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ABSTRACT 

The most important operation of querying XML 
documents is finding occurrences of structural 
relationships between tagged elements. Performing such 
structural joins needs to encode nodes in XML 
documents. Once each node is labeled by the 
interval-based labeling scheme, structural relationships 
between nodes can be determined easily in constant time. 
However this paper shows that traditional approaches 
work only for tree-structured data and cannot be 
applied to XML documents being modeled as arbitrary 
graphs. 

The main contribution of this paper is the solution of 
matching structural relationships in graph-structured 
XML data, under a new interval-based labeling scheme. 
Based on the idea of e-nodes, each XML node can be 
labeled (with an optional E-List) appropriately by our 
G_encoding algorithm for solving the 
multiple-inheritance and cyclic-path problems. We have 
formally analyzed the properties of the new labeling 
scheme, and developed an efficient structural join 
algorithm SJG using the scheme. 
 
 
1: Introduction*

 
The most important operation of querying XML data 

is finding occurrences of structural relationships 
between tagged elements, such as ancestor-descendant 
and parent-children relationships. For example, an 
XQuery expression: //bank[branch_city= 
‘Brooklyn’]//account returns all accounts of every 
branch bank located in the ‘Brooklyn’ city. There exist 
three structural relationships of (ancestor, descendant) in 
the example, including (bank, branch_city), 
(branch_city, ‘Brooklyn’) and (bank, account). Several 
solutions for matching such structural relationships in 
XML or semi-structured documents were proposed. 
Zhang et al. [11] presented a multi-predicate merge-join 
(MPMGJN) algorithm, which outperforms the 
traditional merge-join and index nested-loop join 
algorithms. Al-Khalifa et al. [2] proposed two families 
of structural join algorithms, namely 
Tree-Merge-Anc/Desc and Stack-Tree-Anc/Desc. 
Recently papers by Chien et al. [4] or Kim et al. [9] 
proposed even more efficient structural join algorithms 
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by skipping unnecessary node scan in different ways. 
For example, several index-based solutions for structural 
join algorithms using XB-tree [3], B+-tree [4] or 
XR-tree [8] were proposed. 

Performing structural joins in [2][4][9][10][11] 
needs to encode nodes in XML documents. The position 
of an XML element is usually represented as a 3-tuple 
(DocId, StartPos: EndPos, LevelNum) [2][4][9][11] 
where DocId is the document identifier, LevelNum is the 
nesting depth, and StartPos and EndPos are generated 
by counting word numbers from the beginning of the 
document to the start and to the end of the element 
respectively. A depth-first-search (DFS) [5] algorithm is 
employed in encoding (labeling), which explores all the 
elements in the top-down and left-to-right manner. 
Structural relationships between elements can be 
determined easily by comparing their intervals between 
StartPos and EndPos. A tree node u is an ancestor of a 
tree node v if and only if u.DocId = v.DocId, u.StartPos 
< v.StartPos, and u.EndPos > v.EndPos; a parent-child 
relationship also requires that u.LevelNum = 
v.LevelNum – 1. For example, Figure 1(a) is an XML 
document with six elements, and Figure 1(b) illustrates 
the result of DFS labeling. The DFS algorithm visits 
nodes A, B, C, D, E and F in turn. Node A is labeled as 
(1, 1: 12, 1), node B is labeled as (1, 2: 5, 2), and so on. 

The IDREF and IDREFS features in XML 
documents make multiple-inheritance possible, as 
several paths may exist from one node to another. 
Element sharing is specified using element IDs and 
IDREFS, and XML data can then specify nested and 
cyclic structures, such as trees, directed-acyclic graphs, 
and arbitrary graphs. Some well-known XML query 
languages, like XML-QL [6] and Lorel [1], support 
matching path expressions for graph-structured XML 
data. However, the proposed structural join solutions 
[2][4][9][11] are limited to the tree-structured XML data. 
They cannot manage arbitrary graphs with 
multiple-inheritance, or even with cyclic paths. As 
shown in Figure 1(b), both nodes B (1, 2: 5, 2) and D (1, 
6: 7, 2) are ancestors of node C (1, 3: 4, 3), but the 
interval of node D, i.e., (6: 7), does not contain that of 
node C, i.e., (3: 4). Here we can see that the existing 
interval-based labeling schemes fail because they only 
work for trees. To overcome this limitation, we propose 
in this paper a node-labeling scheme for a rooted 
directed cyclic graph allowing multiple-inheritance and 
cyclic paths. Further, we propose a structural join 
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Figure 1. An XML document and DFS labeling. 

algorithm based on this node-labeling scheme to match 
structural relationships in graph-structured XML data. 

