
A Tiny Web Server on Embedded System

Lain-Jinn Hwang∗, Tang-Hsun Tu†, Tzu-Hao Lin‡, I-Ting Kuo§, and Bing-Hong Wang¶

Department of Computer Science and Information Engineering
Tamkang University, Tamshui, 251, Taipei, Taiwan

∗E-mail: micro@mail.tku.edu.tw
†E-mail: war3 515@hotmail.com

‡E-mail: singy000@msn.com
§E-mail: yiting2002@hotmail.com

Abstract

Bhttpd (BBS httpd) is a tiny web server for embedded
system, the entire size it consumed is 14KB only. Bhttpd is
HTTP/1.1 compliance, GET/POST method, keep-alive con-
nection and flow control support. For computer program-
mer, Bhttpd is easily for reuse because of its structure is
simple. In this paper, we introduce the means of bundling
Bhttpd to make a new web page, by just adding the re-
quired functions. This makes the static web page develop-
ment on embedded system not only simple but also efficient
than other web server.

Keyword – Bhttpd, embedded system, flow control, web
server.

1 Introduction

The first web server was built by the British physicist
Tim Berners-Lee at CERN, the European Centre for Nu-
clear Research at Geneva, Switzerland. Today, several web
servers had been developed. Up to now, the common used
web server is Apache and it has served nearly 60% of all
websites on the Internet [1]. Except for Apache server, the
IIS (Internet Information Services) is second popular web
server that is developed by Microsoft. Even Apache and
IIS are widely used on web server market, with the devel-
opment of embedded system day by day, the usage of web
server will come to the family.

On normal conditions, we may usually select Apache
[2] as web server because of it is powerful. Of cause, there
are always some exceptions. Because of hardware resource
on embedded system is limited, for instance, SBC-2410x

[3] has only 64MB RAM and 100MIPS and SiS550 [4] has
128MB RAM and 400MIPS. When we need to build a web
server on these enviroment we have to retrench the size and
simplify unnecessary functionality [5]. Usually, the web
server built on embedded system is for personal usage. For
example, we can configure the router or switch network set-
ting by browser because there is web server built on it, and
we may not often change the setting. Briefly, what we need
to used on embedded system is a light, small and fit web
server.

Usually, web server mean two things, one is a computer
that responsible for accepting HTTP requests from clients,
which are known as web browser such as Microsoft Inter-
net Explorer [6] or Mozilla Firefox [7]; the other one is a
computer program that provides function corresponding to
all the client requests. The latter is mainly issue we discuss
here.

This paper is organized as follows. Section 2 describes
the different web server model and its type. Section 3 de-
scribes the example of bundling web server required soft-
ware, and how to make web server more efficient. Section
4 we compare Bhttpd with different tiny web servers for ex-
periment result and section 5 is our conclusion.

2 Web Server Introduce

To a webmaster, there is nothing important than sta-
bility and efficiency. When a request is asked from client,
web server must reply it with corresponding action, and the
time during a server reply to client we call it response time.
When there are many people ask for request at the same
time, it is obvious to know how that how stable the server
is. Especially, response time is affected by how web server

1

- 892 -



is implemented. We can refer the way a web server is imple-
mented to several models, and we introduce in next section.

2.1 Server Model

Generally, there are four kinds of server model, and each
model has their own advantage on speed, file size or effi-
ciency.

1. Finite State Machine Servers
To maximize the scalability, many small web servers

are implemented as a single process and a finite state
machine. Every task is split into two or more small
steps that are executed as needed as Figure 1. When
a request comes, the web server will analyze what
client asks for and lets application handle function re-
sponds to their request, just like finite state machine.
To personal web server, because most of requests are
for static web pages, response time can be shorten-
ing without redundant context switches. Besides, by
keeping the state of each connection and asynchronous
I/O, it is possible to implement ultra fast web servers,
at least for serving static content such as static web
pages and graphic files. In addition, this kind of model
holds the minimum memory size rather than other
model.

Header
Analyzer

HandleFunction 1

HandleFunction 2

HandleFunction 3

..
.

Request

Process

Reply

Figure 1: Single Process Implement

2. Thread-based Servers
Except for the single process, multithread is an-

other common used model. Multithread means that
inside each server’s process, at least one threads are
run, and each one able to execute its own task and the
local variable independently from the others. After
thread finish its task, the memory it occupied would
be free. When a user visits the web site, web server
will use a thread to serve the page to that user. If
another user visits the site while the previous user is
still being served, the web server can serve the next
visitor by using a different thread. Thus, the next
user does not have to wait for the first visitor to be

served. It is very important because not all the user
have the same speed Internet connection. The slower
should not delay other visitors from downloading a
web page. Hence, threads are often used to serve dy-
namic content for better performance because of the
large number of discrete objects. This model is illus-
trated as Figure 2.

