
A Flexible Labeling Scheme for Efficient Structural Join
over XML Graph*

Kuen-Fang Jea, Chien-Ping Chou, Shih-Ying Chen
Department of Computer Science, National Chung-Hsing University

Taichung 402, Taiwan, R.O.C.
{kfjea, phd9402, sychen}@cs.nchu.edu.tw

ABSTRACT

The most important operation of querying XML
documents is finding occurrences of structural
relationships between tagged elements. Performing such
structural joins needs to encode nodes in XML
documents. Once each node is labeled by the
interval-based labeling scheme, structural relationships
between nodes can be determined easily in constant time.
However this paper shows that traditional approaches
work only for tree-structured data and cannot be
applied to XML documents being modeled as arbitrary
graphs.

The main contribution of this paper is the solution of
matching structural relationships in graph-structured
XML data, under a new interval-based labeling scheme.
Based on the idea of e-nodes, each XML node can be
labeled (with an optional E-List) appropriately by our
G_encoding algorithm for solving the
multiple-inheritance and cyclic-path problems. We have
formally analyzed the properties of the new labeling
scheme, and developed an efficient structural join
algorithm SJG using the scheme.

1: Introduction*

The most important operation of querying XML data

is finding occurrences of structural relationships
between tagged elements, such as ancestor-descendant
and parent-children relationships. For example, an
XQuery expression: //bank[branch_city=
‘Brooklyn’]//account returns all accounts of every
branch bank located in the ‘Brooklyn’ city. There exist
three structural relationships of (ancestor, descendant) in
the example, including (bank, branch_city),
(branch_city, ‘Brooklyn’) and (bank, account). Several
solutions for matching such structural relationships in
XML or semi-structured documents were proposed.
Zhang et al. [11] presented a multi-predicate merge-join
(MPMGJN) algorithm, which outperforms the
traditional merge-join and index nested-loop join
algorithms. Al-Khalifa et al. [2] proposed two families
of structural join algorithms, namely
Tree-Merge-Anc/Desc and Stack-Tree-Anc/Desc.
Recently papers by Chien et al. [4] or Kim et al. [9]
proposed even more efficient structural join algorithms

* This research is supported in part by NSC in Taiwan, R.O.C. under
Grant No. NSC-95-2221-E-005-048.

by skipping unnecessary node scan in different ways.
For example, several index-based solutions for structural
join algorithms using XB-tree [3], B+-tree [4] or
XR-tree [8] were proposed.

Performing structural joins in [2][4][9][10][11]
needs to encode nodes in XML documents. The position
of an XML element is usually represented as a 3-tuple
(DocId, StartPos: EndPos, LevelNum) [2][4][9][11]
where DocId is the document identifier, LevelNum is the
nesting depth, and StartPos and EndPos are generated
by counting word numbers from the beginning of the
document to the start and to the end of the element
respectively. A depth-first-search (DFS) [5] algorithm is
employed in encoding (labeling), which explores all the
elements in the top-down and left-to-right manner.
Structural relationships between elements can be
determined easily by comparing their intervals between
StartPos and EndPos. A tree node u is an ancestor of a
tree node v if and only if u.DocId = v.DocId, u.StartPos
< v.StartPos, and u.EndPos > v.EndPos; a parent-child
relationship also requires that u.LevelNum =
v.LevelNum – 1. For example, Figure 1(a) is an XML
document with six elements, and Figure 1(b) illustrates
the result of DFS labeling. The DFS algorithm visits
nodes A, B, C, D, E and F in turn. Node A is labeled as
(1, 1: 12, 1), node B is labeled as (1, 2: 5, 2), and so on.

