
A Large-Itemset-Based Method for the Incremental Update of Supporting
Personalized Information Filtering on the Internet*

Ye-In Chang, Jun-Hong Shen and Tsu-I Chen
Dept. of Computer Science and Engineering

National Sun Yat-Sen University
Kaohsiung, Taiwan, R.O.C
changyi@cse.nsysu.edu.tw

ABSTRACT

Information filtering is an area of research that
develops tools for discriminating between relevant and
irrelevant information. Users first give descriptions
about what they need, i.e., user profiles, to start the
services. A profile index is built on these profiles. Then,
the web page will be recommended to the users whose
profiles belong to the filtered results. Therefore, a
critical issue of the information filtering service is how
to index the user profiles for an efficient matching
process. Indexing user profiles can reduce the costs of
storage space and the processing time for modifying the
user profiles. However, when someone's interests are
often changed, we must care about the way to provide
the low update cost of the index structure. Therefore, in
this paper, we propose a large-itemset-based method
for the incremental update of the index structure for
storing keywords to reduce the update cost. According
to our simulation results, our method really can reduce
the update cost as needed by Wu and Chen's method.

1: Introduction

The growth of the Web has brought about the rapid
accumulation of data and the increasing possibility of
information sharing. When searching the Web, a user can
be overwhelmed by thousands of results retrieved by a
search engine, and few of which are valuable. Therefore,
many techniques have developed on the Web to retrieve
useful information. Information filtering is one of the
techniques to help users find what they want [2][3][9].
Each user has his (her) profile which stores a set of
keywords that can present his (her) interests [6][9]. For a
profile to match the document, every word which it
contains must be in the document. The matched Web
pages are also presented with the associated set of
keywords. Comparing data with profiles, the users who
are interested in the data are identified and informed.
That is, information filtering can find good matches
between the web pages and the users' information needs
[4][5][8].*

* This research was supported in part by the National Science Council
of Republic of China under Grant No. NSC95-2221-E-110-101 and by
National Sun Yat-Sen University.

In order to match data with profiles efficiently, a
profile index is built on these profiles. Indexing the user
profiles can reduce the costs of storage space and the
processing time for modifying the user profiles. We can
use a proxy server which is regarded as a mechanism to
produce web pages. That is, the web pages fetched by the
proxy server will form the incoming web pages for the
information filtering service [7]. Two kinds of index
structures are used on the information filtering service,
and the users' profiles can be expressed in Vector Space
and Boolean models. In the Vector Space model, users'
profiles and documents are identified by keywords
which are associated with the weight that can represent
its statistical importance, such as its frequency in the
document. Instead of using the Vector Space model, the
user may use Boolean model to specify keywords that he
wants in documents received [10].

In [9], Yan and Garcia-Molina have proposed three
methods based on the vector space model: the brute force
method, the profile indexing method and the selective
profile indexing method. In [10], Yan and Garcia-Molina
have proposed four methods based on the Boolean model:
the brute force method, the counting method, the key
method and the tree method. To improve wasting much
space on storing the index and too much time on
matching process in [10], Wu and Chen [7] have
proposed four methods to improve the performance in
terms of the storage space: index path with path
signatures, index graph with path signatures, index path
with profile sets, and index graph with profile sets.

Among those methods for information filtering, Wu
and Chen's methods [7] can expect to minimize the
storage space at the cost of the processing time. Although
Wu and Chen's methods [7] can reduce the large storage
space as needed by Yan and Garcia-Molina's methods
[10], their methods require long time on the matching
process. Moreover, when someone's interests are
changed, Wu and Chen's data structures [7] need to be
restructured from the root. That is, their data structure
will be affected globally.

