database. Then, we define an
attack template, as shown in Figure 10, to prevent
attackers from gaining the root authority and installing
malicious Trojan horse programs by exploiting the
loophole of the sftp-server program.

The attack template we defined is intended to
prevent attackers from using loopholes to get the root
authority. Attackers may create new file folders, modify
privileges, and write invading programs, etc. However,
after passing through Template Testing Modules, the
FSM may still move to the final state under normal use.
This shows that the attack template is not accurate
enough and may sometimes treat a normal behavior as
an assault, contributing to the rise of false positives.

Figure 10. Improper sftp-server intrusion

template.

6: Discussions and Conclusions

In this paper, continuing on the work on STBIPW,
we come up with an intrusion prevention system which
has the following two advantages over STBIPW:
(1) The reduction on the false positive rate. We use the
negative selection mechanism to train a Normal
Behavior Database to discriminate inappropriate attack
templates defined by users.
(2) The discovery of collaborative attacks. Our system
analyzes the original attack templates and constructs a
monitoring FSM family instance that enables the
detection of collaborative attacks.

REFERENCES

[1] Tsung-Yi Tsai, Kuang-Hung Cheng, Chi-Hung Chen,

Wen-Nung Tsai, “An Intrusion Prevention System using
Wrapper,” in Proceedings of International Computer
Symposium, pp.1218-1223, 2004.

[2] D. Wagner and P. Soto ., “ Mimicry Attacks on
Host-Based Intrusion Detection Systems,” in Proceeding
of the ACM Conference on Computer and
Communications Security, pp. 255-264, 2002.

[3] T. Garfinkel, “Traps and pitfalls: Practical problems in
system call interposition based security tools,” in
Proceedings of Network and Distributed Systems
Security Symposium, pp. 163-176, 2003.

[4] Tal Garfinkel, Ben Pfaff, Mendel Rosenblum, “Ostia: A
Delegating Architecture for Secure System Call
Interposition,” in Proceedings of the Internet Society's
2004 Symposium on Network and Distributed System
Security, pp.187-201, 2004.

[5] Timothy Fraser, LeeBadger, Mark Feldman, “Hardening
COTS Software with Generic Software Wrappers,” in
Proceeding of the 1999 IEEE Symposium on Security
and Privacy, 1999.

[6] Calvin Ko, Timothy Fraser, LeeBadger, Doublas
Kilpatrick, “Detecting and Countering System Intrusions
Using Software Wrapper,” in Proceedings of the 9th
Usenix Security Symposium, 2000.

[7] Mitchem, T., Lu R., O'Brien R., “Linux Kernel Loadable
Wrappers,” In Proceedings of the DARPA In-formation
Survivability Conference and Exposition, 2000.

[8] S. A. Hofmeyr , S. Forrest , and A. Somayaji, “Intrusion
detection using sequences of system calls”, Journal of
Computer Security, 1998, pp.151-180.

[9] S. Forrest , S. A. Hofmeyr , and A. Somayaji, “A sense
of self for unix processes,” in Proceedings of the 1996
IEEE Symposium on Research in Security and Privacy,
1996, pp.120-128.

[10] A. Somayaji, S. Forrest, “Automated Response Using
System-Call Delays,” in Proceding of 9th Usenix
Security Symposium, 2000, pp.185.

[11] Koral Ilgun, Richard A. Kemmerer, and Phillip A. Porras,
“State Transition Analysis: A Rule-Based Intrusion
Detection Approach,” IEEE Transaction on Software
Engineering, vol.21, no.3, pp.181-199, 1995.

[12] Giovanni Vigna and Richard A. Kemmerer. “NetSTAT:
A Network-based Intrusion Detection System”, Journal
of Computer Security, 1999.

[13] Giovanni Vigna, Steve T. Eckmann, Richard A.
Kemmerer. “The STAT Tool Suite,” in Proceedings of
DISCEX 2000, 2000.

[14] Zhou-Jun Xu , Ji-Zhou Sun , Xiao-Jun Wu , “An
immune genetic model in rule-based state action IDS,” in
Proceedings of International Conference on Machine
Learning and Cybernetics, Vol4, pp.2472-2475, 2003.

[15] Zhao Junzhong, Huang Houkuan, “An evolving intrusion
detection system based on natural immune system,” in
Proceedings of 2002 IEEE Region 10 Conference on
Computers, Communications, Control and Power
Engineering, vol.1, pp.28-31, 2002.

[16] Zhang Yanchao , Que Xirong , Wang Wendong , Cheng
Shiduan , “ An immunity-based model for network
intrusion detection,” in Proceedings of ICII 2001 -
Beijing, vol.5, pp.24-29, 2001.

[17] Yan Qiao, Xie Weixin,“A Network IDS with low false
positive rate,” in Proceedings of the 2002 Congress on
Evolutionary Computation, vol.2, pp.1121-1126, 2002.

[18] Eskin, E., Wenke Lee, Stolfo, S.J., “Modeling system
calls for intrusion detection with dynamic window
sizes,” in Proceding of DARPA Information
Survivability Conference & Exposition II, vol.1,
pp.165-175, 2001.

[19] Massimo Bernaschi, Emanuele Gabrielli, Luigi V.
Mancini. “REMUS: A Security-Enhan-ced Operating
System”. ACM Transactions on Information and System
Security, 2002.

[20] Bai, Y., Kobayashi, H., “Intrusion Detection Systems:
technology and development,” in Proceding of 17th
International Conference, pp. 710-715, 2003.

[21] Ghosh, A.K., Wanken, J., Charron, F., “Detecting
anomalous and unknown intrusions against programs,”
in Proceedings of the 14th Annual Computer Security
Applications Conference, pp. 259-267, 1998.

[22] Phillip A. Porras, “Detecting Computer and Network
Misuse Through the Production-Based Expert System
Toolset (P-BEST)*,” in Proceedings of the 1999 IEEE
Symposium on Security and Privacy, pp.146-161, 1999.

[23] Ian Goldberg, David Wanger, Randi Thomas, “A Secure
Environment for Untrusted Helper Application,” in
Proceedings of the 6th Usenix Security Symposium,
1996.

 - 842 -