The IDREF and IDREFS features in XML
documents make multiple-inheritance possible, as
several paths may exist from one node to another.
Element sharing is specified using element IDs and
IDREFS, and XML data can then specify nested and
cyclic structures, such as trees, directed-acyclic graphs,
and arbitrary graphs. Some well-known XML query
languages, like XML-QL [6] and Lorel [1], support
matching path expressions for graph-structured XML
data. However, the proposed structural join solutions
[2][4][9][11] are limited to the tree-structured XML data.
They cannot manage arbitrary graphs with
multiple-inheritance, or even with cyclic paths. As
shown in Figure 1(b), both nodes B (1, 2: 5, 2) and D (1,
6: 7, 2) are ancestors of node C (1, 3: 4, 3), but the
interval of node D, i.e., (6: 7), does not contain that of
node C, i.e., (3: 4). Here we can see that the existing
interval-based labeling schemes fail because they only
work for trees. To overcome this limitation, we propose
in this paper a node-labeling scheme for a rooted
directed cyclic graph allowing multiple-inheritance and
cyclic paths. Further, we propose a structural join

- 868 -

D

F

E

C

B

(1, 1: 12, 1)

(1, 2: 5, 2)

(1, 6: 7, 2)

(1, 8: 11, 2)

(1, 3: 4, 3)
(1, 9: 10, 3)

Employee

Manager Spouse Name

“Helen” “John”

(a) (b)

A

Figure 1. An XML document and DFS labeling.

algorithm based on this node-labeling scheme to match
structural relationships in graph-structured XML data.

The rest of the paper is organized as follows. Section
2 describes the new labeling scheme, followed by a
structural join algorithm using this new scheme in
Section 3. Finally Section 4 concludes this study and
discusses its future work.

2: Node Labeling Scheme

Our labeling scheme is based on the idea of e-nodes
for labeling nodes over XML data. A labeling algorithm
derived from DFS [5] is also developed to support
structural joins for XML graphs.

2.1: E-Lists and E-nodes

Our labeling scheme starts by labeling nodes in a
graph with an extended DFS algorithm. During DFS
each node (element/string) in XML documents is
labeled as (DocId, StartPos: EndPos, LevelNum), whose
format is the same as that in [2][4][9][11]. We will omit
DocId below if no confusion occurs.

Definition 1. Let graph G = (V, E) where V is a set of
XML document nodes and E is a set of edges between
nodes in V. Edges (u, v)∈E where u, v∈V are classified
during DFS labeling. Tree edges are those edges (u, v)
if vertex v is first visited by exploring edge (u, v). Back
edges are those edges (u, v) connecting a vertex u to an
ancestor v. Forward edges are those non-tree edges (u,
v) connecting a vertex u to a descendant v. Cross edges
are any other edges. We use the “Labeled DFS Graph”
to indicate a graph after DFS labeling.

Both forward edges and cross edges point to nodes

that have been explored completely. Without loss of
generality, cross edges are regarded as forward edges in
a Labeled DFS Graph because our labeling scheme
treats them in the same way.

For simplicity, we use b/f edge to indicate
back/forward edge and use (S: E, L) to denote (StartPos:
EndPos, LevelNum). Interval (S: E) denotes the range
from StartPos to EndPos, and (Su: Eu, Lu) denotes (u.S:
u.E, u.L) for certain node u.

In our scheme, we construct an e-node(v) for each
back/forward edge (u, v) and store it into a list
associated with node u, namely E-List(u). Note that our
scheme does not distinguish forward and cross edges.
E-node(v) is derived from node v and labeled as (S: E, L)
= (Sv: Ev, Lv –1). Due to the transitivity rule, whenever
an e-node is stored into E-List(u), it should also be saved
in E-List(m) for each node m on the path from u to the
root comprising only tree edges. Conversely, whenever
an e-node(v) is in E-List(u), all e-nodes in E-List(v) are
all in E-List(u). Copying e-nodes from E-List(v) to
E-List(u) implies the existence of a path consisting of
multiple b/f edges. E-node’s LevelNum will decrease 1
each time when it is stored into E-List. Generally,
LevelNum must be a positive value because it stands for
a node’s depth in a tree; however, LevelNum of e-nodes
could be negative in our proposal. We use Example 1
below to illustrate the generation of e-nodes.

