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ABSTRACT 

Information filtering is an area of research that 
develops tools for discriminating between relevant and 
irrelevant information. Users first give descriptions 
about what they need, i.e., user profiles, to start the 
services. A profile index is built on these profiles. Then, 
the web page will be recommended to the users whose 
profiles belong to the filtered results. Therefore, a 
critical issue of the information filtering service is how 
to index the user profiles for an efficient matching 
process. Indexing user profiles can reduce the costs of 
storage space and the processing time for modifying the 
user profiles. However, when someone's interests are 
often changed, we must care about the way to provide 
the low update cost of the index structure. Therefore, in 
this paper, we propose a large-itemset-based method 
for the incremental update of the index structure for 
storing keywords to reduce the update cost. According 
to our simulation results, our method really can reduce 
the update cost as needed by Wu and Chen's method. 
 
 
1: Introduction 
 

The growth of the Web has brought about the rapid 
accumulation of data and the increasing possibility of 
information sharing. When searching the Web, a user can 
be overwhelmed by thousands of results retrieved by a 
search engine, and few of which are valuable. Therefore, 
many techniques have developed on the Web to retrieve 
useful information. Information filtering is one of the 
techniques to help users find what they want [2][3][9]. 
Each user has his (her) profile which stores a set of 
keywords that can present his (her) interests [6][9]. For a 
profile to match the document, every word which it 
contains must be in the document. The matched Web 
pages are also presented with the associated set of 
keywords. Comparing data with profiles, the users who 
are interested in the data are identified and informed. 
That is, information filtering can find good matches 
between the web pages and the users' information needs 
[4][5][8].*

                                                           
* This research was supported in part by the National Science Council 
of Republic of China under Grant No. NSC95-2221-E-110-101 and by 
National Sun Yat-Sen University. 

In order to match data with profiles efficiently, a 
profile index is built on these profiles. Indexing the user 
profiles can reduce the costs of storage space and the 
processing time for modifying the user profiles. We can 
use a proxy server which is regarded as a mechanism to 
produce web pages. That is, the web pages fetched by the 
proxy server will form the incoming web pages for the 
information filtering service [7]. Two kinds of index 
structures are used on the information filtering service, 
and the users' profiles can be expressed in Vector Space 
and Boolean models. In the Vector Space model, users' 
profiles and documents are identified by keywords 
which are associated with the weight that can represent 
its statistical importance, such as its frequency in the 
document. Instead of using the Vector Space model, the 
user may use Boolean model to specify keywords that he 
wants in documents received [10]. 

In [9], Yan and Garcia-Molina have proposed three 
methods based on the vector space model: the brute force 
method, the profile indexing method and the selective 
profile indexing method. In [10], Yan and Garcia-Molina 
have proposed four methods based on the Boolean model: 
the brute force method, the counting method, the key 
method and the tree method. To improve wasting much 
space on storing the index and too much time on 
matching process in [10], Wu and Chen [7] have 
proposed four methods to improve the performance in 
terms of the storage space: index path with path 
signatures, index graph with path signatures, index path 
with profile sets, and index graph with profile sets. 

Among those methods for information filtering, Wu 
and Chen's methods [7] can expect to minimize the 
storage space at the cost of the processing time. Although 
Wu and Chen's methods [7] can reduce the large storage 
space as needed by Yan and Garcia-Molina's methods 
[10], their methods require long time on the matching 
process. Moreover, when someone's interests are 
changed, Wu and Chen's data structures [7] need to be 
restructured from the root. That is, their data structure 
will be affected globally. 

Therefore, in this paper, in order to reduce the update 
cost as needed by Wu and Chen's methods [7], we 
propose a large-itemset-based method for the 
incremental update. We adopt the vector space model. 
Each keyword can be distinguished the long-term 
interest which has weight above the threshold from the 
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short-term interest which has weight below the threshold. 
Moreover, we also use the idea of the Apriori algorithm 
[1] to get the large itemset, the long-term interest. Owing 
to that the probability of modifying the short-term 
interests is higher than that of modifying the long-term 
interests, we can update the short-term interests locally 
to reduce the update cost. According to our simulation 
results, our method really can reduce the update cost as 
needed by Wu and Chen's method [7]. 

