
CONTENT-AWARE FAST MOTION ESTIMATION ALGORITHM 
 
 

Yi-Wen Chen, Ming-Ho Hsiao, Hua-Tsung Chen, Chi-Yu Liu, Suh-Yin Lee 
College of Computer Science, National Chiao Tung University  

E-Mail: {ewchen, mhhsiao huatsung, liucy, sylee}@csie.nctu.edu.tw 
 

ABSTRACT 
In this paper, we propose the Content-Aware Fast 

Motion Estimation Algorithm (CAFME) that reduces 
computation of motion estimation (ME) while maintains 
almost the same coding efficiency. Motion estimation 
can be divided into two phases, searching phase and 
matching phase. In searching phase, we propose the 
Simple Dynamic Search Range algorithm (SDSR) based 
on video characteristics to reduce the number of search 
points (SP). In matching phase, we integrate the 
Successive Elimination Algorithm (SEA) and the 
integral frame to develop a new SEA for H.264/AVC 
video compression standard, called Successive 
Elimination Algorithm with Integral Frame (SEAIF). 
Besides, based on sum of absolute difference (SAD), we 
also propose the Early Termination Algorithm (ETA) to 
terminate motion estimation of current block early. 

We implement in H.264/AVC reference software 
JM9.4 and the experimental results show that our 
proposed algorithm can reduce the number of search 
points about 93.1%, encoding time about 42%, while 
maintains almost the same bitrate and PSNR 
 
 

1. Introduction 
 

Block matching based motion estimation (ME) and 
compensation is a fundamental process in international 
video compression standards, such as MPEG-1, 
MPEG-2, MPEG-4, ITU-T H.263, and H.264, which 
can efficiently remove temporal redundancy. Since a 
ME module is usually the most computational intensive 
part in a typical video encoder (about 50%~90% of the 
entire system), the efficient ME module is needed. 

In recent years, many fast motion estimation 
algorithms have been proposed. We divide these 
algorithms into three categories. The first one is to 
follow some search patterns, the second one is to reduce 
matching complexity, and the last one is to adjust search 
window size. The traditional fast motion estimation 
algorithms, like Three-Step Search (TSS) [1] and 
Diamond Search (DS) [2], are classified into the first 
category. They usually cannot perform well for all kinds 
of motion activity. The pixel decimation algorithm must 
determine the tradeoff between accuracy and 
computational cost in block matching. The Successive 
Elimination Algorithm (SEA) [3] is a lossless approach. 
It can avoid unnecessary SAD computation. However, it 
may suffer from substantial overhead, complex 
hardware design and coding efficiency degradation. The 
Window Follower Algorithm (WFA) [7] is classified 

into the third category algorithm which can reduce the 
number of search points but it needs thresholds and is 
not suitable for sudden motion change. 

Because the drawbacks of previous works, we 
propose the Content-Aware Fast Motion Estimation 
(CAFME) algorithm to overcome these drawbacks. The 
CAFME consists of the Simple Dynamic Search Range 
algorithm (SDSR), Successive Elimination Algorithm 
with Integral Frame (SEAIF), and Early Termination 
algorithm (ETA). The SDSR adjusts search range 
adaptively according to motion activity and performs 
well regardless of low or high motion. The SEAIF is 
designed for H.264/AVC visual compression standard 
and the ETA terminates the search process if the 
up-to-date block is good enough. Although the CAFME 
consists of the SDSR, SEAIF, and ETA, these three 
algorithms can be used independently. The experimental 
result shows that the proposed SDSR can find a very 
good search range for each block and maintain almost 
the same coding efficiency compared with Full Search. 

The paper is organized as follows. We present the 
details of the there parts, SDSR, SEAIF and ETA of the 
proposed Content-Aware Fast Motion Estimation 
Algorithm in section2, section3 and section4, 
respectively. Section 5 reports the significant 
experimental results. Finally, the conclusions are given 
in section 6 
 

2. Simple Dynamic Search Range (SDSR) 
 

Due to the variation of coded video type, we can 
adjust the best suitable SR for a frame or a block in 
motion estimation such that the true MVs can be found, 
the local minimum problem can be avoided and the 
computational cost of motion estimation can be reduced 
dramatically. 

