
Improving Shadow Aliasing with Smoothies

Jyun-Ming Chen, Yi-Fan Tsai

Department of Computer Science and Engineering, Tatung University, Taiwan

jmchen@ttu.edu.tw, g9306011@ms2.ttu.edu.tw

ABSTRACT

Shadows can increase realism of a scene and help a

viewer to understand the relative position of each object.

However, realistic shadows can be very difficult to

compute in real-time.

The article focuses on the generation of soft shadow.

Shadow map is used to render the hard shadow;

smoothie map is used to soften the aliasing edges from

shadow map. In addition, the silhouette searching

algorithm has been enhanced to improve the

performance.

Keywords: shadow, shadow map, silhouette, smoothie.

1: INTRODUCTIONS

Shadow can exactly show the relative position among

objects. For instance, the shadow of several moving

objects can express the exact position. The shadow of a

bouncing ball can express when the ball hits ground.

Presently, the dominant shadow algorithms are

shadow map[1][3][4][5][7] and shadow volume[1]. The

shadow computed by these two methods is hard shadow.

The result from shadow volume is more precise, but

shadow map has higher performance. Furthermore,

shadow map and shadow volume are both hard to

implement in software. Shadow map is more amiable to

hardware implementation. The article uses shadow map

and extra computation to create soft shadow.

2: CONSTRUCTION OF SMOOTHIES

In manifold models, there are exactly two

neighboring faces for each edge. When an edge is

front-facing (to a light source) and the other is

back-facing, this edge is a silhouette edge[8][9]. The

projection of silhouette edges is usually the border of

shadow. By using this property of silhouette edges, the

border aliasing of shadow map can be solved. The

method combines geometry-based smoothies[2] and

image-based shadow map to reach the goal.

A smoothie is based on a silhouette edge. A main

focus is to find more efficient algorithm to locate the

silhouette edges. Our method is largely motivated by the

ideas of Hall [9]. His method first locates a candidate

silhouette edge. Then the neighboring faces of this edge

are checked to locate subsequent silhouette edges, until

a checked face is met. We check neighbor edges instead

of neighbor faces and then construct smoothies. The

algorithm is explained in detail as follows.

2.1: SEARCH OF NEIGHBOR SILHOUETTE

To find the complete silhouette edges, the first step is

to find a starting silhouette
0

E in the model. Then, start

from
0

E , find its neighbor edges and check if one of

them is a silhouette edge. Repeat the same steps with

detected silhouette edges. The repeated steps stop when

the based edge meets
0

E , and a complete silhouette list

0
S is found. When the light is moving, the silhouette list

will be varied with light position. The silhouette list

could be adjusted by the variation in
0

S .

Figure 1 is a simple example.
0

S is the silhouette list

data of previous frame, and 'S
0

 is the next frame. When

the light position is changed, original silhouettes,
2

E

and
3

E in
0

S , are also changed. They are not silhouette

edges, and have to be deleted. After deleting the two

edges, check
1

E ’s neighbor edges to find new silhouette

edge.
5

E is the new silhouette edge and then check its

neighbor edges. Because
5

E ’s neighbor edges have a

checked silhouette edge, the check action stops and

completes a silhouette list. The remaining steps begin

from silhouette edge
4

E . New silhouettes
6

E and
7

E

can be found in the same way. Check all silhouette lists

and correct the changes.

In general, models can be classified into two types:

convex models and concave models. An edge with an

inner (solid) angle greater than 180 degrees is called a

convex edge. A concave model is a model with at least

one non-convex (concave) edge. Otherwise, it is a

convex model. The method mentioned above is

appropriate for convex models. A convex model has no

concave edge and has only one convex silhouette. On the

other hand, a concave model can have several concave

silhouettes.

Figures 2(a) and 2(b) compare the two types of

models. Fig. 2(a) is a convex model and has only one

convex silhouette. Fig. 2(b) is a concave model and has

two silhouettes. The rectangular silhouette is a convex

silhouette. The other triangular one is concave. The inner

angle of pentahedron’s base is larger than 180 degrees

that forms concave silhouette.

- 1035 -

Figure 1 The process of searching silhouette neighbor

edges

Before finding the silhouette edges in a concave

model, concave edges have to be saved in concave list,

and border edges have to be saved in border list. In

Fig. 2(c), four edges of the quadrangle are border edges.

Each of them has only one neighbor face. In addition, the

checks of concave list and border list is necessary when

detecting silhouette edges. The checked silhouette edges

do the same as
0

E in Fig. 1 to find complete

silhouette lists.

The method of searching neighbor silhouettes can

increase performance of silhouette algorithm. The result

of search is in Fig. 3. However, this method only

searches neighbor silhouettes in one way that has an error.

The error happens on bifurcation of edges and misses

part silhouette edges. In Fig. 4, the thin black lines are

checked silhouette edges and the thick lines with arrow

are incomplete silhouette edges. The incomplete

silhouette edges end check when they meet a checked

silhouette edge. In Fig. 4, dotted lines illustrate the

missing silhouette edges. Restricted by the method, the

(a) (b) (c)

Figure 2 Different kinds of silhouettes

Figure 3 Results of searching neighbor silhouettes

Figure 4 The error of one-way search

missing silhouette edges cannot be found. It is possible

that concave models can miss silhouette edges, but not

for convex models. The missing part makes incomplete

soft shadow.

The error of missing silhouette edges will be

accumulated as time goes on. In order to decrease the

error, we search the silhouette edge again every time T.