The rest of the paper is organized as follows. Section 
2 describes the new labeling scheme, followed by a 
structural join algorithm using this new scheme in 
Section 3. Finally Section 4 concludes this study and 
discusses its future work. 
 
2: Node Labeling Scheme 
 

Our labeling scheme is based on the idea of e-nodes 
for labeling nodes over XML data. A labeling algorithm 
derived from DFS [5] is also developed to support 
structural joins for XML graphs. 

 
2.1: E-Lists and E-nodes 
 

Our labeling scheme starts by labeling nodes in a 
graph with an extended DFS algorithm. During DFS 
each node (element/string) in XML documents is 
labeled as (DocId, StartPos: EndPos, LevelNum), whose 
format is the same as that in [2][4][9][11]. We will omit 
DocId below if no confusion occurs.  

 
Definition 1. Let graph G = (V, E) where V is a set of 
XML document nodes and E is a set of edges between 
nodes in V. Edges (u, v)∈E where u, v∈V are classified 
during DFS labeling. Tree edges are those edges (u, v) 
if vertex v is first visited by exploring edge (u, v). Back 
edges are those edges (u, v) connecting a vertex u to an 
ancestor v. Forward edges are those non-tree edges (u, 
v) connecting a vertex u to a descendant v. Cross edges 
are any other edges. We use the “Labeled DFS Graph” 
to indicate a graph after DFS labeling. 

 
Both forward edges and cross edges point to nodes 

that have been explored completely. Without loss of 
generality, cross edges are regarded as forward edges in 
a Labeled DFS Graph because our labeling scheme 
treats them in the same way. 

For simplicity, we use b/f edge to indicate 
back/forward edge and use (S: E, L) to denote (StartPos: 
EndPos, LevelNum). Interval (S: E) denotes the range 
from StartPos to EndPos, and (Su: Eu, Lu) denotes (u.S: 
u.E, u.L) for certain node u. 

In our scheme, we construct an e-node(v) for each 
back/forward edge (u, v) and store it into a list 
associated with node u, namely E-List(u). Note that our 
scheme does not distinguish forward and cross edges. 
E-node(v) is derived from node v and labeled as (S: E, L) 
= (Sv: Ev, Lv –1). Due to the transitivity rule, whenever 
an e-node is stored into E-List(u), it should also be saved 
in E-List(m) for each node m on the path from u to the 
root comprising only tree edges. Conversely, whenever 
an e-node(v) is in E-List(u), all e-nodes in E-List(v) are 
all in E-List(u). Copying e-nodes from E-List(v) to 
E-List(u) implies the existence of a path consisting of 
multiple b/f edges. E-node’s LevelNum will decrease 1 
each time when it is stored into E-List. Generally, 
LevelNum must be a positive value because it stands for 
a node’s depth in a tree; however, LevelNum of e-nodes 
could be negative in our proposal. We use Example 1 
below to illustrate the generation of e-nodes. 

 

 
Example 1. In Figure 2, edge (E, C) is a forward edge, 

 

E 

D 

F B

A

so e-node(C) = (3: 6, 2) is saved into E-List(E). Further, 
an e-node (3: 6, 2–1), i.e., (3: 6, 1), is saved into 
E-List(A) to reflect the fact that we can walk from node 
A to node D via the forward edge (E, C). The interval of 
e-node (3: 6, 1) contains that of node D, resulting in a 
path A ~ D including the forward edge (E, C). Also, if 

forward edge 

(1: 12, 1) 

(2: 7, 2) 

(8: 9, 2) 

(10: 11, 2) 

(3: 6, 3) 

(4: 5, 4) 

(3: 6, 1) 

(3: 6, 2) 

E-List(A) 

E-List(E) 

C

Figure 2. E-List, e-node and forward edge. 
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there is an e-node(a: b, c) should be placed in E-List(C), 
then an e-node (a: b, c–1) is saved into E-List(D) and an 
e-node (a: b, c–2) into E-List(A).  