The rest of the paper is organized as follows. Section 
2 presents the large-itemset-based method for the 
incremental update. In Section 3, we study the 
performance and make a comparison of the proposed 
method with Wu and Chen's method. Finally, Section 4 
gives the conclusion. 
 
2: The Large-Itemset-Based Method for the 
Incremental Update 
 

Based on Wu and Chen's methods [7], when 
someone's interests are changed, the profile in their data 
structures need to be restructured from the root. In this 
section, we present a large-itemset-based method for the 
incremental update of the index structure for storing 
keywords to reduce the update cost. 
 
2.1: The Update Method 
 

We adopt the vector space model. Basically, a 
profile in the vector space model contains a list of 
keywords and each keyword is weighted according to 
its degree of importance. Hence, each keyword in the 
profile is given a weight that signifies its statistical 
importance. Therefore, in the proposed method, we take 
the weight of each keyword into consideration. 

A threshold α is given to distinguish how 
importance of those keywords is. If the weight of the 
keyword is larger than or equal to threshold α, it can be 
regarded as the long-term interests. The long-term 
interests are interests that result from an accumulation 
of experiences over a long time. On the other hand, if 
the weight of the keyword is smaller than threshold α, it 
can be regarded as the short-term interests. The 
short-term interests are interests in events on a 
day-to-day basis which change over a short period.  
According to the property of the keywords which are 
assigned with some weight, we can reduce the update 
cost in our proposed method. 

In our proposed method, we use the idea of the 
Apriori algorithm [1] to get the large itemset. Because, 
the large itemsets in our update method represent the 
long-term interests which are not often modified, we 
modify the definition of candidate itemsets in the 
Apriori algorithm. That is, the count of the keyword will 
be increased only when the weight of the keyword is 
greater than or equal to threshold α. In our revised 
Apriori algorithm, the minimum support is dynamically 

decided by , where Cn 
represents the candidate itemset in the n'th round. 

Profile
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Keywords/Weight

 b, e, h = { 0.2, 0.1, 0.2 }

 e, f, g = { 0.3, 0.1, 0.4 }
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 e, h = { 0.3, 0.4 }

 a, i, j = { 0.2, 0.4, 0.3 }

Profile
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 c, d, g, i = { 0.9, 0.7, 0.8, 0.6 }

 a, b, c, i, j = { 0.7, 0.9, 0.5, 0.6, 0.8 }

 a, b, c, e, i, j = { 0.8, 0.6, 0.6, 0.7, 0.9, 0.5 }

 c, d, f, g = { 0.8, 0.7, 0.8, 0.5 }

 c, d, f, g = { 0.8, 0.6, 0.5, 0.7 }

 (a) (b) 
Figure 1: Profiles for the running example: (a) the 
profiles contain those keywords with the weight < α; 
(b) the profiles contain those keywords with the 
weight α≥ . 
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Figure 2: An example of getting the large itemset 

 
Take an example in Figure 1 to illustrate the way to 

get the large itemset. In Figure 1, there are five profiles 
which contain a list of keywords with weights and the 
threshold α = 0.5. Those keywords with the weight < α 
are shown in Figure 1-(a), and those keywords with the 
weight α≥  are shown in Figure 1-(b). Because the 
keyword with the weight α≥  will become the 
candidate item, we only use those profiles as shown in 
Figure 1-(b) to be the input data. That is, as shown in 
Figure 2, the large itemset can be chosen from those 
profiles shown in Figure 1-(b). The minimum support of 
C1 is calculated by ( ) 6.2

9
233213522

=
++++++++

=Support . 

So, we choose only those itemsets {c}, {d}, {g}, {i} 
which have support larger than 2.6 to be L1. The final 
result of the large itemset is L3 = {c, d, g}. We choose 
the large itemset with the largest length, the same as that 
in the Apriori algorithm. 