Example 1. In Figure 2, edge (E, C) is a forward edge,

E

D

F B

A

so e-node(C) = (3: 6, 2) is saved into E-List(E). Further,
an e-node (3: 6, 2–1), i.e., (3: 6, 1), is saved into
E-List(A) to reflect the fact that we can walk from node
A to node D via the forward edge (E, C). The interval of
e-node (3: 6, 1) contains that of node D, resulting in a
path A ~ D including the forward edge (E, C). Also, if

forward edge

(1: 12, 1)

(2: 7, 2)

(8: 9, 2)

(10: 11, 2)

(3: 6, 3)

(4: 5, 4)

(3: 6, 1)

(3: 6, 2)

E-List(A)

E-List(E)

C

Figure 2. E-List, e-node and forward edge.

- 869 -

there is an e-node(a: b, c) should be placed in E-List(C),
then an e-node (a: b, c–1) is saved into E-List(D) and an
e-node (a: b, c–2) into E-List(A).

E-Lists and e-nodes are devised to deal with the

mu

e have the following Lemmas for our Labeled
DF

emma 1. In a Labeled DFS Graph where nodes are

]) Note that for all nodes u, Su<

v was visited while the subtree rooted

< Ev, implying that

ly.

emma 2. In a Labeled DFS Graph, if node u is an

ge (u, v) is a tree edge, interval (Su: Eu) will

)

emma 3. By restricting that any b/f edge does not

nd
forward edges only point to the descendant nodes. Any

ma 4. The number of b/f edges in the Labeled DFS
raph equals the summation of [(number of incoming

 is first visited by exploring edge (u,

mbination of multiple b/f edges, meaning a
ath consists of more than one b/f edge, could not be

ma

L Graph

m,
amely G_encoding in Figure 3, works as follows. First

a m

hen exploring node
E,

ltiple-inheritance and cyclic path problems. If there
exists any b/f edge, the intervals (S: E) of ancestor and
descendant would fail to determine their structural
relationships in traditional approaches. For example, in
Figure 2, node E is an ancestor of node D, but interval
(SE: EE) does not contain interval (SD: ED). In contrast,
E-nodes are very useful in dealing with this situation.
We insert an e-node(C) labeled as (3: 6, 2) into
E-List(E), and then node E uses the e-node(C) to contain
node D. Certainly, if there exists a path from node C to
node Z, then the path length from E to Z is equal to (the
path length from C to Z) + 1. This is the reason why we
set Le-node(C) to LC –1. When E is considered as the
ancestor, it makes an “expansion” to include all of its
e-nodes, meaning that E connects to its children not only
by tree edges but also by b/f edges.

W
S Graph. Note that in Lemma 1, according to [5], if

two intervals intersect, it cannot be the case that one
interval is entirely contained in the other one.

L
labeled by value (S: E, L), intervals (S: E) do not
intersect each other.
Proof: (excerpt from [5
Eu. Let u, v be two nodes in a Labeled DFS Graph, and
we begin with the case in which Su < Sv. There are two
sub-cases:
(i) If Sv < Eu, then
at u was being labeled. This implies that v is a
descendant of u, and interval (Sv: Ev) is entirely
contained within interval (Su: Eu).
(ii) If Sv > Eu, then Su < Eu < Sv
intervals (Sv: Ev) and (Su: Eu) are disjoint.
The case in which Sv < Su is proved similar

L
ancestor of node v, then the three conditions S ≤ Sv, E ≥
Ev, and L < Lv must hold, where (S: E, L) ∈ {(S: E, L)|
(S: E, L)= (Su: Eu, Lu) or (Se: Ee, Le), ∀ e ∈ e-nodes in
E-List(u)}.
Proof: If ed
contain interval (Sv: Ev). Due to the transitivity rule,
interval (Su: Eu) will also contain the interval (Sz: Ez) for
all v’s descendants z. Hence the three conditions hold.
If edge (u, v) is a b/f edge, e-node(v) will be in E-List(u
to assure the three conditions hold, because v is an
ancestor of z and so is e-node(v).