In order to adjust search range for motion estimation, 
some approaches have already been implemented in 
DSWA [5], AFSBM [6], MWFA [8], and MAS [9]. 
These approaches may be classified into block matching 
error based and motion vector based. The block 
matching error is usually measured in MSD, MAD or 
SAD. The block matching error represents the degree of 
matching between current block and candidate block. 
The value of block matching error is determined by 
many factors including motion activity, texture, and 
quantization parameter. See figure1, for example. From 
frame 220, the values of SAD are much higher than the 
rest. The reason is the complicated video texture, not the 
motion activity. However, from frame 150 to 170, the 
values of SAD are raised sharply due to the sudden 
motion change instead of video texture. Consequently,  
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Table 1. Simple Dynamic Search Range Algorithm 
 

the approaches based on block matching error are 
usually unsuitable to evaluate the motion activity. 

On the contrary, motion vector represents the motion 
activity more precisely [9]. For this reason, the 
proposed SDSR algorithm is based on motion vector 
information. Due to the wide variations of motion 
activity in video sequences and different motion activity 
in various areas within a single frame, we would like to 
adjust search range on both frame level and block level. 
The adjustments of SR in frame level and block level 
are based on temporal correlation and spatial correlation 
of motion field, respectively. 

The proposed Simple Dynamic Search Range 
algorithm is described as table 1 shows. Because the 
prediction of MV may not be zero MV in motion 
estimation, the displacement of MV may be larger than  
 

 
 
the SR. Hence the SR in frame level may increase more 
than one unit between frames. The adjustment of SR in 
block level ensures that the SR is large enough to find 
the true MV. 
 

3. Successive Elimination Algorithm with 
Integral Frame (SEAIF) 

 
To eliminate the unnecessary matching in matching 

phase in motion estimation of H.264/ACV standard, we 
propose Successive Elimination Algorithm with Integral 
Frame (SEAIF) which integrates SEA and integral 
frame. SEA and integral frame are described in the 
following subsections. 

 
3.1 Successive Elimination Algorithm (SEA) 
 

In order to reduce the computation of SAD in the 
process of motion estimation, Successive Elimination 
Algorithm (SEA) [3] was proposed. The SEA is a 
lossless fast motion estimation algorithm based on 
mathematical inequality. The main idea of SEA can be 
shown in the following equation. 
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, in which BSc and BSr are the block sums in the current 
block and candidate block, respectively. Because SAD(fc, 
fr(m, n)) is equal to or larger than sea(fc, fr(m, n)), if 
sea(fc, fr(m, n)) is larger than the current minimum SAD, 
SAD(fc, fr(m, n)) must be larger than the current 
minimum SAD. Therefore, computation of SAD(fc, fr(m, 
n)) can be skipped. 

To compute sea value is easier than to compute SAD, 
because BSc has to be calculated only once and BSr(m, n) 
can be derived from the previous value of BSr(m－1, n). 
Hence, SEA can reduce the computation of SAD 
efficiently. 

Step 1. the search range in frame level 
SR_FRAMEk  is determined by  
 
SR FRAME MV MVk xt yt_ max[ , ]= +

∈

1

t all blocks in (k -1)th framel q
 

Step 2. Adjust the search range in macroblock 
level.  
s ∈﹛The left, above left, above, above right 
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Figure 1. SAD of foreman CIF frame by frame 
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Figure 2 Integral frame 

3.2 Integral Frame 
 

Viola et al. [13] proposed the integral frame 
technique for sum of pixel values within any rectangular 
area in a frame. Given a video frame f, the value of its 
integral frame at pixel (p, q) is denoted as If (p, q), as 
defined in the equation (2.5). 
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The integral frame is shown in figure 2. The 
computational cost for an integral frame is described as 
follows. Let Rf (p, q) be the cumulative row sum of pixel 
values in frame f. The definitions are: 
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By using equation (6) and (7) recursively, one can 
compute the integral frame If in one pass. For a frame 
with W x H pixels, 2WH additions are required to 
compute an integral frame. The sum of pixel values in 
any rectangular block in a frame can be computed by 
three arithmetic operations. For example, as illustrated 
in figure 3, the BS of block D can be computed by 
equation (8). 
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In H.264/AVC standard, rate-distortion optimization 
(RDO) is recommended for mode selection. The modes 
include nine intra modes and seven inter mode. In 
inter-coding, 41 motion estimations is required for a 
16x16 macroblock while the RDO is enabled. (One for 
16x16, two for 16x8, two for 8x16, four for 8x8, eight 
for 8x4, eight for 4x8, and sixteen for 4x4) Therefore, 
the ME cost increases dramatically. 

