
VMITN: A Novel Intrusion Tolerance Architecture for Treating
the Rapid Propagation of Malicious Programs

Wen-Chun Sun and Yi-Ming Chen
Department of Information Management, National Central University

nivek, cym@mgt.ncu.edu.tw

ABSTRACT

Today’s understaffed IT departments face a daunting
security challenge – protect the enterprise from new,
unknown threats. The most damaging threats,
unfortunately, are coming from fatal malicious
programs, such as zero day worms and viruses, which
are hard to be stopped by traditional security
mechanisms. Therefore, instead of trying to prevent
every single intrusion, in this paper, we adopt a novel
system architecture which will tolerate new worm attack
temperately until administrator removes the
vulnerability. With a set of intrusion pattern recognition
mechanisms and the virtual machine technology, the
proposed VMITN (Virtual Machine based Intrusion
Tolerance Network) is able to achieve the goal of
intrusion tolerance. We have implemented a prototype
of VMITN. We present the design, implementation and
evaluation of this prototype system. Our experiments in
an emulation network proved the reliability and
survivability of VMITN under Code Red worm attack.

1: INTRODUCTIONS

A traditional approach for security engineering is

establishing a preventive barrier, like a firewall or an
IPS, to protect the infrastructure resources from
intruders. Unfortunate, with the increase of network
attack incidents, the efficiency of a single barrier unit is
not good enough to prevent attacks from sophisticated
new attacking skills [4]. New breeds of computer worms
[9] such as SQL Slammer, MS Blaster and Slapper
worms, infect thousands of computers and cause
massive denial of service outages on the Internet.

In contrast to pursue the nearly impossibility of a
perfect barrier, many researchers against rapid
propagation threats are working on intrusion tolerance in
recently years [16]. An intrusion tolerant system is one
that can avoid system failure, continue to function
correctly, and provide the intended services to users in a
timely manner even under attack. In other words,
intrusion tolerance focuses on establishing system
dependability, which is defined as “a property of a
computer system such that reliance can justifiably be
placed on the service it delivers” [1]. In the well-known

fault-error-failure sequence as show in Fig 1 [23], the
failure is defined as a delivered service deviates from
fulfilling the system function and fault tolerance is one
important factor to compensate the disaster derived from
system failure. Intrusion tolerance inherits the same
scheme to provide the system dependability under
network attacks.

Fig 1: Achieving dependability [23]

In this paper we present a novel architecture named

VMITN (Virtual Machine based Intrusion Tolerance
Network) to treat the rapid propagation of malicious
programs. VMITN applied the technologies of OOB
(Out-of-Band) network and virtual machine. An OOB
network is based on a set of physically independent
channels which connect to the second NIC (Network
Interface Cared) of each network node to guarantee the
control of network even the primary network, which
connects to the primary NIC of each node, is under
attacks. The reason why the OOB network could survive
the attack for primary network is due to the use of
virtual machine that uses the VMM (Virtual Machine
Monitor) [10] to isolate the native OS and guest OS
which are connected to the OOB network and primary
network respectively.

One more important factor to the success of
intrusion tolerance is the capability of resisting the mass
destruction even though the malicious worms or virus
propagates very fast. Therefore, we developed a new
algorithm for VMITN to quickly recognize attack
patterns and then seamlessly refresh infected hosts. Fig
2 shows a typical worm chart in which the bold line
presents disaster caused by a worm in the life cycle [3].
In this figure, the number of infected hosts grows fast
and keeps high until the stage of manual blocked takes
place. However, with the redundancy of OOB network

- 849 -

and the quickly switch of guest OS, the VMITN could
withhold the malicious worm propagations (as the dot
line illustrated in Fig 2) to ease the work of manual
intervention.

Fig 2 : Worm Propagation Chart [3]

In this paper is divided into 5 sections. Section 2

states relevant approaches in intrusion tolerance
technology and projects applied VM technologies. The
prototype systems and the design of countermeasures
are discussed in Section 3. In Section 4, some
evaluations are performed in our experimental network.
Section 5 gives our conclusions and explores future
research directions.

2: RELATED WORK

The term “intrusion tolerance” appears originally in

a paper by Fraga and Powell [8]. A number of isolated
intrusion tolerance protocols and systems were emerged
afterward. For example, the scheme –Fragmentation-
Redundancy-Scattering– was used by people who
develop an intrusion-tolerant distributed server
composed by a set of insecure sites [5]. In the meantime,
the Byzantine quorum systems were used to build
security servers and data storage [17]. A threshold
crypto technology was proposed for intrusion-tolerant
file storage and the distribution of user secrets [18].
Recently, two famous intrusion tolerance projects are
OASIS [14] and MAFTIA [19].