Therefore, in this paper, in order to reduce the update
cost as needed by Wu and Chen's methods [7], we
propose a large-itemset-based method for the
incremental update. We adopt the vector space model.
Each keyword can be distinguished the long-term
interest which has weight above the threshold from the

- 943 -

short-term interest which has weight below the threshold.
Moreover, we also use the idea of the Apriori algorithm
[1] to get the large itemset, the long-term interest. Owing
to that the probability of modifying the short-term
interests is higher than that of modifying the long-term
interests, we can update the short-term interests locally
to reduce the update cost. According to our simulation
results, our method really can reduce the update cost as
needed by Wu and Chen's method [7].

The rest of the paper is organized as follows. Section
2 presents the large-itemset-based method for the
incremental update. In Section 3, we study the
performance and make a comparison of the proposed
method with Wu and Chen's method. Finally, Section 4
gives the conclusion.

2: The Large-Itemset-Based Method for the
Incremental Update

Based on Wu and Chen's methods [7], when
someone's interests are changed, the profile in their data
structures need to be restructured from the root. In this
section, we present a large-itemset-based method for the
incremental update of the index structure for storing
keywords to reduce the update cost.

2.1: The Update Method

We adopt the vector space model. Basically, a
profile in the vector space model contains a list of
keywords and each keyword is weighted according to
its degree of importance. Hence, each keyword in the
profile is given a weight that signifies its statistical
importance. Therefore, in the proposed method, we take
the weight of each keyword into consideration.

A threshold α is given to distinguish how
importance of those keywords is. If the weight of the
keyword is larger than or equal to threshold α, it can be
regarded as the long-term interests. The long-term
interests are interests that result from an accumulation
of experiences over a long time. On the other hand, if
the weight of the keyword is smaller than threshold α, it
can be regarded as the short-term interests. The
short-term interests are interests in events on a
day-to-day basis which change over a short period.
According to the property of the keywords which are
assigned with some weight, we can reduce the update
cost in our proposed method.

In our proposed method, we use the idea of the
Apriori algorithm [1] to get the large itemset. Because,
the large itemsets in our update method represent the
long-term interests which are not often modified, we
modify the definition of candidate itemsets in the
Apriori algorithm. That is, the count of the keyword will
be increased only when the weight of the keyword is
greater than or equal to threshold α. In our revised
Apriori algorithm, the minimum support is dynamically

decided by , where Cn
represents the candidate itemset in the n'th round.

Profile

P1

P2

P3

P4

P5

Keywords/Weight

 b, e, h = { 0.2, 0.1, 0.2 }

 e, f, g = { 0.3, 0.1, 0.4 }

 d, h = { 0.2, 0.2 }

 e, h = { 0.3, 0.4 }

 a, i, j = { 0.2, 0.4, 0.3 }

Profile

P1

P2

P3

P4

P5

Keywords/Weight

 c, d, g, i = { 0.9, 0.7, 0.8, 0.6 }

 a, b, c, i, j = { 0.7, 0.9, 0.5, 0.6, 0.8 }

 a, b, c, e, i, j = { 0.8, 0.6, 0.6, 0.7, 0.9, 0.5 }

 c, d, f, g = { 0.8, 0.7, 0.8, 0.5 }

 c, d, f, g = { 0.8, 0.6, 0.5, 0.7 }

 (a) (b)
Figure 1: Profiles for the running example: (a) the
profiles contain those keywords with the weight < α;
(b) the profiles contain those keywords with the
weight α≥ .

{a}
{b}
{c}
{d}
{e}
{f}
{g}
{i}
{j}

2
2
5
3
1
2
3
3
2

Itemset Sup.

{c}
{d}
{g}
{i}

5
3
3
3

Itemset Sup.

{c d}
{c g}
{c i}
{d g}
{d i}
{g i}

Itemset

{c d g}
Itemset

Itemset
3
3
3
3
1
1

Sup.

{c d}
{c g}
{c i}
{d g}

Itemset
3
3
3
3

Sup.

{c d g}
Itemset Sup.

3 {c d g}
Itemset

L3
Sup.

