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ABSTRACT
A fingerprint classification algorithm can speed up

the processes of fingerprint identification and
verification. Therefore, this algorithm must be
performed fast and correctly. Because Gabor filters
only have large responses with similar orientation and
spatial-frequency, in this paper, we will use a group of
principal Gabor basis functions to represent the ridge
structures of core regions. Fingerprint patterns will
have large responses only to the Gabor filter-based
templates of the corresponding classes. Therefore, the
classes of fingerprints are directly detected from
gray-scale images and many pixel-level computations
are not involved. As a result, a fast class-detection for
fingerprints is achieved.

1: INTRODUCTIONS

An efficient fingerprint classification algorithm can
speed up the processes of fingerprint identification and
verification. For fingerprint identification, the
fingerprints with similar ridge structures are checked and
the others are ignored. As for fingerprint verification,
non-matching patterns are rejected as soon as possible if
their ridge structures are different. So the ridge structures
in fingerprints are very important for fingerprint
identification and verification.

Based on the ridge structures in fingerprints, many
approaches were proposed in [1-8]. In general, there are
six types including arch, tented arch, left loop, right loop,
whorl, and double loop. They are shown in Fig. 1. In [3],
Wilson et al. combined whorl and double loop into one
class. Therefore, the target types of fingerprint
classification are five.

To classify the types of fingerprint, the number and
the position of the cores and deltas are the most
important features. In order to obtain the number and the
position of the cores and deltas, the orientation map and
Poincaré index were applied to judge whether the
singular point exists (including cores and deltas) [2][4].
However, deltas points might disappear for some
fingerprint capture devices. In [3][5], they used the
orientation map as the features of neural networks to
classify fingerprint patterns. But it might spend much
time for training and it is not easy to propose a physical
meaning to illustrate the weightings of networks.
Cappelli et al. proposed a structure-based approach based

on the orientation map in [6] and the syntactic approach
also based on orientation map [1]. In order to obtain the
orientation map, however, there are many steps
involving pixel-level computation, such as image
enhancement and gradient-based calculation. These steps
are time consuming.

Gabor filters, simulating visual vertex cells, have the
properties of spatial localization, orientation selectivity,
and spatial-frequency selectivity [9]. Therefore, Gabor
filters have been applied successfully and widely to
many fields. In fact, each local fingerprint has its
particular local ridge orientation (LRO) and local ridge
frequency (LRF), and the whole fingerprint images are
composed of various LROs and LRFs. In order to capture
these intrinsic characteristics simultaneously, we
proposed a local Gabor filter-based approach to
determine the suitable Gabor filters over a complete set
of Gabor filters by using only local information and then
a local fingerprint is represented by a Gabor filter [10].
We also applied the selected Gabor filters, forming a
template, to compare the similarity of two fingerprints
directly from gray-scale image [11]. In [12], we also used
a group of Gabor filters to simulate the core region;
therefore, the core points are detected directly from
gray-level images.

Based on the same concept, we will develop a Gabor
filter-based approach to detect the class which belongs.
The proposed approach can determine the results directly
from gray-level images to avoid some time-consuming
pixel-level computations.

Fig. 1. Arch, tented arch, left loop, right loop, whorl,
and double loop from left to right and top to button.
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2: GABOR BASIS FUNCTIONS AND
FINGERPRINT IMAGES

Gabor filters, simulating visual vertex cells, have the
properties of spatial localization, orientation selectivity,
and spatial-frequency selectivity. Therefore, we will
apply Gabor filters to detect a particular local ridge
orientation (LRO) and local ridge frequency (LRF) of a
local fingerprint image.