L
appear twice in one specific path, there exists no cyclic
path that loops endlessly in the Labeled DFS Graph.
Proof: Tree edges will lead to leaves eventually; a

path comprising tree edges and forward edges will reach
its end for sure. In contrast, only back edges cause loops.
If they are restricted to traverse only once, in the worst
case there exists a very long cyclic path that consumes
all back edges, and then there will be no loop problem at
all.

Lem
G
edges of node v) –1] for all nodes v having more than
one incoming edge.
Proof: According to Definition 1, tree edges are those
edges (u, v) if node v
v). Thus, if node v has more than one incoming edge,
then only one of these edges is a tree edge (the edge
explored while node v is first visited) and others are all
b/f edges.

The co
p

naged completely by DFS. Suppose (v, u) is a back
edge during DFS search. It implies that u is an ancestor
of v and u is not yet explored completely at that moment,
because not all of the children nodes (including node v)
of node u have been explored. According to the
transitivity rule, e-node(u) is saved into E-List(v) and so
are e-nodes in E-List(u). However since node u is not
completely explored and thus E-List(u) is not
constructed entirely, we may lose e-nodes that should be
saved into E-List(u) and thus lose paths, for example, a
cyclic path which contains u ~ v ~ u. Hence we have to
scan the whole E-Lists repeatedly until no more e-nodes
are left. The basic idea of tackling this problem is to
insert those e-nodes into E-List(v) from E-List(u) that
are not inserted in Procedure DFS. However, this may
lead to the cascading insertion of e-nodes.

2.2: Node Labeling Scheme over XM

The proposed interval-based node-labeling algorith
n

odified DFS procedure is adopted to label each node
and compute E-Lists. In the DFS, Procedure DFS_Visit
explores all edges recursively by marking b/f edges and
generating e-nodes. Function EList_Growing generates
more e-nodes to handle paths consisting of multiple b/f
edges and returns a value to indicate if there are e-nodes
generated. E-List uses a flag “Change” (initialized to the
False value) to indicate if E-List is growing or not.
EList_Growing follows from Lemma 3 to ensure that no
cyclic path loops endlessly, and it scans E-Lists several
times to ensure no e-node is missed.

Consider the example in Figure 2. DFS explores
nodes A, B, C, D, E and F in turn. W

edge (E, C) is classified as forward edge (because
node C was visited), and we put an e-node(C) labeled as
(SC: EC, LC –1) = (3: 6, 2) into E-List(E) in Step 3.4 of
DFS_Visit. Later when DFS finishes examining node
E’s adjacency list, we put all e-nodes of E-List(E), say
(3: 6, 2–1) = (3: 6, 1), into E-List(A) in Step 3.4 of

- 870 -

DFS_Visit. Suppose there is an e-node (S: E, L) in
E-List(C) that does not appear while edge (E, C) is
explored. Then e-nodes (S: E, L–1) and (S: E, L–2) will
be put into E-List(E) and E-List(A) respectively in Step

1.2 of EList_Growing. Note that in Steps 3.3 and 3.4 of
DFS_Visit and Step 1.2 of EList_Growing, the e-node’s
LevelNum decreases 1 each time when it is stored into
the E-List.

Algorithm G_encoding(G) {

 cyclic graph
ntaining the complete set of e-nodes)

ing(G) repeatedly till it returns False;

itialize time-stamp times to 0;
 if u was not visited before;

(u, levels, times, E-List(u)) {

isited”;
’s LevelNum to levels and u’s StartPos to times;

oto Step 3.4;

’s

s E-Lists)
ists grow

ep 2; otherwise goto Step 1.1;
1 and E-List(v) is

rn True;