3

100
200
300
400
500

c d g i
a b c i j
a b c e i j
c d f g
c d f g

TID Items

Database D

support:
23/9 = 2.6

support:
14/6 =2.3

support:
3

{c d}
{c g}
{c i}
{d g}
{d i}
{g i}

Scan
D

Scan
D

Scan
D

L2

L1

C1

C2
C2

C3
C3

Figure 2: An example of getting the large itemset

Take an example in Figure 1 to illustrate the way to

get the large itemset. In Figure 1, there are five profiles
which contain a list of keywords with weights and the
threshold α = 0.5. Those keywords with the weight < α
are shown in Figure 1-(a), and those keywords with the
weight α≥ are shown in Figure 1-(b). Because the
keyword with the weight α≥ will become the
candidate item, we only use those profiles as shown in
Figure 1-(b) to be the input data. That is, as shown in
Figure 2, the large itemset can be chosen from those
profiles shown in Figure 1-(b). The minimum support of
C1 is calculated by () 6.2

9
233213522

=
++++++++

=Support .

So, we choose only those itemsets {c}, {d}, {g}, {i}
which have support larger than 2.6 to be L1. The final
result of the large itemset is L3 = {c, d, g}. We choose
the large itemset with the largest length, the same as that
in the Apriori algorithm.

By using our revised Apriori algorithm, we can get
the large itemset from the profiles which have the
weight of each keyword above the threshold. After we
get the large itemset, we divide those profiles into two
parts according to the result of the large itemset. One
part contains the large itemset and the other part does
not contain the large itemset. Next, those profiles in the
two parts keep on getting the large itemset by using our
revised Apriori algorithm, respectively. We use each
result of the large itemsets to construct the index
structure. Those steps are repeated until no keywords
are in the profiles which have the weight of each

- 944 -

11 : the long-term interests
1 : the short-term interests

1root

a
b
c
i
j

c
d
g

P2

P1P5

a
i
j

P4 P3

11f

e
h

11i

b
e
h

11e

d
h

e
f
g

Figure 3: The updatable tree

Profile

1

2

3

4

5

does not
contain
{c, d, g}

c, d, g, i

c, d, f, g
c, d, f, gcontains

{c, d, g}

Profile Keywords

Profile Keywords

(a)

(b)

1
4
5

a, b, c, e, i, j
a, b, c, i, j2

3

Keywords

 c, d, g, i

 a, b, c, i, j

 a, b, c, e, i, j

 c, d, f, g

 c, d, f, g

Figure 4: Those profiles are divided into two parts
according to the large itemset {c, d, g}: (a) profiles
P2 and P3 do not contain the large itemset; (b)
profiles P1, P4 and P5 contain the large itemset.

keyword above the threshold. Finally, we insert the
identifier of the profiles and those keywords which have
the weight below the threshold to the index structure
according to the path from the root that those profiles
own by themselves.

Let's use an example shown in Figure 1 to illustrate
those steps of constructing the updatable tree. As
described above, we divide those profiles into two parts.
We use the profiles as shown in Figure 1-(b), which
have the weight of each keyword above the threshold to
get the large itemset. At the first time, the large itemset
is {c, d, g} as shown in Figure 2. We add the large
itemset {c, d, g} to the updatable tree, as shown in
Figure 3. Then we divide those profiles into two parts:
one part does not contain the large itemset {c, d, g} as
shown in Figure 4-(a), and the other part contains it as
shown in Figure 4-(b).

Then, we use those profiles P1, P4, P5 which have
already removed the large itemset {c, d, g} as shown in
the left part of Figure 5 to get the large itemset {f} again.
We can then divide profiles P1, P4, P5 into two parts
again: one part does not contain the large itemset as
shown in Figure 5-(a), and the other part contains it as
shown in Figure 5-(b). Then, we add the keyword {f} to
the updatable tree, following keywords {c, d, g}.
Therefore, there are no keywords with the weight α≥
in profiles P4 and P5. So, we add keywords {e, h} as

Profile

1

5

does not
contain

{f}

contains
{f}

Profile

Profile

(a)

