
A Computer-Aided Design System for Origamic Architecture

Jyun-Ming Chen, Yu-Zhi Zhang

Department of Computer Science and Engineering, Tatung University, Taiwan

jmchen@ttu.edu.tw, caa1211@hotmail.com

ABSTRACT

An Origamic Architecture (OA) is a paper craft form

that creates a pop-up three-dimensional structure as it

is opened. It is similar to a “pop-up story book”, but it

is made by cutting a single piece of paper. Because of

this limitation, designing an OA requires considerable

experience. This research proposes a computerized

method to assists the design of OAs.
An OA is modeled by a set of planar polygons. , and

our method is the application of polygons clipping

operations on the unfolded pattern to guarantee that the

model can be made from a single sheet of paper. We

also present methods for checking the model’s validity

and displaying folding animation.

Keywords: Origamic Architecture, Pop-Up Card,

Computer-Aided Design, Paper Crafts.

1: INTRODUCTIONS

Origamic Architecture (OA) is an amazing paper art.

By cutting and folding, a form jumps out of a piece of

paper in an incredible 3D form. The concept for OA was

devised by M. Chatani in the early 1980s. He has

produced many books of patterns and pictures of his

work [1,2].

OA comes in three types, differentiated by the angle

of opening: 90, 180 and 360 degrees. The 90-degree

models are the most common type of OA. No paper

gluing and pasting is required. This paper focuses on the

computer based design methods of such OAs and study

the corresponding pop-up theory.

Designing OAs not only needs creative minds but

also requires engineering skills. Required skills include

the method to accomplish flat foldability of paper

mechanisms when pages are closed. Specialists who

design and create such mechanisms are known as paper

engineers. The design in pop-up crafting has so far been

primarily manual and based on traditional crafting

methods.

Due to the extensive manual process, the method of

trials and errors was particularly evident in the design

stage. Trials and errors are common in the sizing of the

sketches, and folding the paper pieces. A misfit of the

pop-ups on the pages would result in repeated work. As

such, OA making can be labor intensive, time

consuming and burdened with repetitive tasks,

especially for the less experienced pop-up enthusiasts.

Books [1,2] had been published to teach novices

pop-up constructions by following step-by-step

instructions with templates and illustrations, but the

methods of handling OA in computers have not been

well studied, and we could find few related works.

Chatani first demonstrated CG animation of OA [2], but

the data are pre-calculated and hard-coded in the

program. Some works study the design of pop-up cards

with computer [3,4,8]. These are all for the 180° types,

and these techniques cannot be adapted to the design of

the OA we aim for.

J. Mitani and H. Suzuki proposed a method for

designing OA using a voxel data structure [5]. This

enables interactive design of OA and easy generation of

the unfolded pattern by using the characteristics of

voxel representation (Fig. 1). However, the

characteristics of voxel representation limits the OA

design to be rectilinear.

Figure 1 OA designed using voxel representation [5].

J. Mitani and H. Suzuki also proposed a new method

[6]. It uses a set of planar polygons to facilitate the

design a wider variety of OA. The designer is required

to input the outline of all the new component faces, both

the vertical faces and horizontal faces. However, the

size and position of each horizontal face in an OA

model have some restrictions. The complexity of the

system discourages a novice design from learning and

using the system. Also, the issue of incorporating

smooth-contour faces is unresolved.

 In this paper, we also use a set of planar polygons

to build the OA models, but the method we propose only

requires the designer to input the contours of vertical

faces. The corresponding horizontal faces are created by

the system automatically. Furthermore, we use the

Chaikin’s curve to incorporate smooth-contoured faces

and openings.

2: BASIC THEORY OF OA

2.1: Vertical and Horizontal Faces
In a 90° OA, all faces are parallel to either the

bottom face, or the back face. These two types of faces

are hence called horizontal faces (short for HFace) and

vertical faces (VFace) respectively, as in Fig. 2.

- 1029 -

Figure 2 VFace and HFace.

2.2: Model Coordinate and Pattern Coordinate
The coordinate systems of the three-dimensional

model and two-dimensional pattern are bijectively

related. In the following, we will use the term “model

coordinate system” and “pattern coordinate system” to

address the two models respectively.