By using our revised Apriori algorithm, we can get 
the large itemset from the profiles which have the 
weight of each keyword above the threshold. After we 
get the large itemset, we divide those profiles into two 
parts according to the result of the large itemset. One 
part contains the large itemset and the other part does 
not contain the large itemset. Next, those profiles in the 
two parts keep on getting the large itemset by using our 
revised Apriori algorithm, respectively. We use each 
result of the large itemsets to construct the index 
structure. Those steps are repeated until no keywords 
are in the profiles which have the weight of each 
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Figure 3: The updatable tree 
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Figure 4: Those profiles are divided into two parts 
according to the large itemset {c, d, g}: (a) profiles 
P2 and P3 do not contain the large itemset; (b) 
profiles P1, P4 and P5 contain the large itemset. 
 
keyword above the threshold. Finally, we insert the 
identifier of the profiles and those keywords which have 
the weight below the threshold to the index structure 
according to the path from the root that those profiles 
own by themselves. 
 

Let's use an example shown in Figure 1 to illustrate 
those steps of constructing the updatable tree. As 
described above, we divide those profiles into two parts. 
We use the profiles as shown in Figure 1-(b), which 
have the weight of each keyword above the threshold to 
get the large itemset. At the first time, the large itemset 
is {c, d, g} as shown in Figure 2. We add the large 
itemset {c, d, g} to the updatable tree, as shown in 
Figure 3. Then we divide those profiles into two parts: 
one part does not contain the large itemset {c, d, g} as 
shown in Figure 4-(a), and the other part contains it as 
shown in Figure 4-(b).  

Then, we use those profiles P1, P4, P5 which have 
already removed the large itemset {c, d, g} as shown in 
the left part of Figure 5 to get the large itemset {f} again. 
We can then divide profiles P1, P4, P5 into two parts 
again: one part does not contain the large itemset as 
shown in Figure 5-(a), and the other part contains it as 
shown in Figure 5-(b). Then, we add the keyword {f} to 
the updatable tree, following keywords {c, d, g}. 
Therefore, there are no keywords with the weight α≥  
in profiles P4 and P5. So, we add keywords {e, h} as 
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Figure 5: Those profiles are divided into two parts 
according to the large itemset {f}: (a) profile P1 does 
not contain the large itemset; (b) profiles P4 and P5 
contain the large itemset. 
 
shown in Figure 1-(a), which have the weight below the 
threshold in profile P4, to the updatable tree, following 
keyword {f}. And we add the identifier of profile P4 to 
the updatable tree, following keywords {e, h}. Similar 
to the previous step, we also add keywords {a, i, j} as 
shown in Figure 1-(a), which have the weight below the 
threshold in profile P5, to the updatable tree, following 
keyword {f}. And we add the identifier of profile P5 to 
the updatable tree, following keywords {a, i, j}. Next, 
there is only one profile P1 that contains one keyword i 
which has the weight above the threshold. Therefore, we 
add keyword i to the updatable tree, following keywords 
{c, d, g}. There are no keywords with the weight α≥  
in profile P1. Then, we add keywords {b, e, h} as shown 
in Figure 1-(a), which have weight below the threshold 
in profile P1, to the updatable tree, following keyword 
{i}. And we add the identifier of profile P1 to the 
updatable tree, following keywords {b, e, h}. 

Similar to the previous steps, we get the large 
itemset {a, b, c, i, j} from those profiles as shown in 
Figure 4-(a). Then, we add the large itemset {a, b, c, i, j} 
to the updatable tree, following the node of root. After 
the large itemset {a, b, c, i, j} is removed from profiles 
P2 and P3, there is only one keyword {e} in profile P3. 
So, we add the keyword {e} to the updatable tree, 
following keywords {a, b, c, i, j}. Next, we add 
keywords {d, h} as shown in Figure 1-(a), which have 
the weight below the threshold in profile P3, to the 
updatable tree, following keyword {e}. Next, we add 
the identifier of profile P3 to the updatable tree, 
following keywords {d, h}. Finally, similar to the 
previous steps, we add keywords {e, f, g} as shown in 
Figure 1-(a), which have the weight below the threshold 
in profile P2, to the updatable tree, following keywords 
{a, b, c, i, j}. And we add the identifier of profile P2 to 
the updatable tree, following keywords {e, f, g}. 
Therefore, the final result for the input shown in Figure 
1 is shown in Figure 3. 
 