Header
Analyzer

...


Process

Request

HandleFunction 1

HandleFunction 2

HandleFunction 3

Reply

MainThread

h
o

ld


Thread1

Thread2

Thread3

Threadn

Reply

Reply

Reply

withmultithread

Figure 2: Process with Multithread Implement

3. Process-based Servers

Header
Analyzer

..
.

MultiProcess

Request

HandleFunction 1

HandleFunction 2

HandleFunction 3

ReplyFork

Fork

Fork

Fork

Reply

Reply

Reply

Figure 3: Multiple Process Implement

For reliability and security reasons, some web servers
use multiple processes rather than multiple threads
within a single process. Usually, a pool of processes
is used until a certain threshold of requests has been
served by process before replaced by a new one. Be-
cause threads share a main process context such as
global variable, if a thread crash its own task and the
error variable may jam other thread, this may eas-
ily crash the whole application, and a buffer overflow
can have disastrous consequences. Moreover, mem-
ory leak is usually out of the control for third party li-
braries such as PHP, the application programmer can-
not deal with it using threads, but can use a pool of

2

- 893 -



processes with a limited lifetime because of OS au-
tomatically frees all the allocated memory when pro-
cess dies. Furthermore, global variable addresses in a
process also differ from each process, even if one pro-
cess has crash, the others do not be interfered. Multi-
process illustrated as Figure 3.

4. Mixed Module Servers
To integrate all advantages of the former model,

many web servers implement a mixture of all these
programming techniques such that serving client ac-
cording to the different task. For example, static web
page implement with single process and thread, . For
serving static or dynamic content, etc.).

2.2 Application

Actually, we can only classify it according to the func-
tion at most. Here, we refer the web server to two types, the
full-featured and tiny web server. We can clearly know what
the full-featured server is by its name, this type web servers
support a lot of plugin for third party program and function
about Internet optimization setting. Relative to full-featured
server, tiny web server is light and simple, and some of them
only support the basic HTTP 1.1 even because for the em-
bedded support. The following tiny web servers are often
used on embedded system:

1. Thttpd [8]
According to official website declaration, it is a

tiny, turbo and throttling HTTP server. It handles only
the minimum necessary to implement HTTP/1.1, and
has a very small run-time size, since it does not fork
and is very careful about memory allocation. In typ-
ical use, it is about as fast as the best full-featured
server such as Apache. Under extreme load, it is
much faster.

2. Corehttp [9]
Corehttp is designed to be a minimalist http server

focusing on speed and size. Similarly, asynchronous
I/O handling, single-process select client concurrency
model without forking and thread, it is easy for porta-
bility and efficiency. Besides, many configuration op-
tions cannot slow the program down.

3. Boa [10]
Boa is a single-threaded HTTP server. Unlike

traditional web servers, it does not fork for each in-
coming connection, nor does it fork many copies of
itself to handle multiple connections, and forks only
for CGI programs, so the load on the server never ex-
ceeded over 1%. The design goal of Boa is security,
portability and speed, and is not intended as a full-
feature server.

4. LightTPD [11]
LightTPD is a security, speed and flexibility web

server. As its name, it is designed for high perfor-
mance environments. Compared to other web servers,
there are effective management of the CPU-load and
advanced feature such as output-compression, URL-
rewriting and fast CGI with a small memory usage.

5. Shttpd [12]
Shttpd is simple web server. The main design goals
are the ease of use and the ability to embed. Ideal for
personal use, web-based software demos (like PHP,
Perl etc), quick file sharing.

Although most of web servers are used on PC now, tiny
web server would become more and more practical and com-
mon on embedded system for widely application increas-
ingly. In next paragraph, we give an example that how to
implement the web server more efficiently.

3 BBS httpd Web Server (Bhttpd)

We have introduced some tiny web server before, and
those web servers are famous as light, simple and tiny for
embedded system use. In fact, except for those feature,
there is still a key point. Usually, when clients ask for re-
quest, web server just takes the content by path. If we can
embed the web page data in source code, it would reduce
the loading time due to I/O buffer. Maybe it is strange and
seldom to do as this way because of it is hardly to mod-
ify the most of web server’s source code. We design a web
server that callled “BBS Httpd (Bhttpd)” is not only easy to
be embedded web page in its function, but also can bundle
web server with application [13], [14]. Originally, this web
server is written for web BBS use, so we call it “Bhttpd”.