Refer to Fig. 3 for the following discussion. Given a

distance tv between any VFace and the Back Face and a

distance th between HFace and the Bottom Face, we can

convert between the two coordinate system as follows.

Model Coordinate(3D →→→→ Pattern Coordinate(2D)

conversion

+=

=

mmp

mp

YZY

XX (1)

Pattern Coordinate(2D) →→→→ Model Coordinate(3D)

conversion

VFace:

+=

−=

=

vpm

vm

pm

tYZ

tY

XX (2)

HFace:

=

−=

=

hm

hpm

pm

tZ

tY Y

XX

 (3)

Figure 3 Model coordinate and pattern coordinate.

.
2.4: Integrity Constraint

In the OA design process, the HFaces and VFaces

are generated from Back Face and Bottom Face by

cutting and folding. As a result, the following two

constraints must be satisfied for a valid pattern (Fig. 4):

 S FFF

ji FF

n

j

*

i

=∪…∪∪

≠=∩

21

 if ,φ (4)

where S is the original sheet of paper and Fi’s are the

polygons comprising the OA design. The Fi’s are

termed OAFaces hereafter.

Figure 4 Polygons that construct OA pattern.

During the OA design, many polygons will be

constructed and this constraint must be maintained at all

times. A two-dimensional polygonal Boolean engine,

providing the operations of regularized union (
*∪),

intersection (
*∩) and difference (

*－), is use to ensure

the model integrity. In our prototype system, the

General Polygon Clipping Library (GPC) [7] by A.

Murta is used.

3: COMPUTER AIDED DESIGN FOR OA

In the previous section, we have discussed the basic

theory of OA. Section 3.1 gives an overview of the

interactive computerized OA design interface. Sections

3.2 and 3.3 introduce the face building functions in the

interface. Finally, a method to generate the unfolded

pattern is discussed in Sec. 3.4. Using this pattern, the

designer can realize the design in a physical paper

model.

3.1: User Interface
Traditionally, an OA is designed by trial and error.

The designer had to sketch the unfolded pattern by hand,

and guessed how the 3D structure would appear when

they are opened. To address this problem, we propose

an interactive interface to enable users to design 3D

figures intuitively by viewing 3D graphics on a

computer display.

 The designer sketches a contour and chooses a

Face Function to decide what kind of the face will be

added to the OA model. The steps of the interface we

propose are described as follows：

1. Initialize an OA containing only a Back Face

and a Bottom Face (Fig. 5a).

2. Determine the depth of the edit plane and sketch

the contour (Fig. 5b).

- 1030 -

3. A VFace is generated according to the input

contour. The system also generates a supporting

HFace automatically (Fig. 5c) It should be noted

that as new faces are generated, the previously

constructed OAFaces are modified to maintain

the integrity constraint.

4. Repeat steps 2 and 3 until the desired OA is

achieved.

Figure 5 Interface for OA design.

3.2: Add a Face
When the user completes a contour in 3D model

coordinate, the system will convert it to 2D pattern

coordinates by applying Eq. (1) in Sec. 2.4. The system

then adds new faces to the OA model. It should be

noted that the system automatically maintains the

conditions for pattern generation (Sec. 2.4) by

modifying the OA patterns via the underlying Boolean

engine. This enables to the designer to focus on the

main features of the design, without worrying the

HFaces.

To achieve this, the system performs the following

operations in step 3 of the interface proposed

previously.

3a. Generate a new OAFace according to the input

contour, and update all the existing OAFaces

in the model by applying the following

equation, where i is the index of OAFaces.

NewFace 　 OAFace(i)OAFace(i)
*−= (4)

3b. Add the NewFace to the model.

3.3: Face Function
When a contour is sketched by user, system will

create a VFace and a set of associative HFaces. It will

convert coordinate values of the input contour vertices

from 3D to 2D by Eq. (1), and then store it to be a new

VFace.

Because HFaces must support VFace pop-up, there

are some restrictions to the lengths and positions of

them. For the sake of design convenience, we propose a

method to let the HFace be created automatically.

For an OA model to be flatly folded when it is

closed, the fold line between the HFace and the VFace

must be parallel to the pattern coordinate x-axis.

Therefore, we collect all this kind of edges and they

should be the bases for creating HFace.