In order to reduce the intensive computation caused 
by RDO. In the H.264/AVC reference software JM  
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Figure 3 Computation of block sum 

 
9.4[14], a Fast Full Pel Search algorithm is 
implemented by reusing SAD values of the smallest 4x4 
block. Before a new macroblock is motion estimated, it 
computes the SAD values for all 4x4 block at all search 
points within the search window. After that, it merges 
the SAD values to get the SAD values of larger blocks. 
In this way, computation of SAD for a macroblock with 
all block size enabled is about equal to the computation 
of SAD with only a 16x16 block. 

We take the concept of reusing SAD and integrate it 
into our proposed SEAIF. The main idea of the SEAIF 
for H.264/AVC is to reuse sea values and SAD values.  
 
3.3 Reusing of sea value 
 

For each search point, calculate the sea values of 
sixteen 4x4 blocks of the current macroblock by using 
integral frame technique proposed by Viola et al. [13]. 
These sea values of 4x4 blocks are the basis for sea 
values of larger blocks. Then the sea values of larger 
blocks are derived from these sea values of 4x4 blocks, 
described as follows. 
n For 8x4 or 4x8 block, sum up sea values of two 

4x4 blocks. 
n For 8x8 block, sum up sea values of two 8x4 

blocks. 
n For 16x8 or 8x16 block, sum up sea values of two 

8x8 blocks. 
n For 16x16 block, sum up sea values of two 16x8 

blocks. 
In this way, we can get all sea values of all blocks. 

These sea values of larger blocks are always equal to or 
larger than the sea values computed directly from BS of 
corresponding blocks. Therefore, the sea values of 
larger blocks derived from 4x4 block sea values are 
lower bound of SAD and the more computations of 
SAD can be skipped. 
 
3.4 Reusing of SAD value 
 
In SEAIF, if the sea value is less than the current 
minimum SAD value, complete calculation of SAD will 
be preformed. In H.264/AVC, overlapped blocks are 
used in motion estimation. In order to reduce the 
computations of SAD, we take the 4x4 block SAD 
values as the basis of the larger block SAD values. In 

- 1003 -



this way, there is no redundant computation of SAD. 
The following is the approach 
 
3.5 Analysis of complexity 
 

The reason of adopting SEA is to reduce the 
computational cost in block matching measurement. 
The overhead of SEA should be considered and 
analyzed. The overheads of SEA are mainly the 
computations of block sum. In SEA [3], Salari et al. 
proposed a fast algorithm to compute the block sums. 
We compare three approaches and present the analysis 
of overhead as follows. 

Let W denote image width, H image height, M block 
width, and N block height. Operations required for 
block sums of all M x N blocks in a reference frame are: 
n Straightforward approach: 

Number of block sum in a frame: (W－M + 1)(H
－N + 1) 
Operations required for a block sum: MN－1 
Total cost: (MN－1) (W－M + 1)(H－N + 1) 
Approximate cost: MNWH 

n SEA approach in [3]: 
Total cost: 4WH－(H－N)(M + 3)－3W(N + 1) 
Approximate cost: 4WH 

n Integral frame approach: 
Operations required for an integral frame: 2WH 
Operations required for all block sum: ≈ 2(W－
M + 1)(H－N + 1)  
Total cost: 2WH + 2(W－M + 1)(H－N + 1)  
Approximate cost: 4WH 

Although integral frame approach and the SEA 
approach in [3] have approximately the same 
complexity, there is an advantage in integral frame 
approach. Integral frame approach is flexible to get 
block sum of any rectangle block. For example, if we 
want to use the multilevel SEA for each block size in 
H.264/AVC, the implementation will be easier with 
integral frame approach. (Note that our approach uses 
the tighter lower bound in SEA, not multilevel SEA.) 
Computing msea value of 16x16 block with level L=0 
only needs 5 operations (5 = 3 for get BS + 1 
subtraction + 1 absolute). Nevertheless, merging 16 4x4 
sea values to get the sea value of 16x16 block with level 
L=0 needs 15 addition operations while the sea value is 
tighter lower bound. Trade-off is between the tighter 
lower bound and computational complexity. 
 