(b)

4
5

1

f
f

Keywords

Keywords

i

i

f

Keywords

4 f

Figure 5: Those profiles are divided into two parts
according to the large itemset {f}: (a) profile P1 does
not contain the large itemset; (b) profiles P4 and P5
contain the large itemset.

shown in Figure 1-(a), which have the weight below the
threshold in profile P4, to the updatable tree, following
keyword {f}. And we add the identifier of profile P4 to
the updatable tree, following keywords {e, h}. Similar
to the previous step, we also add keywords {a, i, j} as
shown in Figure 1-(a), which have the weight below the
threshold in profile P5, to the updatable tree, following
keyword {f}. And we add the identifier of profile P5 to
the updatable tree, following keywords {a, i, j}. Next,
there is only one profile P1 that contains one keyword i
which has the weight above the threshold. Therefore, we
add keyword i to the updatable tree, following keywords
{c, d, g}. There are no keywords with the weight α≥
in profile P1. Then, we add keywords {b, e, h} as shown
in Figure 1-(a), which have weight below the threshold
in profile P1, to the updatable tree, following keyword
{i}. And we add the identifier of profile P1 to the
updatable tree, following keywords {b, e, h}.

Similar to the previous steps, we get the large
itemset {a, b, c, i, j} from those profiles as shown in
Figure 4-(a). Then, we add the large itemset {a, b, c, i, j}
to the updatable tree, following the node of root. After
the large itemset {a, b, c, i, j} is removed from profiles
P2 and P3, there is only one keyword {e} in profile P3.
So, we add the keyword {e} to the updatable tree,
following keywords {a, b, c, i, j}. Next, we add
keywords {d, h} as shown in Figure 1-(a), which have
the weight below the threshold in profile P3, to the
updatable tree, following keyword {e}. Next, we add
the identifier of profile P3 to the updatable tree,
following keywords {d, h}. Finally, similar to the
previous steps, we add keywords {e, f, g} as shown in
Figure 1-(a), which have the weight below the threshold
in profile P2, to the updatable tree, following keywords
{a, b, c, i, j}. And we add the identifier of profile P2 to
the updatable tree, following keywords {e, f, g}.
Therefore, the final result for the input shown in Figure
1 is shown in Figure 3.

2.2: The Update Process

According to our large-itemset-based method for the
incremental update as described above, we can reduce
the update cost as needed by Wu and Chen's methods
[7]. Owing to that the probability of modifying the
short-term interests is higher than that of modifying the
long-term interests, and that we always put the

- 945 -

short-term interests which have the weight below the
threshold to the leaf nodes of the tree, we can update the
short-term interests locally. For example, the weight of
keyword f in profile P2 is 0.1, it is one of the short-term
interests which have the higher probability to be
changed over a short period. According to the index tree
as shown in Figure 3, if the user with profile P2 is not
interested in keyword f, we can remove keyword f from
the node containing {e, f, g}. That is, the node
containing {e, f, g} is changed to the node containing {e,
g}.

For the deletion of the long-term interest in profile
Pi, if the keyword, l_key, of the deletion is contained
only in the node leading to Pi, it could be deleted
directly. On the other hand, if keyword l_key is
contained in the node leading to Pi and the other profiles,
keywords in this node and its child nodes should be
reallocated. That is, the reallocation is locally operated.

If the user with profile P2 is interested in keyword d
over a short period, we will insert keyword d to the
node which contains the short-term interest. That is,
keyword d is inserted to the node containing {e, g}, as
shown in Figure 3.

For the insertion of the long-term interest in profile
Pi, the keyword, l_key, of the insertion will be put into
the last long-term node leading to Pi. Moreover, if
keyword l_key is exclusively belonging to Pi, a new
long-term node containing this keyword should be
created, and attached to the original last long-term node.
Furthermore, if the siblings of the last long-term node
containing l_key have l_key, these nodes should be
reallocated. That is, keywords in these nodes should be
locally reallocated.