3.1 Feature

Web Browser

Web Server

Fill Header Parse Header

Function

Application

Virtual Path

...

..
.

..
.

Response Request

Call

Figure 4: Process of Bhttpd

3

- 894 -



As another single-task web server, Bhttpd is also a small
web server. The entire size it consumed is only 14KB with
flow control, keep-alive and HTTP/1.1 supporting. Besides,
it is easy and convenient to add a new web page as a func-
tion to source code as Figure 4, and it is important because
this make web developments on embedded system simpler.
However, we still have to know how the function works be-
fore using.

3.2 Instance of Bhttpd Server

Figure 5: Web-Based Interactive Interface

Application

Web Server

Web Browser

A
JA

X


XML
Shared Memory

Report
Status

Signal
(Control Code)

Figure 6: Implementation of Bhttpd

How Bhttpd differs from others is that it is mainly aimed
for easy rewrites. This feature is an advantage especially
on embedded system. For example, if we want to design
an web-based interface for media player such that user can
control the play, pause and stop message by browser. Be-
sides, the detail as time, sample rate, and CPU utilization
could be refreshed, how can we implement for efficiency

and speed ? As Figure 5, we add Bhttpd to Mplayer [15]
for the interactive web-based interface. When browser re-
quest for the web page by AJAX technique [16], web server
read the playing status in shared memory and return that
message directly. When web browser tries to connect to
server first time, server would send web page data which in-
cludes the graphic or playlist URL back. Except for those
URL, there is some control code be used to communicate
with web server. In fact, the control code just only asks
for response repetitively. Every time web server receives
a request, it read the playing status in shared memory and
has the message return in XML format. This is known as
AJAX technique today. The completed process is illustrated
as Figure 6.

In general, it is a troublesome method because you have
to rewrite part of source code for new function. However,
when this method is applied on embedded system, it would
be more practical and useful since different embedded sys-
tem devices have their own demand for web-based inter-
active, if we can modify the Bhttpd standard source code
easily, it could become an advantage instead. Besides, we
can embed the function on web pages in Bhttpd web server
whether the server is applied on embedded system or not,
the speed of data access must faster than I/O buffer reading.
Therefore, if there are a large number of client request such
as previous instance, the response time would be shorter
and required data would be smaller when we combine the
method with AJAX technique especially.

4 Experiment Result

Before compare with other web server, we introduce the
hardware platform. The enviroment we used is SBC-2410x
embedded system as shown in Table 1.

Platform SBC-2410x

CPU
S3C2410@200MHz

100MIPS

Memory
64MB SDRAM

64MB NAND Flash
1MB NOR Flash

Table 1: Hardware Platform

For objectivity, we compare Thttpd, Boa, Corehttp, Light-
TPD and Shttpd with Bhttpd because both of their features
are similar. We can understand this point by the server
model, all the web server is implemented with single-task
program for the speed and size.

As Table 2, except for Corehttp, it is obvious that Bhttpd
has the smallest memory size at run-time and thttpd is biggest

4

- 895 -



Software Feature Size

Server Version Release Model Flow Control Code (B) Modules (B) Memory (KB)

Thttpd 2.21b 02/Jun/2006 select Yes 1, 748, 716 X 1, 856

Core http 0.5.3a 05/Aug/2005 select No 18, 179 X 284

Boa 0.94.13 23/Feb/2005 select No 57, 143 X 428

Lighttpd 1.4.11 09/Mar/2006 select No 139, 760 352, 380∗ 632

Shttpd 1.35 07/Arp/2006 select No 68, 716 X 556

Bhttp 1.3b 01/Aug/2006 select Yes 14, 394† X 240†

∗ Runing server needs load modules.
† Smallest size.