After adjusting all the contours of the VFaces in

clockwise direction, the edges whose end points are

from left to right and parallel to the x-axis are named

Upper, and the edges whose end points are from right to

left and parallel the x-axis are named Lower, as in

Fig. 6.

System will produce an HFace on each Upper edge,

and each length of the new HFace is the depth of the

input contour, such as in Fig. 7. Then they will be added

to the model by using the method in Sec. 3.2, as in Fig.

8.

Figure 6 Classify Upper and Lower.

Figure 7 Create the new VFace and HFaces.

Figure 8 Result of the face function.

However, if the new VFace and HFaces cover one

another, the sequence of adding faces will produce

different results, such as in Fig. 9. Some of them are not

desirable according to common design intention

(Fig. 9.c). This issue has been discussed this in detail in

[9] and will be published in another article.

Figure 9 The different results of creating HFace.

(b) (c) (a)

- 1031 -

3.4: Unfolded Pattern Generation
The unfolded pattern can be easily generated by

outputting the contours of each face, using pattern

coordinate values, on a sheet of paper. The contouring

edges are further classified into three types as follows :

� A line is a mountain line if it is parallel to the

x-axis, shared by the same VFace and HFace both

in pattern coordinate and model coordinate.

� A line is a valley line if it is parallel to the x-axis

and shared by the same VFace and HFace both in

pattern coordinate and model coordinate [9].

� All other lines are cut lines.

Figure 10 shows the different drawing styles used to aid

the designers in realizing the paper model.

Figure 10 Cut (solid), mountain (dotted) and

valley (dashed) lines.

4: CHECK FOR POP-UP CONDITION

In Sec. 3, we propose a method for OA design using

3D computer graphic. Although this method is intuitive

and convenient, we cannot guarantee the OA model

designed can satisfy the pop-up condition. In this

section, we will discuss the basic theory of pop-up and

propose a method for testing the pop-up condition.

4.1: The Basic Theory of Pop-Up Condition
The pop-up condition is due to the driving force act

upon the Back Face, we classify the force sent from the

driving force and act upon the each VFace into two

types：

1. Direct communication (Fig. 11) ：When the Back

Face is pulled to unfold, each VFace is due to the

pull to unfold equally, and when the Back Face is

pushed to fold, each VFace is also pushed to fold

equally.

2. Indirect communication (Fig. 12) ：When the

Back Face is pulled to unfold, each VFace is due to

the push to unfold contrary, and when the Back

Face is pushed to fold, each VFace is pulled to fold

contrary.

Figure 11 Direct communication.

Figure 12 Indirect communication.

We can infer from basic pop-up structures that if

a face satisfies following two conditions, it can pop up

by direct communication:

1. Right position: A face can find one connective

face, and can form a parallelogram in the side

view by stretching them to Bottom Face and Back

Face, such as Fig. 13a.

2. Connectivity: A face can find at least two ways

connection to the two faces which already can pop

up through by other faces in the right position,

one of way directions is up or back, and another is

down or front, such as Fig. 13b.

Figure 13 The pop-up theory for direct

communication: Right position and connectivity.

We infer the other basic structures which can

pop-up by indirect communication that if a face satisfies

following condition, it also can pop up:

Surround: A face can find one connective face and

they can form a parallelogram by connecting the two

faces already can pop up, as Fig. 14.

Figure 14 The pop-up theory for indirect

communication: Surround.

- 1032 -

4.2: Criteria for Pop-Up
First, initialize a set of faces to contain only the

Back Face, we name it Back_Set. Collect connective

faces forth or down to Back_Set, as in Fig. 15a, so that

each the face in Back_Set at least has a fold line can

connect to Back Face by passing up or back connective

faces.

Then, initialize a set of faces to contain only the

Bottom Face, we name it Bottom_Set. Collect

connective faces up or back to Bottom_Set, as in

Fig. 15b, so that each the face in Bottom_Set at least has

a fold line can connect to Bottom Face by passing down

or forth connective faces.

Further, we collect the faces both in Back_Set and

Bottom_Set to Share_Set, as in Fig. 16. So that all the

faces in Share_Set should satisfy the connectivity

condition, and they can exactly satisfy the pop-up

condition too. So far the faces in Share_Set will satisfy

the right position and connectivity conditions.