3: Performance

In this section, we make a comparison with Wu and
Chen's method [7] and our proposed method.

3.1: The Simulation Model

We generated synthetic profiles to evaluate the
performance [10]. The number of profiles is N. To
simplify the study of the effect of the profile size on
performance, all profiles have the same length, K; that is,
K is fixed for all profiles. The keywords that all profiles
choose are composed of the set of keywords D. So,
keywords in the first profile are chosen randomly from
the set of keywords D. The first profile is called “base
profile.” In our assumption, the users with similarity
interests are clustered into the same group. Therefore, in
order to model the similarity among profiles, the
similarity parameter Q controls how similar the new
profile and the base profile are. That is, for each word in
the new profile, there is a probability Q that it is the
same as the corresponding word in the base profile. If it
is not, then the keyword in the new profile is picked at
random from the set of keywords D. There are no
duplicated keywords in the profile. Hence, by varying Q
from 0 to 1, we can control the similarity among the

Table 1: Parameters and their default settings used
in the simulation
Parameter Default value
(PD, PI) (30%, 70%), (40%, 60%), (50%, 50%),

(60%, 40%), (70%, 30%)
(PS, PL) (20%, 80%), (40%, 60%), (60%, 40%),

(80%, 20%), (100%, 0%)
PD: The probability of doing the deletion operation
PI: The probability of doing the insertion operation
PS: The probability of modifying the short-term interests
PL: The probability of modifying the long-term interests

Table 2: A comparison of the update cost (under
the base case)
Methods The update cost
Wu and Chen' method 63
Our method (reduced %) 20 (68%)

profiles. If Q is 0, the keywords in all profiles are
randomly chosen from the set of keywords D.

3.2: Simulation Results

The data which we choose to update contains four
parameters: N = 500, K = 5, D = 50, and Q = 80%. That
is, we cluster 500 users with similarity interests into the
same group. The length of all profile is 5. The set of
keywords is composed of 50 keywords. Moreover, we
choose 80% to decide the similarity among profiles.

In our simulation, four parameters and their default
settings are listed in Table 1. Owing to that the update
process contains the deletion operation and the insertion
operation, we can observe the impact of the ratio in the
deletion and insertion operation for the update cost.
Moreover, we can adjust the ratio of the probability of
modifying the short-term interests and that of modifying
the long-term interests. First, we define a base case, (PD,
PI) = (50%, 50%) and (PS, PL) = (80%, 20%).

When we do the update operation of the keywords
which the user is (not) interested in, first we must pass
through the index structure to find the profile which the
user has. Then, we do the update operation of the
keywords for the user in the index structure. Therefore,
the update cost which we care in the simulation is the
number of edges which we have passed through in the
index structure. According to those parameters in the
base case, a comparison of the update cost in Wu and
Chen's method and our method is shown in Table 2.
Note that all our experimental results are the average of
100 executions. From this result, we show that Wu and
Chen's method [7] needs more update cost than our
method. On the average, our method can reduce about
68% update cost as compared with Wu and Chen's
method.

Next, we study the impact of those parameters on the
performance. The first parameter that we vary is PD, the
probability of doing the deletion operation. The range of
PD is set to 30%, 40%, 50%, 60%, 70%. The PS and PL
parameters are kept as their base values. Under the
change of the number of PD, a comparison of the
update cost in Wu and Chen's method and our method is

- 946 -

Figure 6: A comparison of the update cost (under
the probability of doing the deletion operation)

Figure 7: A comparison of the update cost (under
the probability of modifying the short-term interests)

shown in Figure 6. From this result, we show that Wu
and Chen's method [7] needs more update cost than our
method. Because the line of our method shown in
Figure 6 is close to a straight line, the probability of
doing the deletion operation does not influence the
performance in our method. But, in Wu and Chen's
method, when the probability of doing the deletion
operation is small, they need more update cost. That is,
their method needs larger update cost when they do the
insertion operation. On the average, our method can
reduce about 64% update cost of Wu and Chen's
method.