Table 2: Feature Comparison

Server Concurrency Keep-Alive (KA)
RPS Mean Time-Per-Request(ms)

KA / Non-KA KA / Non-KA

Thttpd
1

Y/N
593.14 / 368.98 1.686 / 2.710

2 754.42 / 440.54 2.651 / 4.540
3 911.02 / 470.06‡ 3.293 / 6.382§

Core httpd
1

N
Non /309.09 Non /3.235

2 Non /360.70 Non /5.545
3 Non /357.64 Non /8.388

Boa
1

Y/N
606.54 / 351.92 1.649 / 2.842

2 727.96 / 384.15 2.747 / 5.206
3 759.73 / 405.83 3.949 / 7.392

Lighttpd
1

Y/N
505.08 / 352.64 1.980 / 2.836

2 634.83 / 418.12 3.150 / 4.783
3 656.01 / 416.73 4.573 / 7.199

Shttpd
1

N
Non /183.40 Non /5.452

2 Non /198.12 Non /10.095
3 Non /201.64 Non /14.878

Bhttpd
1

Y/N
654.03 ‡/ 384.57‡ 1.529§ / 2.600§

2 960.31‡ / 443.52‡ 2.083§ / 4.509§

3 981.24‡ / 453.42 3.057§ / 6.616
‡ Largest request per second (RPS) .
§ Least mean time per request.

Table 3: Efficiency Comparison

maybe it is bundled with PHP module. Both of them have
the flow control function, but Bhttpd is much smaller than
thttpd. Here we do not mention other feature such as au-
thentication because there is no need for personal use. The
maximum user number is also unmeaning if we do not act
after connecting to server. Therefore, we use Apache HTTP
server benchmark tool [2] to measure the efficiency differ-
ence between them [17], [18].

As Table 3, we compare the Request-Per-Second (RPS)
and the mean Time-Per-Request with keep-alive or not. The
more RPS has represents the server could accept more re-
quest at the same time. In here, Bhttpd is still the most one.
From mean Time-Per-Request (TPR), we can know the av-
erage time of server response to clients. As previous, Bhttpd
is the smallest one. All the data we test are based on static
web pages.

5

- 896 -



5 Conclusion

According to the comparison, Bhttpd is really a superior
tiny web server. Not only the response time and size, as well
as the feature for rewriting source code are its advantage.
For the use of embedded system, it could be implemented as
part of system, and this does make the web server required
development easier. Even on general purpose, advantage of
its rewrite could make being embedded in application easier.
In other words, it is not restricted to any hardware platform.
Anyway, Bhttpd is certainly different from other tiny web
server.

References

[1] “Netcraft.” http://news.netcraft.com.

[2] “The Apache Software Foundation.” http://www.
apache.org.

[3] “Samsung-electronics.” http://www.samsung.com/tw.

[4] “SiS: Silicon Integrated Systems Corp.” http://www.
sis.com.

[5] M.-J. Choi, H.-T. Ju, H.-J. Cha, S.-H. Kim, and J. W.-
K. Hong, “An efficient embedded Web server for Web-
based network element management,” inIEEE/IFIP
Network Operations and Management Symposium,
pp. 187–200, Apr 2000.

[6] “Microsoft Corporation.” http://www.microsoft.com.

[7] “Mozilla Firefox.” http://www.mozilla.com/firefox.

[8] “THTTPD - tiny/turbo/throttling HTTP server.” http:
//www.acme.com/software/thttpd.

[9] “CoreHTTP web server.” http://corehttp.sourceforge.
net.

[10] “Boa Webserver.” http://www.boa.org.

[11] “LightTPD: Light HTTPD.” http://www.lighttpd.net.

[12] “SHTTPD: Simple HTTPD.” http://shttpd.
sourceforge.net.

[13] T. Berners-Lee, R. Fielding, and H. Frystyk, “Hyper-
text Transfer Protocol – HTTP/1.0.” http://www.faqs.
org/rfcs, May. 1996. RFC 1945.

[14] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
and L. Masinter, “Hypertext Transfer Protocol –
HTTP/1.1.” http://www.faqs.org/rfcs, Jun. 1999. RFC
2616.

[15] “Mplayer: The Movie Player.” http://www.mplayerhq.
hu.

[16] B. McLaughlin,Head Rush Ajax. O’Reilly and Asso-
ciates, first ed., Mar 2006.

[17] J. Hu, S. Mungee, and D. Schmidt, “Techniques
for developing and measuring high performance Web
servers over high speed networks,” inIEEE INFOCOM
Computer and Communications Societies, pp. 1222–
1231, Mar 1998.

[18] J. Hu, I. Pyarali, and D. Schmidt, “Measuring the im-
pact of event dispatching and concurrency models on
Web server performance over high-speed networks,” in
IEEE GLOBECOM Global Telecommunications Con-
ference, pp. 1924–1931, Nov 1997.

6

- 897 -