2.2: The Update Process 
 

According to our large-itemset-based method for the 
incremental update as described above, we can reduce 
the update cost as needed by Wu and Chen's methods 
[7]. Owing to that the probability of modifying the 
short-term interests is higher than that of modifying the 
long-term interests, and that we always put the 

- 945 -



short-term interests which have the weight below the 
threshold to the leaf nodes of the tree, we can update the 
short-term interests locally. For example, the weight of 
keyword f in profile P2 is 0.1, it is one of the short-term 
interests which have the higher probability to be 
changed over a short period. According to the index tree 
as shown in Figure 3, if the user with profile P2 is not 
interested in keyword f, we can remove keyword f from 
the node containing {e, f, g}. That is, the node 
containing {e, f, g} is changed to the node containing {e, 
g}. 

For the deletion of the long-term interest in profile 
Pi, if the keyword, l_key, of the deletion is contained 
only in the node leading to Pi, it could be deleted 
directly. On the other hand, if keyword l_key is 
contained in the node leading to Pi and the other profiles, 
keywords in this node and its child nodes should be 
reallocated. That is, the reallocation is locally operated. 

If the user with profile P2 is interested in keyword d 
over a short period, we will insert keyword d to the 
node which contains the short-term interest. That is, 
keyword d is inserted to the node containing {e, g}, as 
shown in Figure 3. 

For the insertion of the long-term interest in profile 
Pi, the keyword, l_key, of the insertion will be put into 
the last long-term node leading to Pi. Moreover, if 
keyword l_key is exclusively belonging to Pi, a new 
long-term node containing this keyword should be 
created, and attached to the original last long-term node. 
Furthermore, if the siblings of the last long-term node 
containing l_key have l_key, these nodes should be 
reallocated. That is, keywords in these nodes should be 
locally reallocated. 
 
3: Performance 
 

In this section, we make a comparison with Wu and 
Chen's method [7] and our proposed method. 
 
3.1: The Simulation Model 
 

We generated synthetic profiles to evaluate the 
performance [10]. The number of profiles is N. To 
simplify the study of the effect of the profile size on 
performance, all profiles have the same length, K; that is, 
K is fixed for all profiles. The keywords that all profiles 
choose are composed of the set of keywords D. So, 
keywords in the first profile are chosen randomly from 
the set of keywords D. The first profile is called “base 
profile.”  In our assumption, the users with similarity 
interests are clustered into the same group. Therefore, in 
order to model the similarity among profiles, the 
similarity parameter Q controls how similar the new 
profile and the base profile are. That is, for each word in 
the new profile, there is a probability Q that it is the 
same as the corresponding word in the base profile. If it 
is not, then the keyword in the new profile is picked at 
random from the set of keywords D. There are no 
duplicated keywords in the profile. Hence, by varying Q 
from 0 to 1, we can control the similarity among the 

Table 1: Parameters and their default settings used 
in the simulation 
Parameter Default value 
(PD, PI) (30%, 70%), (40%, 60%), (50%, 50%), 

(60%, 40%), (70%, 30%) 
(PS, PL) (20%, 80%), (40%, 60%), (60%, 40%), 

(80%, 20%), (100%, 0%) 
PD: The probability of doing the deletion operation 
PI: The probability of doing the insertion operation 
PS: The probability of modifying the short-term interests 
PL: The probability of modifying the long-term interests 
 
Table 2: A comparison of the update cost (under 
the base case) 
Methods The update cost 
Wu and Chen' method 63 
Our method (reduced %) 20 (68%) 
 
profiles. If Q is 0, the keywords in all profiles are 
randomly chosen from the set of keywords D. 
 