The second parameter that we vary is PS, the
probability of modifying the short-term interests. The
range of PS is set to 20%, 40%, 60%, 80%, 100%. The
PD and PI parameters are kept as their base values.
Under the change of the number of PS, a comparison of
the update cost in Wu and Chen's method and our
method is shown in Figure 7. From this result, we show
that Wu and Chen's method [7] needs also more update
cost than our method. Because in Wu and Chen's
method, they do not consider whether the keyword is
the long-term interest or the short-term interest, the
pseudo code of Wu and Chen's method shown in Figure
7 does not relate to the probability of modifying the

short-term interests. But, as the value of PS increases,
the update cost decreases in our method. In fact, the
probability of modifying the short-term interests is
higher than that of modifying the long-term interest.
Therefore, our method can reduce more update cost,
when the probability of modifying the short-term
interests is large. On the average, our method can
reduce about 52% update cost of Wu and Chen's
method.

4: Conclusion

In this paper, to reduce the update cost as needed by
Wu and Chen's methods [7][10], we have proposed the
large-itemset-based method for the incremental update.
We take the weight of each keyword into consideration.
The long-term interests have the weight above the
threshold and the short-term interests have the weight
below the threshold. Owing to that the probability of
modifying the short-term interests is higher than that of
modifying the long-term interests, we can update the
short-term interests locally. From our simulation, we
have shown that our method really requires smaller
update cost than Wu and Chen's method.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast Algorithms for

Mining Association Rules in Large Databases,” Proc.
of the 20th Int. Conf. Very Large Data Bases, pp.
490-501, 1994.

[2] E. J. Glover, S. Lawrence, M. D. Gordon, W. P.
Birmingham and C. L. Giles, “Web Search-Your Way,”
Communications of the ACM, Vol. 44, No. 12, pp.
97-102, Dec. 2001.

[3] M. Hammami, Y. Chahir, and L. Chen, “Webguard: A
Web Filtering Engine Combining Textual, Structural,
and Visual Content-Based Analysis,” IEEE Trans. on
Knowledge and Data Eng., Vol. 18, No. 2, pp. 272-284,
Feb. 2006.

[4] S. Jung, J. Kim, and J. L. Herlocker, “Applying
Collaborative Filtering for Efficient Document Search,”
Proc. of IEEE/WIC/ACM Int. Conf. on Web Intelligence,
pp. 640-643, 2004.

[5] Y. W. Park and E. S. Lee, “A New Generation Method
of an User Profile for Information Filtering on the
Internet,” Proc. of IEEE Int. Conf. on Data Eng., pp.
337-347, 1994.

[6] D. H. Widyantoro, T. R. Ioerger and J. Yen, “An
Adaptive Algorithm for Learning Changes in User
Interests,” Proc. of the 8th Int. Conf. on Information
and Knowledge Management, pp. 405-412, 1999.

[7] Y. H. Wu and A. L. P. Chen, “Index Structures of User
Profiles for Efficient Web Page Filtering Services,”
Proc. of the 20th IEEE Int. Conf. on Distributed
Computing Systems, pp. 644-653, 2000.

[8] Y. H. Wu, Y. C. Chen and A. L. P. Chen, “Enabling
Personalized Recommendation on the Web Based on
User Interests and Behaviors,” Proc. of the 11th IEEE
Workshop Research Issues in Data Eng., pp. 17-24,
2001.

[9] T. W. Yan and H. Garcia-Molina, “Index Structures for
Information Filtering Under the Vector Space Model,”

- 947 -

Proc. of IEEE Int. Conf. on Data Eng., pp. 337-347,
1994.

[10] T. W. Yan and H. Garcia-Molina, “Index Structures for
Selective Dissemination of Information Under the
Boolean Model,” ACM Trans. on Database Systems,
Vol. 19, No. 2, pp. 322-364, Nov. 1994.

- 948 -