Though previous researches in intrusion tolerance
obtained many promising results [14] [19]. Most of
them suffer a shortcoming that their designs are based
on a strong assumption that potential vulnerable
components are predictable [24]. But the central
problem in facing new malicious programs is that the
attacking targets and tricks are usually contrary to
expectation [12]. To solve this problem, some
researches proposed the concept of network topology
dependability [11] which could resist the mass attacks
from malicious programs. The VMITN extends this
concept and adopts the VM technology to tolerate
system level intrusion.

VMM provides a very good trusted computing base
as it has narrow interfaces and small size to isolate
native OS and guest OS [6]. In case of a guest OS
becoming fatal, there is no impact to the native OS. Lots
of researches, such as Collapsar [10] and Revirt [6],
utilize VM technology in network security due to the
following features of VM: (1) restricting hardware
resource access, (2) monitoring all activities on a guest

OS, and (3) forcing a guest OS to power off or changing
peripheral devices. In other words, the VM provides
high controllability and monitorability to native OS to
reconfigure and recover guest OS from failover.

3: DESIGN of VMITN

In this section, we illustrate the VMITN architecture,

describe the implementation of its key components, and
introduce two mechanisms to practice its performance.
The detail implementation of VMITN can be referred in
the paper [2].

3.1: Architecture

The full system architecture of VMITN is shown in

Fig 3. The architecture consists of two major
components: the FES (Front-End System) with VM
enabled is running on each network node and the SMC
(Security Management Center) is a centralized operation
platform for network administrator to control and
monitor all FESs. The OOB network connects the FES
and SMC.

Fig 3: System Architecture

3.2: Front End System

FES is the key element in the VMITN design. As

shown in Fig 3, we use the commercial VMWare GSX
3.1 as the VMM [22]. NIC3 is a virtual equipment on a
guest OS and serves on a primary network while the
physical NIC1 is simulated as a bridge to prevent
hackers to identify, detect or invade native OS. The
physical NIC2 connects to the OOB network.

As shown in Fig 4, there are two programs
implement the function of FES listed below.

SPY: Residing in the guest OS, it not only contains a
HIDS (Host-based Intrusion Detection) to
observe and report health condition but also has
the capability to reconfigure the guest OS.

AGENT: Residing in the native OS, it forwards
messages between SMC and SPY and controls
a guest OS while necessary.

The isolation between the guest OS and the native
OS is guaranteed by the VmCom which is an external
control interface of a guest OS and becomes the only

- 850 -

channel between SPY and AGENT. The VM Switcher
within the AGENT program is used to quickly replace a
compromised guest OS by a fresh new one and will be
described below.

Fig 4: Component in Front-End System

3.3: Rapidly Hand Over

This is an important function of intrusion tolerance.

Once a guest OS is infected by a malicious program, the
VMITN has to replace the infected OS by a new one
immediately to shorten the service down time and
prevent the infected one becoming a zombie to attack
other suspicious hosts on the Internet. Therefore, one
guest OS replication is always ready on line as shown in
Fig 5. A VM Switcher module residing in the AGENT
can hide a backup guest OS in peacetime and support
seamless hand over as soon as a system fault is detected.

Fig 5: VM Hand Over

3.4: Quickly Attack Pattern Learning

To counter the fast propagation of malicious

programs, the early detection of attack traffic is very
important [3][13]. For VMITN, which has a SMC to
centrally analyze the reports from AGENTs through
OOB network, a simple algorithm is developed to block
the attack packets in the very beginning. To make the
algorithm effect, we make two assumptions: (1) Attack
packets from single malicious program must attack one
particular vulnerability on specific port of a victim host.
Therefore, even mutation program dynamically
alternates packet content, some specific pattern still
exist in every attack packet. (2) Malicious programs
must generate the overwhelming volume packets than
other legitimate traffic. For example, a SQL slammer
worm [7] sends a great number of 400 bytes-UDP
packets to scan port 1434.