 
E-Lists and e-nodes are devised to deal with the 

mu

e have the following Lemmas for our Labeled 
DF

emma 1. In a Labeled DFS Graph where nodes are 

]) Note that for all nodes u, Su< 

v was visited while the subtree rooted 

< Ev, implying that 

ly. 

emma 2. In a Labeled DFS Graph, if node u is an 

ge (u, v) is a tree edge, interval (Su: Eu) will 

) 

emma 3. By restricting that any b/f edge does not 

nd 
forward edges only point to the descendant nodes. Any 

ma 4. The number of b/f edges in the Labeled DFS 
raph equals the summation of [(number of incoming 

 is first visited by exploring edge (u, 

mbination of multiple b/f edges, meaning a 
ath consists of more than one b/f edge, could not be 

ma

L Graph 
 

m, 
amely G_encoding in Figure 3, works as follows. First 

a m

hen exploring node 
E, 

ltiple-inheritance and cyclic path problems. If there 
exists any b/f edge, the intervals (S: E) of ancestor and 
descendant would fail to determine their structural 
relationships in traditional approaches. For example, in 
Figure 2, node E is an ancestor of node D, but interval 
(SE: EE) does not contain interval (SD: ED). In contrast, 
E-nodes are very useful in dealing with this situation. 
We insert an e-node(C) labeled as (3: 6, 2) into 
E-List(E), and then node E uses the e-node(C) to contain 
node D. Certainly, if there exists a path from node C to 
node Z, then the path length from E to Z is equal to (the 
path length from C to Z) + 1. This is the reason why we 
set Le-node(C) to LC –1. When E is considered as the 
ancestor, it makes an “expansion” to include all of its 
e-nodes, meaning that E connects to its children not only 
by tree edges but also by b/f edges. 

 
W
S Graph. Note that in Lemma 1, according to [5], if 

two intervals intersect, it cannot be the case that one 
interval is entirely contained in the other one. 
 
L
labeled by value (S: E, L), intervals (S: E) do not 
intersect each other.  
Proof: (excerpt from [5
Eu. Let u, v be two nodes in a Labeled DFS Graph, and 
we begin with the case in which Su < Sv. There are two 
sub-cases:  
(i) If Sv < Eu, then 
at u was being labeled. This implies that v is a 
descendant of u, and interval (Sv: Ev) is entirely 
contained within interval (Su: Eu). 
(ii) If Sv > Eu, then Su < Eu < Sv 
intervals (Sv: Ev) and (Su: Eu) are disjoint. 
The case in which Sv < Su is proved similar
 
L
ancestor of node v, then the three conditions S ≤ Sv, E ≥ 
Ev, and L < Lv must hold, where (S: E, L) ∈ {(S: E, L)| 
(S: E, L)= (Su: Eu, Lu) or (Se: Ee, Le), ∀ e ∈ e-nodes in 
E-List(u)}. 
Proof: If ed
contain interval (Sv: Ev). Due to the transitivity rule, 
interval (Su: Eu) will also contain the interval (Sz: Ez) for 
all v’s descendants z. Hence the three conditions hold. 
If edge (u, v) is a b/f edge, e-node(v) will be in E-List(u
to assure the three conditions hold, because v is an 
ancestor of z and so is e-node(v).      
 
L
appear twice in one specific path, there exists no cyclic 
path that loops endlessly in the Labeled DFS Graph. 
Proof: Tree edges will lead to leaves eventually; a

path comprising tree edges and forward edges will reach 
its end for sure. In contrast, only back edges cause loops. 
If they are restricted to traverse only once, in the worst 
case there exists a very long cyclic path that consumes 
all back edges, and then there will be no loop problem at 
all. 
 
Lem
G
edges of node v) –1] for all nodes v having more than 
one incoming edge. 
Proof: According to Definition 1, tree edges are those 
edges (u, v) if node v
v). Thus, if node v has more than one incoming edge, 
then only one of these edges is a tree edge (the edge 
explored while node v is first visited) and others are all 
b/f edges. 
 

The co
p

naged completely by DFS. Suppose (v, u) is a back 
edge during DFS search. It implies that u is an ancestor 
of v and u is not yet explored completely at that moment, 
because not all of the children nodes (including node v) 
of node u have been explored. According to the 
transitivity rule, e-node(u) is saved into E-List(v) and so 
are e-nodes in E-List(u). However since node u is not 
completely explored and thus E-List(u) is not 
constructed entirely, we may lose e-nodes that should be 
saved into E-List(u) and thus lose paths, for example, a 
cyclic path which contains u ~ v ~ u. Hence we have to 
scan the whole E-Lists repeatedly until no more e-nodes 
are left. The basic idea of tackling this problem is to 
insert those e-nodes into E-List(v) from E-List(u) that 
are not inserted in Procedure DFS. However, this may 
lead to the cascading insertion of e-nodes. 