2.1: GABOR BASIS FUNCTIONS (GBFS)

The two-dimensional (2-D) complete set of GBFs can
be expressed as [10]:
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In the spatial domain, Ns is the number of spatial samples,
(p,q) is the spatial window center, and decides the
extent of spatial windows. In the spatial-frequency
domain, Nf is the number of spatial-frequency samples
and (r,s) is the location of the frequency center. The
angle and radial frequency f of GBF are determined by

)/(tan 1 rs and    22 // ff NrNs  , respectively. Their

relationship on the spatial-frequency plane is
demonstrated in Fig. 2. In Equation 1, we set the number
of spatial samples, the number of spatial-frequency
samples, and the extents of spatial windows along x and y
axes as the same values for simplification. In the spatial
domain, the real components of these basis functions for
Ns = Nf = 16 are shown in Fig. 3. From Fig. 3, the
orientation-selective properties of the GBFs are obvious.
In the spatial-frequency domain, each real GBF (except r
= s = 0) has twin Gaussian peaks. The envelope of
Gaussian function, which is proportional to the
reciprocal of , determines the channel bandwidths. In
fact, each real GBF has twin Gaussian peaks at its
frequency center (r,s). The complete GBFs spread Nf Nf
Gaussian peaks on the spatial-frequency plane. They
only respond to the image with the same orientation and
radial frequency as narrowband filters.

Fig. 2. Parameters of GBF on the spatial-frequency
plane.
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Fig. 3. The real components of the complete GBFs.

(a)

(b)

Fig. 4. (a) Original images and (b) responses of GBFs
for various LROs.

(a)

(b)

Fig. 5. (a) Original images and (b) responses of GBFs
for various LRFs.

The Gabor response g of each GBF corresponding
(r,s) is defined as follows:
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where I is an Ns Ns input image. To demonstrate the
relationship between GBFs and fingerprint images,
some local fingerprint images with various LROs and
LRFs are shown in Figs. 4(a) and 5(a), respectively.
Figs. 4(b) and 5(b) show the corresponding Gabor
responses from Figs. 4(a) and 5(a). From Figs. 4(b) and
5(b), the Gabor responses also have twin peaks, and the
corresponding locations are similar to their Gabor
coefficients. This means that the two corresponding
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GBFs (in fact, they are the same) have the largest
responses to the local fingerprint image. Moreover, the
orientation and spatial-frequency of the corresponding
GBF can represent mainly the local region because the
image energy concentrates at its frequency. In other
words, using only one GBF can easily capture the main
characteristics of a local fingerprint image. We name it
as the principal GBF (PBGF) of the local region which
is defined by

)],(max[ srggM  (3)
Because the PGBF can exactly capture the LRO and

LRF of a local ridge structures, the dimension of a local
fingerprint image is reduced from pixels to only one GBF.
A GBF, determined by (r,s), can also be reduced to an
index of the complete GBFs. If a local region has 1616
pixels, for example, then there are 256 GBFs and the
index of the PGBF needs only one byte. That is, the input
feature vectors are reduced by a factor of 256.

2.2: PGBF TEMPLATE

Owing to the distribution of Gabor responses over the
complete GBFs is similar to Gaussian distribution, larger
response means the ridge structure is more similar to the
corresponding PGBF. Therefore, we can distinguish the
similarities of ridge structures according to the
corresponding responses. After extracting the PGBFs of
a whole fingerprint image, the image is viewed as the
template of a group of LROs and LRFs, named PGBFs
template. The second column of Fig. 6 shows the real
components of the PGBFs template for non-overlapping
sampling. To judge the similarity between the test image
and the training pattern, we sample the test image
directly from gray-scale by using the PGBF template of
the training pattern. If the test image is similar to the
training pattern, their responses of all sampling points are
very close to each other. There is not necessary to extract
PGBF for the test image. In Fig. 6, the third column
shows the responses from self-PGBF template and the
fourth from another. Their PGBF responses are very
different.

Fig. 6. From left to right: fingerprint images, PGBFs
templates, Gabor responses from self-PGBFs template,

and Gabor responses from another PGBFs template.

At last, the response of the PGBF template is defined
by
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where N is the number of the regions of interest.

3: CLASSIFIER DESIGN

As described in Section 2, we use a group of PGBF to
form a particular ridge structures, then we can judge
whether the raw fingerprint image contain the particular
ridge structures. If the response is large, then the answer
is yes. Therefore, we can avoid many pixel-level
computations for orientation calculations.