3.2: Simulation Results 
 

The data which we choose to update contains four 
parameters: N = 500, K = 5, D = 50, and Q = 80%. That 
is, we cluster 500 users with similarity interests into the 
same group. The length of all profile is 5. The set of 
keywords is composed of 50 keywords. Moreover, we 
choose 80% to decide the similarity among profiles. 

In our simulation, four parameters and their default 
settings are listed in Table 1. Owing to that the update 
process contains the deletion operation and the insertion 
operation, we can observe the impact of the ratio in the 
deletion and insertion operation for the update cost. 
Moreover, we can adjust the ratio of the probability of 
modifying the short-term interests and that of modifying 
the long-term interests. First, we define a base case, (PD, 
PI) = (50%, 50%) and (PS, PL) = (80%, 20%). 

When we do the update operation of the keywords 
which the user is (not) interested in, first we must pass 
through the index structure to find the profile which the 
user has. Then, we do the update operation of the 
keywords for the user in the index structure. Therefore, 
the update cost which we care in the simulation is the 
number of edges which we have passed through in the 
index structure. According to those parameters in the 
base case, a comparison of the update cost in Wu and 
Chen's method and our method is shown in Table 2. 
Note that all our experimental results are the average of 
100 executions. From this result, we show that Wu and 
Chen's method [7] needs more update cost than our 
method. On the average, our method can reduce about 
68% update cost as compared with Wu and Chen's 
method. 

Next, we study the impact of those parameters on the 
performance. The first parameter that we vary is PD, the 
probability of doing the deletion operation. The range of 
PD is set to 30%, 40%, 50%, 60%, 70%. The PS and PL 
parameters are kept as their base values. Under the 
change of the number of PD, a comparison of the 
update cost in Wu and Chen's method and our method is 
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Figure 6: A comparison of the update cost (under 
the probability of doing the deletion operation) 

 
Figure 7: A comparison of the update cost (under 
the probability of modifying the short-term interests) 
 
shown in Figure 6. From this result, we show that Wu 
and Chen's method [7] needs more update cost than our 
method. Because the line of our method shown in 
Figure 6 is close to a straight line, the probability of 
doing the deletion operation does not influence the 
performance in our method. But, in Wu and Chen's 
method, when the probability of doing the deletion 
operation is small, they need more update cost. That is, 
their method needs larger update cost when they do the 
insertion operation. On the average, our method can 
reduce about 64% update cost of Wu and Chen's 
method. 

The second parameter that we vary is PS, the 
probability of modifying the short-term interests. The 
range of PS is set to 20%, 40%, 60%, 80%, 100%. The 
PD and PI parameters are kept as their base values. 
Under the change of the number of PS, a comparison of 
the update cost in Wu and Chen's method and our 
method is shown in Figure 7. From this result, we show 
that Wu and Chen's method [7] needs also more update 
cost than our method. Because in Wu and Chen's 
method, they do not consider whether the keyword is 
the long-term interest or the short-term interest, the 
pseudo code of Wu and Chen's method shown in Figure 
7 does not relate to the probability of modifying the 

short-term interests. But, as the value of PS increases, 
the update cost decreases in our method. In fact, the 
probability of modifying the short-term interests is 
higher than that of modifying the long-term interest. 
Therefore, our method can reduce more update cost, 
when the probability of modifying the short-term 
interests is large. On the average, our method can 
reduce about 52% update cost of Wu and Chen's 
method. 

 
4: Conclusion 
 

In this paper, to reduce the update cost as needed by 
Wu and Chen's methods [7][10], we have proposed the 
large-itemset-based method for the incremental update. 
We take the weight of each keyword into consideration. 
The long-term interests have the weight above the 
threshold and the short-term interests have the weight 
below the threshold. Owing to that the probability of 
modifying the short-term interests is higher than that of 
modifying the long-term interests, we can update the 
short-term interests locally. From our simulation, we 
have shown that our method really requires smaller 
update cost than Wu and Chen's method. 
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