Input: G = (V, E), a rooted directed
Output: G (with labeled nodes and G’s E-Lists co
Method:

bel nodes in G in DFS order by calling DFS(G); Step 1: la
Step 2: generate all the E-Lists of G by calling EList_Grow
}

ocedure DFS(G) { // Labeling nodes in G Pr
Input: G= (V, E), a rooted directed cyclic graph
Output: G (with labeled nodes and G’s E-Lists)
Method:

ark each node in G “not visited” and inStep 1: m
Step 2: for each node u in G, label u by calling DFS_Visit(u, 1, times, E-List(u))
Step 3: return G;
}

ocedure DFS_VisitPr
Input: node u, u’s levels, time-stamp times, E-List(u)
Output: u, E-List(u)
Method:

ark node u “vStep 1: m
Step 2: increase times by 1, set u
Step 3: for each node v adjacent to u, if v was not visited, goto Step 3.1; otherwise g
Step 3.1: mark u as v’s parent;

 calling DFS_Visit(v, levels+1, times, E-List(u)) recursively; Step 3.2: label nodes under v by
Step 3.3: insert the set {x | x∈E-List(v)} into E-List(u), goto Step 4;

 Step 3.4: insert the set {e-node(v)} ∪ {x | x∈E-List(v)} into E-List(u);
Step 4: mark node u “done”;

d set u EndPos to times; Step 5: increase times by 1 an
}

nction EList_Growing(G) { Fu
Input: G (with labeled nodes and G’
Output: Boolean // return False if none of E-L
Method:

E-List(u) does not exist, return False and goto StStep 1: if
Step 1.1: for each e-node(v) in E-List(u), if e-node(v)’s LevelNum = v’s LevelNum–

changed, then goto Step 1.2; otherwise goto Step 2;
Step 1.2: insert the set {x | x∈E-List(v)} into E-List(u) as well as into E-List(t) for each u’s ancestor node t;
Step 1.3: mark E-List(v) “not changed” and E-List(u) “changed”;
Step 2: remove duplicates in E-List;

turn False; otherwise, retuStep 3: if none of E-List are changed, re
}

Figure 3. Algorithm G_encoding for node labeling.

2.3: Analysis of G_encoding Algorithm

The first step in Algorithm G_encoding is DFS
ess

operations (as described in the next Section) can be

3: Structural Join

Our structural join algorithm “SJG”, standing for
“St

entially. Both the time and space complexities are
O(|V| + |E|) if graph G = (V, E) is represented by an
adjacency list, or O(|V|2) if graph G is represented by an
adjacency matrix. Computing E-Lists in procedure
DFS_Visit costs O(NL * |V| * (Ne + Ne * NL) / 2), where
Ne = average number of e-nodes in each E-List and NL =
average number of nodes associated with an E-List. NL
equals to |V| in the worst case, the time and space
complexities are O(|V|3 * Ne). However since E-Lists
grow during the DFS labeling, it may require more than
one pass to scan E-Lists until no more E-List grows.
Although the time and space complexities may grow
tremendously in the worst case, it is a one-time cost and,
once all nodes have been labeled, the structural join

performed very efficiently hereafter.

ructural Join on Graph”, is derived from existing
structural join algorithms like Tree-Merge-Desc [2] but
under the new labeling scheme described in Section 2.
Consider an ancestor-descendant relationship u//v, and
let A-List and D-List be the two lists of nodes that match
the predicates on u and v, respectively. Taking the two
lists as input, Algorithm SJG first expands A-List, then
outputs all pairs of nodes that match structural
relationships in order of descendant’s (or ancestor’s)
StartPos by Function Tree-Merge-Desc, and finally
removes duplicate results. There are three major

- 871 -

differences between our structural join algorithm and
that in [2].
(1) Before Tree-Merge-Desc proceeds, SJG performs an

“expansion” process which makes all e-nodes in
E-List(u), ∀u∈nodes in A-List, be included in

A’-List. This process is necessary since nodes in
A-List can use their e-nodes to join nodes in D-List.

(2) With the help of e-nodes, SJG uses the conditions in
Lemma 2 to determine structural relationships.

(3) Duplicates need to be removed from the result set of
node pairs in SJG.