 
2.2: Node Labeling Scheme over XM

The proposed interval-based node-labeling algorith
n

odified DFS procedure is adopted to label each node 
and compute E-Lists. In the DFS, Procedure DFS_Visit 
explores all edges recursively by marking b/f edges and 
generating e-nodes. Function EList_Growing generates 
more e-nodes to handle paths consisting of multiple b/f 
edges and returns a value to indicate if there are e-nodes 
generated. E-List uses a flag “Change” (initialized to the 
False value) to indicate if E-List is growing or not. 
EList_Growing follows from Lemma 3 to ensure that no 
cyclic path loops endlessly, and it scans E-Lists several 
times to ensure no e-node is missed. 

Consider the example in Figure 2. DFS explores 
nodes A, B, C, D, E and F in turn. W

edge (E, C) is classified as forward edge (because 
node C was visited), and we put an e-node(C) labeled as 
(SC: EC, LC –1) = (3: 6, 2) into E-List(E) in Step 3.4 of 
DFS_Visit. Later when DFS finishes examining node 
E’s adjacency list, we put all e-nodes of E-List(E), say 
(3: 6, 2–1) = (3: 6, 1), into E-List(A) in Step 3.4 of 
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DFS_Visit. Suppose there is an e-node (S: E, L) in 
E-List(C) that does not appear while edge (E, C) is 
explored. Then e-nodes (S: E, L–1) and (S: E, L–2) will 
be put into E-List(E) and E-List(A) respectively in Step 

1.2 of EList_Growing. Note that in Steps 3.3 and 3.4 of 
DFS_Visit and Step 1.2 of EList_Growing, the e-node’s 
LevelNum decreases 1 each time when it is stored into 
the E-List. 

 
Algorithm G_encoding(G)  {   

 cyclic graph 
ntaining the complete set of e-nodes) 

ing(G) repeatedly till it returns False; 

itialize time-stamp times to 0; 
 if u was not visited before;

(u, levels, times, E-List(u))  { 

isited”; 
’s LevelNum to levels and u’s StartPos to times; 

oto Step 3.4; 

’s 

s E-Lists) 
ists grow 

ep 2; otherwise goto Step 1.1; 
1 and E-List(v) is 

rn True; 

Input: G = (V, E), a rooted directed
Output: G (with labeled nodes and G’s E-Lists co
Method: 

bel nodes in G in DFS order by calling DFS(G); Step 1: la
Step 2: generate all the E-Lists of G by calling EList_Grow
} 

ocedure DFS(G)  {   // Labeling nodes in G Pr
Input: G= (V, E), a rooted directed cyclic graph 
Output: G (with labeled nodes and G’s E-Lists) 
Method: 

ark each node in G “not visited” and inStep 1: m
Step 2: for each node u in G, label u by calling DFS_Visit(u, 1, times, E-List(u))
Step 3: return G; 
} 

ocedure DFS_VisitPr
Input: node u, u’s levels, time-stamp times, E-List(u) 
Output: u, E-List(u) 
Method: 

ark node u “vStep 1: m
Step 2: increase times by 1, set u
Step 3: for each node v adjacent to u, if v was not visited, goto Step 3.1; otherwise g
Step 3.1: mark u as v’s parent; 

 calling DFS_Visit(v, levels+1, times, E-List(u)) recursively; Step 3.2: label nodes under v by
Step 3.3: insert the set {x | x∈E-List(v)} into E-List(u), goto Step 4;  

 Step 3.4: insert the set {e-node(v)} ∪ {x | x∈E-List(v)} into E-List(u);
Step 4: mark node u “done”; 

d set u EndPos to times;  Step 5: increase times by 1 an
} 

nction EList_Growing(G)  {  Fu
Input: G (with labeled nodes and G’
Output: Boolean  // return False if none of E-L
Method: 

E-List(u) does not exist, return False and goto StStep 1: if 
Step 1.1: for each e-node(v) in E-List(u), if e-node(v)’s LevelNum = v’s LevelNum–

changed, then goto Step 1.2; otherwise goto Step 2; 
Step 1.2: insert the set {x | x∈E-List(v)} into E-List(u) as well as into E-List(t) for each u’s ancestor node t;
Step 1.3: mark E-List(v) “not changed” and E-List(u) “changed”; 
Step 2: remove duplicates in E-List;   

turn False; otherwise, retuStep 3: if none of E-List are changed, re
} 

Figure 3. Algorithm G_encoding for node labeling. 
 