Based on the above advantages, we will use a group
of PGBF to form a particular class of fingerprint.
Because every class has more than three subclasses,
however, there are at least 15 possibilities of PGBF
templates to represent the five classes of fingerprint. If a
raw fingerprint image needs to compare all candidate
PGBF templates, then the computational cost is high. So
we develop a hierarchical structure to detect the
corresponding class.

The proposed approach is shown in Fig. 7. There are
three layers filters. The PGBF templates of the first layer
detect the main direction below core point. There are four
directions which are 00, 450, 900, and 1350. They are
shown in Fig. 8. After the detection for the main
direction of core region, the PGBF templates of the
second layer are applied to detect the belonging class
according to the direction of the first layer. If the main
direction of the pattern is 00, then there are two PGBF
templates, shown in Fig. 8(a), to detect its corresponding
class. The two PGBF templates are the classifiers of
whorl and arch. If the main directions of the pattern are
450, 900, and 1350, then there are four PGBF templates,
shown in Figs. 8(a), 8(b), and 8(c), respectively. That is,
there are at most four PGBF templates corresponding to
each direction. The other PGBF templates need not to
check.

Fig. 7. The proposed approach.

Unfortunately, some left whorl and right whorl
patterns might be classified into left loop or right loop. In
the third layer, therefore, we use the PGBFs with 450 and
1350, shown in Fig. 10, to detect right whorl and left
whorl, respectively.

(a) (b) (c) (d)
Fig. 8. The first layer PGBF templates.
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(a)

(b)

(c)

(d)
Fig. 9. The second layer PGBF templates connected to

Fig. 8.

(a) (b)
Fig. 10. The third layer PGBF templates.

(a) (b) (c)

(d) (e)
Fig. 11. Five types of fingerprints for test.

Fig. 12. Correct classification for rotated fingerprints.

Fig. 13. Some incorrect classification.

4: EXPERIMENTAL RESULTS

We use NIST Special Database 4 to test our approach
[10]. The databases contain 4000 fingerprint images
from 2000 fingers with 2 impressions. These images are
scanned at about 500 dpi. In fact, the images sampled at
200~300 dpi is enough for extracting the LRO and LRF
of a local fingerprint image. Therefore, we resample
these images at 250 dpi. Not only memory space is
reduced, but also the processing time is speeded up.

Fig. 11 shows five patterns belonging to five types,
respectively. The values of each layer are shown in Table
1. These patterns are classified correctly. Fig. 12 shows
some rotated patterns. They are also classified correctly.
But some patterns are classified incorrectly. They are
shown in Fig. 13.

5: CONCLUSIONS AND FURTHER
RESEARCH

We have developed a fast algorithm to detect the
classes of fingerprint patterns directly from gray-level
images without preprocessing and other pixel-level
computations. Based on the property that the Gabor
filters only have large response with similar orientation
and spatial-frequency, the ridge structures of core
regions form a PGBF template. Observing the ridge
structures of each class, we design a three-layer class
detector. Therefore, the proposed method can directly
detect core points from gray-scale images, and then
faster than other pixel-level computation approach.

For fingerprint classification, conventionally, it is
necessary to detect all singular points, including core
points and delta points. In fact, the ridge structures of
core regions can provide some clues for classification
even though the delta points do not appear.
Testing with public fingerprint databases, such as the
databases from NIST Special Database 4 and 14, is a
very important task to show the ability of the proposed
approach. We will use the some famous criteria to
evaluate the performance of the Gabor filter-based
approach.

Table 1. The results of Fig. 11.
1st layer 2nd layerFig

11 450 900 1350 00 A T L R W
Class

(a) 2035 1914 2672 5906 37667 5670 A
(b) 3419 1164 792 709 13505 3690 19935 13804 L
(c) 687 1311 5138 748 15540 10021 22468 16645 R
(d) 1423 2590 2355 1085 20331 13539 10665 7599 T
(e) 3591 1069 2744 2170 7206 9365 10050 16262 W
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