Algorithm SJG(A-List, D-List) {
Input: A-List: the list of potential ancestors sorted in order of StartPos; D-List: the list of potential descendants
sorted in order of StartPos
Output: OutputList // result of Structural Join (of A-List and D-List) on Graph
Method:
Step 1: expand A-List into A’-List by calling Expansion(A-List);
Step 2: perform structural join by calling Tree-Merge-Desc(A’-List, D-List) and store the result in OutputList;
Step 3: eliminate duplicates in OutputList;
}
Function Expansion(A-List) {
Input: A-List
Output: A’-List //a list of node pairs <u, eu>, where eu is an ancestor for join, u is for output
Method:
Step 1: generate A’-List by collecting u, ∀u∈nodes in A-List, and e-nodes in E-List(u);
Step 2: sort node pairs in A’-List by the second tuple’s StartPos and LevelNum;
Step 3: return A’-List;
}
Function Tree-Merge-Desc(A’-List, D-List) {
Input: A’-List={<u, eu>}, D-List={<u>}
Output: OutputList
Method:
Step 1: for each node d in D-List
Step 2: for each node pair <u, eu> in A’-List,
Step 3: if eu is an ancestor of d, then add <u, d> into OutputList;
Step 4: return OutputList;
}

Figure 4. Algorithm SJG for structural join.

3.1: Algorithm SJG

Figure 4 depicts our Algorithm SJG that performs
structural joins over the Labeled DFS Graph, together
with its two major functions Expansion and
Tree-Merge-Desc.

In Function Expansion, A-List is expanded into
A’-List whose elements are in the form of node pairs
<output_node, join_node>. join_node is used as
ancestor for joining with descendants, and output_node
is for output. For instance, in Figure 5, if A-List contains
node G (12: 13, 2) which has an e-node (3: 6, 2), then
A’-List will include the node pair <(12: 13, 2), (12: 13,
2)> and <(12: 13, 2), (3: 6, 2)> due to Step 1 of
Expansion. The node pair <(12: 13, 2), (12: 13, 2)>
means node G (12: 13, 2) is used as ancestor for join,
while <(12: 13, 2), (3: 6, 2)> means the e-node (3: 6, 2)
is used as ancestor for join. It is necessary to sort A’-List
in order of join_node’s StartPos and LevelNum, because
after expansion, join_nodes in A’-List may have the
same (S: E) but different LevelNum. In Steps 1 to 3 of
Tree-Merge-Desc, eu of node pair <u, eu> in A’-List is
used to join with node, say d, in D-List, but the output
pair is still <u, d>, rather than <eu, d>. In the final step

of SJG, duplicates are removed from the result set to
keep the final tuple (output pair, path length) unique. In
a tree the path exists between two nodes must be unique,
but this may not be true in a rooted directed cyclic
graph.

Example 2. Suppose there is a regular path query m//n
as indicated in Figure 5. Let A-List = {(2: 11, 2), (12: 13,
2)} and D-List = {(4: 5, 4), (8: 9, 4)} corresponding to
the two nodes tagged by “m” and the other two nodes
tagged by “n” respectively. A-List is first expanded into
A’-List = {<(2: 11, 2), (2: 11, 2)>, <(12: 13, 2), (3: 6,
2)>, <(2: 11, 2), (8: 9, 3)>, <(12: 13, 2), (12: 13, 2)>}. In
Tree-Merge-Desc, the node pair <(2: 11, 2), (8: 9, 3)>
uses (8: 9, 3) to join with (8: 9, 4), and generates the
output pair <(2: 11, 2), (8: 9, 4)>, rather than <(8: 9, 3),
(8: 9, 4)>; the path length is 1, calculated by subtracting
the LevelNum of (8: 9, 3) from that of (8: 9, 4). Note that
node (8: 9, 3) is an e-node that belongs to (2: 11, 2) but
does not actually exist in the document. All output pairs
with path length for this query are shown in Table 1,
where there are four paths from m to n and two of them
contain forward edges.

- 872 -

m//n

Output Pairs Path Length

<(2: 11, 2), (4: 5, 4)> 2

<(2: 11, 2), (8: 9, 4)> 2

<(12: 13, 2), (4: 5, 4)> 2

<(2: 11, 2), (8: 9, 4)> 1
Table 1: Query results for Figure 5.