Our algorithm consists of two stages: the first stage

selects the possible attack packets by the LRU (Least
Recently Used) algorithm which ignores large part of
normal packets by the use of aging and some threshold
value λ. The second stage continues to select the most
specific attack pattern matched with the new possible
attack packet filtered out in the first stage. After this
stage the frequency number of the most matched pattern
will be increase by 1 and if the frequency number is
larger than some threshold value θ, the most matched
pattern will be sent out by SMC to all AGENTs resided
in each host to block the attack packets. Fig 6 shows the
details of the algorithm.

Main ()
{
 For each new packet arrived, extract the packet head
 Separate the src_ip, dst_ip and port to three arrays and
 update the count if it matches to some previous
 records.
 If (updated count > λ) {

 call Attack_Pattern_Matching_Function()
 // find the most specific pattern corresponding to

 // the packet and update the Freq of the former.
 }

 If (Freq > θ) {

 ask the AGENT to block the attack packet with
 the pattern found.

 }
 exit(0);
}

Attack_Pattern_Matching_Function ()
{

 i=0;
 read first record in table
 while(! end of table) {
 compare new packet with current record;
 M [i]=# of attrib equivalence;
 i++;
 next record;
 }

 j= index of record that maximum value M[];
 // find the most specific pattern in current table

 read record[j] ;
 if (seed==1) {
 freq++;
 } else {
 for each attrib with different value from new
 record, set the attrib='*';
 set seed=1;
 freq=1;
 }
}

Fig 6: Attack Pattern Learning Algorithm

- 851 -

Fig 7: An Example of Attack Pattern Match Algorithm

An example of our algorithm is illustrated in Fig 7.

In this figure, when the packet with head of {src_ip,
dst_ip, port} = {140.115.10.10, 192.168.1.1, 25} arrives,
it is fed into the LRU + Aging module and it makes the
last record of the src_ip array increase its count to be
larger than 10 (λ). In the consequence, the system
compares the packet with the pattern existed in the
rough set table. As it most matches to the third record, it
increases the Freq number by 1.

4: PERFORMANCE EVALUATION

We have implemented a set of FESs as well as a

SMC to establish an experimental network and then we
did a number of experiments to measure the
performance.

4.1: Experimental Network

As shown in Fig 8, the experimental network is

separated into 4 sub networks by 6 routers. R1~R4
represent edge routers, while R5 and R6 represent core
routers. There are 7 physical hosts deployed in the
network. One of those hosts is designated as SMC with
one wireless NIC; the others install VM-based FES with
2 network interfaces (one of which is wireless NIC).
Default wired NIC connects to the primary network,
while the secondary 802.11 wireless NIC connects to the
SMC through OOB network. We installed Windows
2003 server as native OS, and Windows XP as the guest
OS. Administrators operate on the SMC to control the
whole network and the experiment processes. All of the
routers and hosts use class B private IP addresses.

4.2: System Performance

To measure how long a SMC needed to restart a

guest OS while the latter is under attack, We list the
average spending time in each detail operation within
the FES in Table 1. It is noted that the time durations of
"SMC Stop Guest OS" and "Restart Guest OS" depend
on different OS environments. Administrators must do

some manual jobs to fix guest OSs. Doing so might take
variable times in different attack cases. Therefore, they
are not counted in this table. The rapid handover
technology described in Section 3.3 can exclude the
non-predicable time and thus can shorten the service
interrupt time within about 2 seconds.

Fig 8: Experimental Network

Table 1: Service Interrupt Time

Item Time (ms)
Sensor alarm intrusion happened 91ms
SPY reported to AGENT 867ms
AGENT forward to SMC 300ms
Display alarm in SMC GUI 49ms
SMC Shutdown Guest OS depends on case
Mount virtual disk 471ms
Manual job (scan and clean) depends on case
Un-mount disk 268 ms
SMC restart Guest OS depends on case
Total 2,046 ms

4.3: Sensitivity of θ

In the "Attack Pattern Learning" algorithm

mentioned before, the sensitive of θ is a very
important factor to detect the outbreak of attacking
packets. The administrator is responsible for adjusting
θ. We use the TFN2K [20] program to emulate a
DDOS attack from host L1-1 to other hosts and measure
the learning time in different attack traffic loads. In Fig
9, the threshold θ is set to three different levels: 100,
200 and 300. Unsurprisingly, the high threshold value
whish represents the FESs is less sensitive to the
existing attack of packets requires longer detection time.
On the other hand, high sensitive detection can block
malicious program under 3 seconds even in low attack
packet rate (eg: < 250 packet/sec).