4. Early Termination Algorithm (ETA) 
 

The early termination scheme defines a criterion to 
early terminate the search processing to help existing the 
motion search algorithms by further reducing the amount of 
computation. In [10], Siou-Shen Lin et al. introduce the 
variance of motion vectors. They show the probability is 
about 79% in average when the variance of the current 
block and neighbor blocks is smaller than 3. They 
consider that it is high probability that the current block 
and the neighbor blocks might belong to the same object 

when the variance of the motion vectors in the neighbor 
blocks is small. 

We exploit and modify the variance of motion 
vectors proposed in [10] to classify the motion activity 
of current block and neighbor blocks into simple motion 
and complex motion. The variance of motion vectors is 
defined in equation (10). 
MV MV MV MV MVmean a b c d= + + +( ) / 4       (9)  

MV MV MV MV MV

MV MV MV MV
a mean b mean

c mean d mean

var = − + −

+ − + −                 (10)
 

If any of neighbor blocks is not available, MVvar is 
set to a large value (999999). For accuracy, we compare 
the MVvar with 5 instead of 3 to classify motion activity, 
shown in equation (11). 
If( 5)
        
Else                                                                        (11)
        

MV
Mactivity simple motion

Mactivity complex motion

var

_

_

≤
=

=

 

If motion activity is simple motion, we consider the 
current block and neighbor blocks are in the same object 
for simple. On the contrary, the current block and 
neighbor blocks are considered not in the same block. 
The SAD values of blocks within the same object 
should be similar and the SAD values of blocks not in 
the same object should be different largely. Based on 
the concept, the lower bound for the condition of 
termination is determined in equation (12). 

 
If( activity s )
   SAD_threshold SAD_prediction
Else                                                                                    (12)
   SAD_threshold SAD_prediction SAD_std_dev

M imple motion==
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The SAD_prediction and SAD_std_dev represent the 

prediction of SAD of current block and the standard 
deviation of SAD of all blocks in the previous frame, 
respectively. The definitions are defined in equation (13) 
and (15): 
SAD_prediction SAD SAD SAD SAD      (13)a b c d= + + +( ) / 4  
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The SADt is the SAD value of tth block in a frame. 
Number_MB is the total number of MB in a frame. If 
there is no any neighbor block near the current block, 
SAD_prediction is set to a small value (-999999). Note 
that the SAD_prediction and SAD_std_dev are 
calculated for 16x16 macroblock. In H.264/AVC 
standard, there are seven block sizes used in motion 
estimation. We determine the SAD_prediction and 
SAD_std_dev for other block size according to the area 
occupied by the block.  

Finally, the condition of termination is tested when a 
new up-to-date best-matched block is found. If the SAD 
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value of the up-to-date block is equal to or smaller than 
SAD_threshold, the motion estimation is terminated. 

 
5. EXPERIMENTAL RESULTS AND 

DISSCUSIONS 
 

In this chapter, we present the experimental results of 
the proposed approaches. We modify the H.264/AVC 
reference software JM 9.4 and add the proposed 
algorithms in it. In the experiments, we observe the 
number of search points for each block to measure the 
performance of the proposed algorithms. We also 
measure the coding efficiency. In order to measure the 
coding efficiency, we compare the bitrates of encoded 
sequences with the same quantization parameter and 
disabling rate control. Besides, we exploit the SAD 
value as a criterion to measure whether the determined 
search range is large enough. Finally, we compare the 
total encoding time to measure the improvement in 
practical situation.  

The descriptions of test video sequences are listed in 
table 2. Except specifically described parameters, the 
following parameters are applied to all experiments. 
Note that the maximum search range is set to 24. 
n Platform: H.264/AVC reference software JM 9.4 

[14] 
n Machine: Athlon XP 1700+ with 512 MB 

memory 
n Profile: baseline 
n Level: 3.0 
n Block match algorithm (BMA): Full Search 
n Group of picture (GOP): 15 
n Quantization parameter (QP): 36 
n Frame rate (FPS): 30 
n Max search range: 24 
n Frame structure: IPPP 
n Number of reference frame: 1 
n Hadamard transform: enable 
n All block size (16x16, 16x8, 8x16, 8x8, 8x4, 4x8, 

and 4x4): enable 
n Rate-distortion optimized (RDO): enable 
n Fast ME (UMHexagonS) [15]: disable 
n Fast mode selection [16]: disable 
n Rate control (RC): disable 
 