3.2: Analysis of SJG Algorithm

Algorithm SJG’s core function is Tree-Merge-Desc.
According to [2], its time complexity is O(|A-List| +
|D-List| + |OutputList|), and O(|A-List| + |D-List| +
|OutputList|2) in the worst case. If Stack-Tree-Desc is
used in SJG instead of Tree-Merge-Desc, its time
complexity will be O(|A-List| + |D-List| + |OutputList|).
Function Expansion takes O(|A-List| * number of
e-nodes in each E-List). The procedure to eliminate
duplicates takes O(|OutputList| * log(|OutputList|)).

4: Conclusions and Future Work

The main contribution of this paper is the solution of
matching structural relationships in graph-structured
XML data, under a new interval-based labeling scheme.
Based on the idea of e-nodes, each XML node can be
labeled (with an optional E-List) appropriately by the
G_encoding algorithm. E-Lists are devised to solve the
multiple-inheritance and cyclic paths problems. The
properties of our labeling scheme are formally analyzed.
We also develop an efficient structural join algorithm
SJG using our labeling scheme. The core function
Tree-Merge-Desc in Algorithm SJG can be replaced, if
needed, by other existing structural join algorithms
easily.

As to the future work of this paper, we plan to
reduce the cost of computing E-Lists and to shrink the
size of intermediate results for each basic binary
structural join.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J.

Wiener, “The Lorel Query Language for Semistructured
Data,” International Journal on Digital Libraries, Volume
1, Number 1, 1997, pages 68-88.

[2] S. Al-Khalifa, H.V. Jagadish, N. Koudas, J.M. Patel, D.
Srivastava, and Y.Wu, “Structural Joins: A Primitive for
Efficient XML Query Pattern Matching,” Proceedings of
the 18th International Conference on Data Engineering
(ICDE), 2002, pages 141-152.

[3] N. Bruno, N. Koudas, and D. Srivastava, “Holistic Twig
Joins: Optimal XML Pattern Matching,” Proceedings of
the ACM SIGMOD International Conference on
Management of Data, 2002, pages 310-321.

[4] S.-Y. Chien, Z. Vagena, D. Zhang, V.J. Tsotras, and C.
Zaniolo, “Efficient Structural Joins on Indexed XML
Documents,” Proceedings of the 28th International
Conference on Very Large Data Bases (VLDB), 2002,
pages 263-274.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 2nd Edition, published by MIT
Press and McGraw-Hill, 2001.

[6] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D.
Suciu, “XML-QL: A query language for XML,” Available
at http://www.w3.org/TR/NOTE-xml-ql/, 1998.

[7] H. V. Jagadish et al., “TIMBER: A Native XML
Database,” VLDB Journal: Very Large Data Bases,
Volume 11, Issue 4, 2002, pages 274-291.

[8] H. Jiang, H. Lu, W. Wang, and B. C. Ooi, “XR-Tree:
Indexing XML Data for Efficient Structural Joins,”
Proceedings of the 19th International Conference on Data
Engineering (ICDE), 2003, pages 253-263.

[9] J. Kim, S. H. Lee, and H.-J. Kim, “Efficient Structural
Joins with Clustered Extents,” Information Processing
Letters, Volume 91, Number 2, 2004, pages 69-75.

[10] Q. Li, and B. Moon, “Indexing and Querying XML Data
for Regular Path Expressions,” Proceedings of the 27th
International Conference on Very Large Data Bases
(VLDB), 2001, pages 361-370.

[11] C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and G.
Lohman, “On Supporting Containment Queries in
Relational Database Management Systems,” Proceedings
of the 2001 ACM SIGMOD International Conference on
Management of Data, 2001, pages 425-436.

n

mm

forward edge

(1: 14, 1)

(2: 11, 2)

(7: 10, 3)

(12: 13, 2)

(3: 6, 3)

(8: 9, 2) (3: 6, 1)

(8: 9, 3)
(3: 6, 2)

n(4: 5, 4) (8: 9, 4)

node G

Figure 5. An example of matching ancestor-descendant relationships.

- 873 -