Figure 15 Back_Set and Bottom_Set.

Figure 16 Recursively collect Share_Set.

In addition, we find the indirect face, which is a face

has at least two fold lines, one of which connects to

Share_Set and another connects to Share_Set by passing

through a connective face, as shown in Fig. 17.

Although it may not be collected to previous Share_Set,

it exactly can pop up by pop-up theory proposed in 4.1.

After we collect Share_Set every times, the system will

check existence of indirect faces automatically, and then

collect them in Share_Set. So that the faces in

Share_Set will also satisfy the surround condition.

Figure 17 Indirect face.

Afterward we use the faces in Share_Set to collect

Back_Set and Bottom_Set again. The above process is

the recursive phase until there are no more faces to be

collected.

After recursive phase, we name the face which only

have one fold line and can connect to Share_Set

ornamental face, as in Fig. 18, and add it in Share_Set.

Even through ornamental faces can not help other faces

pop up, they usually are used to be ornamental with real

OA, such as openings or pulls in Fig. 19. So we define

the ornamental faces are a kind of legal faces, and add it

in Share_Set. Finally, the faces in the model but not in

Share_Set are illegal, and they will be high light in our

system. The flow chart of this judgment algorithm is

illustrated in Fig. 20.

Fig. 21 shows four examples of applying this criteria,

where the left pattern shows the illegal faces, the middle

pattern is the Back_Set and the right pattern is the

Bottom_Set.

Figure 18 Ornamental face.

Figure 19 Samples of ornamental faces (designed by

M. Chatani).

- 1033 -

Figure 20 The flow char of judgment for the pop-up

condition.

Figure 21 Judgment for the pop-up condition.

5: RESULT
A prototypical OA design system has been

implemented and several interesting models have been

constructed. We have implemented our method on a PC

and used this implementation to design some OA models.

There is a example Fig. 22 (left up is the CG image, left

down is the pattern and right is the photograph).

Figure 22 Shan-Chi Hall of Tatung University.

6: CONCLUSION AND FUTURE WORK
In this research, the interface allows users design 3D

model intuitively, it can aid users do not need to imagine

the open structure of OA. And the judgment for pop-up

condition can reduce many minute survey processes,

trials and errors. By using our method and a little

imagination, everybody can create many wonder

productions.

Although we have proposed a useful method for

determining the pop-up condition of 90-degree OA, it is

only a kind of conjecture. In other words, we ensure if

this method judges the face legal, it exactly can pop up

but we are not sure this method can find all the pop-up

faces. Because rotary motions of faces in an OA may be

produced by the elasticity of paper, a powerful judgment

should consider more mechanical reasons.

REFERENCES
[1] M. Chatani, “Origamic Architecture of Masahiro Chatani”,

Shokokusya, Tokyo, 1984, in Japanese.

[2] M. Chatani, S. Nakamura, and N. Ando, “Practice of

Origamic Architecture and Origami with Personal

Computer”, Kodansya, Tokyo, 1987, in Japanese.

[3] A. Glassner, “Interactive Pop-up Card Design, Part 1”,

IEEE Computer Graphics and Applications, 22(1):79-86,

2002.

[4] A. Glassner, “Interactive Pop-up Card Design, Part 2”,

IEEE Computer Graphics and Applications, 22(2):74-85,

2002.

[5] J. Mitani and H. Suzuki, “Computer aided design for

origamic architecture models with voxel data structure”,

Intellectual Property and Social Justice (IPSJ), 44(5)

1372-1379, 2003.

[6] J. Mitani and H. Suzuki, “Computer aided design for

origamic architecture models with polygonal

representation data structure”, Computer Graphics

International (CGI’04), 1530-1052, 2004.

[7] A. Murta, “General Polygon Clipper Homepage”,

http://www.cs.man.ac.uk/~toby/alan/software/#download,

2005.

[8] Y. T. Lee, S. B. Tor, and E. L. Soo, “Mathematical

modeling and simulation of Pop-up books”, Computers &

Graphics, 20(1):21-31, 1996.

[9] Y. Z. Zhang, J. M. Chen, “A Computer-Aided Design

System for Origamic Architecture”; Master’s Thesis,

Tatung University, 22-28, 2006.

- 1034 -