In the experiments, we compare our proposed 
algorithms with Fast Full Pel Search which is 
implemented by reusing SAD values of the smallest 4x4 
block. Before a new macroblock is motion estimated, it 
computes the SAD values for all 4x4 block at all search 
points within the search window. After that, it merges 
the SAD values to get the SAD values of larger blocks. 
In this way, computation of SAD for a macroblock with 
all block size enabled is about equal to the computation 
of SAD with only a 16x16 block. 

Note that the performances of the Fast Full Pel 
Search and a conventional Full Search are the same but 
the Fast Full Pel Search is faster than a conventional 
Full Search in H.264/AVC. In the following 
experiments, we denote the Fast Full Pel Search as FFS. 

 

ID Name Resolution # of 
Frames 

Motion 
activity 

A Foreman QCIF 150 Medium 

B Mobile QCIF 150 Slow 

C Coastguard QCIF 150 Medium 

D Foreman CIF 150 Medium 

E Tempete CIF 150 Slow, 
Zooming 

F Flower CIF 90 Slow 

G Stefan SIF 150 High 

H Football CIF 90 Very High 

I Table 
tennis SIF 90 

Medium, 
Scene 

change, 
Zooming 

Table 2 Descriptions of test video sequences 
 

In the table 3, 4 and 5, the number of search points 
can be reduced more than 90% in most of the sequences. 
Especially, for the slow and median motion, the reduced 
rates of search points are about 99%. For high motion, 
the reduced rates of search points should be lower. The 
reduced rate of search points is 73.8% for football 
sequence. In average, the increment of bit rate in 
CAFME is very small, about 0.26%. The total encoding 
time is reduced about 41.9%, and the number of SP is 
reduced about 93.1%. 

 
Number of Search Points Sequence 

ID FFS CAFME 
Improvement 

A 2401 37 － 98.5% 

B 2401 12 － 99.5% 

C 2401 29 － 98.8% 

D 2401 100 － 95.8% 

E 2401 69 － 97.1% 

F 2401 199 － 91.7% 

G 2401 184 － 92.3% 

H 2401 628 － 73.8% 

I 2401 224 － 90.7% 

Average   － 93.1% 

Table 3 Search Points of FFS and CAFME 
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Bitrates (Kbps) Sequence 
ID FFS CAFME 

Improvement 

A 69.203 69.118 － 0.12% 

B 173.016 173.285 ＋ 0.16% 

C 76.134 75.862 － 0.36% 

D 188.773 188.784 ＋ 0.005% 

E 425.392 425.955 ＋ 0.13% 

F 669.312 670.211 ＋ 0.13% 

G 505.450 504.782 － 0.13% 

H 413.301 419.357 ＋ 1.5% 

I 256.259 258.939 ＋ 1.04% 

Average   ＋ 0.26% 

Table 4 Bitrates of FFS and CAFME 
 

Total Encoding Time 
(Second) Sequence 

Name 
FFS CAFME 

Improvement 

A 156 69 － 56% 

B 151 77 － 49% 

C 151 68 － 55% 

D 602 314 － 48% 

E 583 318 － 45% 

F 374 224 － 40% 

G 508 324 － 36% 

H 363 325 － 10% 

I 298 184 － 38% 

Table 5 Total Encoding Time of FFS and CAFME 
 

6. Conclusion 
 

The motion estimation plays an important role in the 
video compression. However, motion estimation 
module is usually the most computational intensive part 
in a typical video encoder. Hence, the efficient motion 
estimation algorithm is needed. We proposed a fast 
algorithm called Content-Aware Fast Motion Estimation 
Algorithm (CAFME). CAFME consists of the Simple 
Dynamic Search Range (SDSR), Successive 
Elimination Algorithm with Integral Frame (SEAIF), 
and Early Termination Algorithm (ETA). The SDSR 
adjusts the search range for every block adaptively. The 
SEAIF reduces the number of computation of SAD 
without loss. The ETA terminates the search process 
early when finding a good candidate block. 

CAFME outperforms the FFS in the experiments and 
the overall encoding time is reduced about 41.9%. 
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