Fig 9 : Learning Algorithm Sensitivity

- 852 -

4.4: Intrusion Torrance to Rapid Propagation

Threat

To measure the intrusion tolerance capability of

VMITN in facing a rapid propagation malicious
program, we develop a program to emulate the behavior
of Code Red worm The program sends 1826 packet/sec
to port 80 with localized scanning strategy [25], that
choices a random address within class B in probability
3/8, within class A in probability 1/2, others for the
whole Internet. We lunched the Code Red worm
emulator at one of hosts of the experimental network in
initial and observed there were distinct propagation
behaviors in different countermeasures.

In Fig 10, the bold line represents the average
propagation speed in 20 experiments without any
countermeasure enabled. It is noted that all six hosts are
infected within 6 seconds. The other line represents the
worst case within 20 experiments when "Rapidly Hand
Over" countermeasure is enabled. An infected host
propagates the worm before it is refreshed and it might
be re-infected after refreshed because the vulnerability
still exists. If the speed of refresh is faster than the
propagation speed of worm, the worm would be finally
cleaned from the network. In the 20 experiments we
performed, infected hosts are controlled under 4 or less
hosts and worm is cleaned in average 7.8 seconds.

Fig 10 : Rapidly Hand Over Resists Code Red

In Fig 11, the dotted line represents the worst case

within 20 experiments when "Attack Pattern Learning"
technology is enabled to block continuously infecting
next suspicious victims. Due to the lack of the clean
mechanism, worm propagation is faster then Fig 10 at
beginning, but propagation stopped once the scan
packets pattern is learned. The experiments showed that
the algorithm can detect the disproportional scanning
packets appearing in the network and correctly figure
out the pattern in average 3.7 seconds. This in turn
allowed the worm attacks 4 hosts at most.

In Fig 12, both “Rapid Hand Over” and “Attack
Pattern Learning” are enabled at the same time. Due to
"Rapidly Hand Over" is started during the pattern
learning period, the number of attacking packet is
decreased than experiment in Fig 11. For this reason, the

learning efficiency is slowed down to average 5.7
seconds in 20 experiments. The worm is cleaned in
average 6.1 seconds; however, the maximum number of
affected hosts in these experiments is reduced to 3 hosts.

Fig 11 : Attack Pattern Learning Resist Code Red

Fig 12 : Both Countermeasures Enabled

We measured the availability of VMITN by

accumulate average health hosts with correct service in
20 seconds experiment when both “Rapid Hand Over”
and “Attack Pattern Learning” are enabled. The result
showed average 86% hosts are health to service after
Code Red worm lunched. Even in the peak of worm
infection, only 50% victims are infected.

5: CONCLUSIONS

Impeding new attacks is a key challenge in current

network security society. Intrusion tolerance is a new
approach, which tolerates the existence of vulnerabilities
while keeps the mission critical applications running.

In this paper, we present the design and
implementation of a novel intrusion tolerant architecture
which applies VM-based and OOB network to support
reliable control even though the primary network is
under severe attack. Our experiments in an isolated
network show that by “Rapid Hand Over” and “Attack
Pattern Learning” technologies, the VMITN could keep
up to 86% service capability while limit the victim
number under 50% of total hosts in facing a new
malicious worm.

It is worth to continue some points in this research in
the future: (1) FESs are expected to be migrated from
commercial software VMWare to open-source VM
platforms, like UML [21]. (2) In our implementation,

- 853 -

the SMC can not handle GUI events in the guest OS.
The handling of GUI event should be implemented in
the future. (3) Currently we only emphasize on the
handover of OS, the performance decrease of
application due to the handover of OS should be
concerned and improved.

6: REFERENCES

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr,
“Basic concepts and taxonomy of dependable and
secure computing”, IEEE Trans. Depend. Secure
Comput., vol. 1, no. 1, pp. 11–33, Jan.–Mar. 2004.

[2] Yi-Ming Chen, Wen-Chen Sun, "A reliable remote
control platform to oppose a large scale attacking",
Symposium on Applications of Information, and
Communication Technology (SAICT), Kaohsiung,
Taiwan, June 2006.

[3] Xuan Chen and John Heidemann, "Detecting Early
Worm Propagation through Packet Matching", USC
Information Sciences Institute Technical Report,
ISI-TR-2004-585, February 2004.