2.3: Analysis of G_encoding Algorithm 

The first step in Algorithm G_encoding is DFS 
ess

operations (as described in the next Section) can be 

3: Structural Join 

Our structural join algorithm “SJG”, standing for 
“St

 

entially. Both the time and space complexities are 
O(|V| + |E|) if graph G = (V, E) is represented by an 
adjacency list, or O(|V|2) if graph G is represented by an 
adjacency matrix. Computing E-Lists in procedure 
DFS_Visit costs O(NL * |V| * (Ne + Ne * NL) / 2), where 
Ne = average number of e-nodes in each E-List and NL = 
average number of nodes associated with an E-List. NL 
equals to |V| in the worst case, the time and space 
complexities are O(|V|3 * Ne). However since E-Lists 
grow during the DFS labeling, it may require more than 
one pass to scan E-Lists until no more E-List grows. 
Although the time and space complexities may grow 
tremendously in the worst case, it is a one-time cost and, 
once all nodes have been labeled, the structural join 

performed very efficiently hereafter. 
 

 

ructural Join on Graph”, is derived from existing 
structural join algorithms like Tree-Merge-Desc [2] but 
under the new labeling scheme described in Section 2. 
Consider an ancestor-descendant relationship u//v, and 
let A-List and D-List be the two lists of nodes that match 
the predicates on u and v, respectively. Taking the two 
lists as input, Algorithm SJG first expands A-List, then 
outputs all pairs of nodes that match structural 
relationships in order of descendant’s (or ancestor’s) 
StartPos by Function Tree-Merge-Desc, and finally 
removes duplicate results. There are three major 
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differences between our structural join algorithm and 
that in [2]. 
(1) Before Tree-Merge-Desc proceeds, SJG performs an 

“expansion” process which makes all e-nodes in 
E-List(u), ∀u∈nodes in A-List, be included in 

A’-List. This process is necessary since nodes in 
A-List can use their e-nodes to join nodes in D-List. 

(2) With the help of e-nodes, SJG uses the conditions in 
Lemma 2 to determine structural relationships. 

(3) Duplicates need to be removed from the result set of 
node pairs in SJG. 

 
Algorithm SJG(A-List, D-List) {  
Input: A-List: the list of potential ancestors sorted in order of StartPos; D-List: the list of potential descendants 
sorted in order of StartPos 
Output: OutputList  // result of Structural Join (of A-List and D-List) on Graph 
Method: 
Step 1: expand A-List into A’-List by calling Expansion(A-List); 
Step 2: perform structural join by calling Tree-Merge-Desc(A’-List, D-List) and store the result in OutputList;
Step 3: eliminate duplicates in OutputList; 
} 
Function Expansion(A-List) {  
Input: A-List 
Output: A’-List //a list of node pairs <u, eu>, where eu is an ancestor for join, u is for output 
Method: 
Step 1: generate A’-List by collecting u, ∀u∈nodes in A-List, and e-nodes in E-List(u); 
Step 2: sort node pairs in A’-List by the second tuple’s StartPos and LevelNum; 
Step 3: return A’-List; 
} 
Function Tree-Merge-Desc(A’-List, D-List) { 
Input: A’-List={<u, eu>}, D-List={<u>} 
Output: OutputList 
Method: 
Step 1: for each node d in D-List 
Step 2:   for each node pair <u, eu> in A’-List,  
Step 3:     if eu is an ancestor of d, then add <u, d> into OutputList;  
Step 4: return OutputList; 
} 

Figure 4. Algorithm SJG for structural join. 
 
3.1: Algorithm SJG 
 

Figure 4 depicts our Algorithm SJG that performs 
structural joins over the Labeled DFS Graph, together 
with its two major functions Expansion and 
Tree-Merge-Desc. 