[4] Yves Deswarte, David Powell, "Internet Security: An
Intrusion-Tolerance Approach", Proceedings of the
IEEE, VOL. 94, NO. 2, 2006

[5] Y. Deswarte, L. Blain, J.C. Fabre, "Intrusion tolerance
in distributed computing systems", In: Proceedings of
the IEEE Symposium on Research in Security and
Privacy.

[6] G. Dunlap, S. King, S. Cinar, M. Basrai, P. Chen,
"ReVirt: Enabling Intrusion Analysis through
Virtual-Machine Logging and Replay", Proceedings of
the 2002 Symposium on OSDI.

[7] eEye Digital Security, "SQL Worm Analysis",
http://www.eeye.comhtml/Research/Advisories/AL2002
0522.html

[8] J.S. Fraga, D. Powell, "A fault- and intrusion-tolerant
file system" In: Proceedings of the 3rd International
Conference on Computer Security. 203–218, 1985.

[9] Eul Gyu Im, Jung Taek Seo, Dong Soo Kim, Yong Ho
Song, Yong Su Park. "Hybrid Modeling for Large-Scale
Worm Propagation Simulations." In Proceedings of the
2006 IEEE ISI 2006, San Diego, CA, USA. May 2006

[10] Xuxian Jiang, Dongyan Xu "Collapsar: A VM-Based
Architecture for Network Attack Detention Center",
Proceedings of 13th USENIX Security Symposium
(Security'04), San Diego, CA, August, 2004

[11] Havard Johansen, Andre Allavena, Robbert van Renesse,
"Fireflies: Scalable support for intrusiontolerant
network overlays", In Proceedings of Eurosys 2006.

[12] J. E. Just, J. C. Reynolds, L. A. Clough, M. Danforth3,
K. N. Levitt, R. Maglich, J. Rowe, "Learning Unknown
Attacks—A Start,” Proceedings of the 5th International
Symposium, 2002.

[13] Yoohwan Kim, Wing Cheong Lau, Mooi Choo Chuah,
H. Jonathan Chao, "PacketScore: A Statistics-Based
Packet Filtering Scheme against Distributed
Denial-of-Service Attacks," IEEE Transactions on
Dependable and Secure Computing, vol. 3, no. 2, pp.
141-155, 2006.

[14] J. H. Lala, "OASIS—Foundations of Intrusion-Tolerant
Systems", Los Alamitos, IEEE Comput. Sci., 2004.

[15] Fu-Yuan Lee, Shiuhpyng Shieh, "Scalable and
lightweight key distribution for secure group
communications", International Journal of Network

Management, Volume 14 Issue 3, May 2004.
[16] Mirage Network, "Combating Rapidly Propagating

Threats From the Internal Network", 2003
http://www.appliednetsec.com/productresources/mirage
/Combating RPTs from the Internal Network
10pages.pdf

[17] D. Malkhi, M.K. Reiter, D. Tulone, E. Ziskind,
"Persistent objects in the Fleet system" In: Proceedings
of the 2nd DARPA Information Survivability
Conference and Exposition (DISCEX II). 2001

[18] F. B. Schneider and M. A. Marsh, “CODEX: A robust
and secure secret distribution system,” IEEE Trans.
Depend. Secure Computer, vol. 1, no. 1, 2004.

[19] R. Stroud, I. Welch, J. Warne, and P. Ryan, "A
qualititative analysis of the intrusion-tolerant
capabilities of the MAFTIA architecture", Int. Conf.
Dependable Systems and Networks (DSN), Florence,
Italy, 2004.

[20] Tribal Flood Network2K
http://staff.washington.edu/dittrich/misc/tfn.analysis

[21] User Mode Linux.
http://user-mode-linux.sourceforge.net

[22] VMWare http://www.VMWare.com/
[23] P. Verssimo, N. F. Neves, and M. P. Correia.

"Intrusion-tolerant architectures: Concepts and design".
Architecting Dependable Systems, volume 2677 of
Lecture Notes in Computer Science. Springer-Verlag,
2003.

[24] F. Wang, R. Uppalli, "SITAR: A Scalable
Intrusion-Tolerant Architecture for Distributed
Services", In Volume II of the Proceedings of DISCEX
III, pages 153--155, April 2003.

[25] C.C. Zou, W. Gong, D. Towsley, "Code Red worm
propagation modeling and analysis", In: Proc. of the 9th
ACM Symp. on Computer and Communication Security.
Washington, 2002. 138~147.

- 854 -