In Function Expansion, A-List is expanded into 
A’-List whose elements are in the form of node pairs 
<output_node, join_node>. join_node is used as 
ancestor for joining with descendants, and output_node 
is for output. For instance, in Figure 5, if A-List contains 
node G (12: 13, 2) which has an e-node (3: 6, 2), then 
A’-List will include the node pair <(12: 13, 2), (12: 13, 
2)> and <(12: 13, 2), (3: 6, 2)> due to Step 1 of 
Expansion. The node pair <(12: 13, 2), (12: 13, 2)> 
means node G (12: 13, 2) is used as ancestor for join, 
while <(12: 13, 2), (3: 6, 2)> means the e-node (3: 6, 2) 
is used as ancestor for join. It is necessary to sort A’-List 
in order of join_node’s StartPos and LevelNum, because 
after expansion, join_nodes in A’-List may have the 
same (S: E) but different LevelNum. In Steps 1 to 3 of 
Tree-Merge-Desc, eu of node pair <u, eu> in A’-List is 
used to join with node, say d, in D-List, but the output 
pair is still <u, d>, rather than <eu, d>. In the final step 

of SJG, duplicates are removed from the result set to 
keep the final tuple (output pair, path length) unique. In 
a tree the path exists between two nodes must be unique, 
but this may not be true in a rooted directed cyclic 
graph. 
 
Example 2. Suppose there is a regular path query m//n 
as indicated in Figure 5. Let A-List = {(2: 11, 2), (12: 13, 
2)} and D-List = {(4: 5, 4), (8: 9, 4)} corresponding to 
the two nodes tagged by “m” and the other two nodes 
tagged by “n” respectively. A-List is first expanded into 
A’-List = {<(2: 11, 2), (2: 11, 2)>, <(12: 13, 2), (3: 6, 
2)>, <(2: 11, 2), (8: 9, 3)>, <(12: 13, 2), (12: 13, 2)>}. In 
Tree-Merge-Desc, the node pair <(2: 11, 2), (8: 9, 3)> 
uses (8: 9, 3) to join with (8: 9, 4), and generates the 
output pair <(2: 11, 2), (8: 9, 4)>, rather than <(8: 9, 3), 
(8: 9, 4)>; the path length is 1, calculated by subtracting 
the LevelNum of (8: 9, 3) from that of (8: 9, 4). Note that 
node (8: 9, 3) is an e-node that belongs to (2: 11, 2) but 
does not actually exist in the document. All output pairs 
with path length for this query are shown in Table 1, 
where there are four paths from m to n and two of them 
contain forward edges. 
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m//n 

 
Output Pairs Path Length 

<(2: 11, 2), (4: 5, 4)> 2 

<(2: 11, 2), (8: 9, 4)> 2 

<(12: 13, 2), (4: 5, 4)> 2 

<(2: 11, 2), (8: 9, 4)> 1 
Table 1: Query results for Figure 5. 

 
3.2: Analysis of SJG Algorithm 
 

Algorithm SJG’s core function is Tree-Merge-Desc. 
According to [2], its time complexity is O(|A-List| + 
|D-List| + |OutputList|), and O(|A-List| + |D-List| + 
|OutputList|2) in the worst case. If Stack-Tree-Desc is 
used in SJG instead of Tree-Merge-Desc, its time 
complexity will be O(|A-List| + |D-List| + |OutputList|). 
Function Expansion takes O(|A-List| * number of 
e-nodes in each E-List). The procedure to eliminate 
duplicates takes O(|OutputList| * log(|OutputList|)). 

 
4: Conclusions and Future Work 
 

The main contribution of this paper is the solution of 
matching structural relationships in graph-structured 
XML data, under a new interval-based labeling scheme. 
Based on the idea of e-nodes, each XML node can be 
labeled (with an optional E-List) appropriately by the 
G_encoding algorithm. E-Lists are devised to solve the 
multiple-inheritance and cyclic paths problems. The 
properties of our labeling scheme are formally analyzed. 
We also develop an efficient structural join algorithm 
SJG using our labeling scheme. The core function 
Tree-Merge-Desc in Algorithm SJG can be replaced, if 
needed, by other existing structural join algorithms 
easily.  

As to the future work of this paper, we plan to 
reduce the cost of computing E-Lists and to shrink the 
size of intermediate results for each basic binary 
structural join. 
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Figure 5. An example of matching ancestor-descendant relationships. 
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