Smaller T will cause greater precision.

2.2: SMOOTHIE CONSTRUCTION

A basic smoothie is an extended rectangle with width

D. It extends from a silhouette edge. The extended

direction of a smoothie is decided from the bisector B of

the corresponding silhouette edge, as shown in Fig 5.

The direction of smoothies must be outward from the

model. Inward smoothies are useless.

Figure 6 illustrates how to build smoothies. The

vertices
0

v and
1

v extend two vertices 'v
0

 and 'v
1

.

The four vertices form a smoothie. Their calculations are

mentioned below.

()a,b,c=B (1)

 The direction of 'vv
00

 and 'vv
11

 are both B,

so:

()cba ,,B'vv'vv
1100

=== (2)

Equation 2 could be rewritten as a parametric

equation Eq. 3.

()
() () Rtctbt,zat,yxzyx

x,y,z

∈+++==

→=

 ',','v'

v
 (3)

v is a vertex on the silhouette edge and v’ is the

extended vertex. The width of 'vv
00

 and 'vv
11

 is D

which is decided by user. Eq. 4 is derived from these

information and distance equation.

() () ()222
'''vv' zzyyxx −+−+−= (4)

Then, substitute D and parametric equations of
0

v

and 'v
0

 for parameters in Eq. 4. The solved answer is t

value. See Eq. 5.

222
/D cbat ++= (5)

Existing silhouette edges

- 1036 -

Figure 5 The extended direction of a smoothie

Figure 6 Illustration of smoothies

Finally, substitute t for parameters in parametric

equation and solve 'v
0

. The value of 'v
1

 can be solved

in the same way. After these computations, the four

vertices are known. The basic smoothie is formed by

linking
0

v , 'v
0

,
1

v , and 'v
1

. Fig. 7 shows an example

of cube. The outlined rectangles are the smoothies.

Basically, the width of smoothies depends on the size

and complexity of models. Larger models have wider

width; more complex models have thinner width.

Smoothies are not really better when they are wider.

Suitable D is the best. A small model with wide

smoothies will make the soft shadow much bigger than

the model. On the contrary, too thin smoothies will be

hard to improve aliasing problem. The width of

smoothies is not absolute. Different widths have different

effects. Figure 8 illustrates the result which uses two

different widths of smoothies. In Fig. 8(a), the width of

smoothies is twice the width of cube. In Fig. 8(b), the

width is one third time the width of cube. Two results are

quite different.

Figure 7 shows incomplete smoothies. Just link the

two vertices of neighbor smoothies. The result is in

Fig. 9.

Figure 7 The results of computing smoothies

(a) (b)

Figure 8 Result of different widths of smoothies

Figure 9 Linking corner

2.3: ALPHA VALUE

Another important part in this work is to compute

smoothie alpha values. The gradual alpha values on

smoothie can simulate the intensity in penumbra and soft

aliasing problem. Alpha values also decide the shape of

penumbra. The smoothie pixel close to the model has

smaller alpha value. Oppositely, the alpha values are

bigger. The program relies on the rule to compute alpha

values by linear interpolation. See Fig. 10.

Then, this rule has a contact error when objects touch

the floor. The same width of smoothies makes penumbra

unnatural as Fig. 11. There has an unnecessary part of

shadow. Actually, the shadow should be gradually

extended from light source. To correct the mistake, alpha

remapping is needful.

Alpha remapping adjusts the alpha values. It uses

Eq. 6 to compute new value α’:

rb /1
'

−
=

α
α (6)

α presents original alpha values computed by linear

interpolation. b is the distance from light to smoothies. r

is the distance from light to receiver. See Fig. 12.

Figure 10 The smoothie alpha values in first step

- 1037 -

Figure 11 Contact error

Figure 12 Illustration of equation parameters [2]

Equation 6 uses the relation between b and r to adjust

original alpha values. If the smoothie is closer to receiver,

the value of 1-b/r will become smaller. Then, α becomes

larger. Moreover, the alpha values close to the model are

nearly 0 that have little effect after remapping.

After remapping, alpha values will be adjusted as in

Fig. 13. The contact error is corrected. Fig. 14 is also the

result of alpha remapping. The two figures have different

light height. The light in right figure is lower; the light in

left figure is higher. Higher light makes smoothies wider;

Lower light makes smoothies thinner. These variations

result in different size of penumbra as shown in Fig. 14.

Figure 13 Alpha remapping

Figure 14 Alpha remapping–adjust light height

2.4: DISCUSSION

In Sec. 2.2, the outline of smoothies is constructed.

Nevertheless, the smoothies will intersect with each

other and cause error. If two neighbor silhouettes have

inner angle larger than 180 degrees, the smoothies will

intersect, and the corner will link wrong. See

Figs. 15 to 16. In Fig. 15, dotted lines illustrate the

linking error. Fig. 16 is a real example of smoothie error.

To simplify the illustration, the corners are not linked.

Taking notice of right figure in Fig. 16, the smoothies in

black line intersect with each other.

The linking error may be resolved with computing

inner angles, but it can not completely solve the problem

and wastes time to do additional computation. A

compromising way is to shrink the width of smoothies

that reduce the overlap parts. See Figs. 17 to 18.

Figure 15 Smoothie error

Figure 16 An example of smoothie intersection

Figure 17 Correction of smoothie error

Figure 18 An example of smoothie correction

- 1038 -

The alpha values of smoothies will be saved and used

to compute shadow intensity. When saving the alpha

values, they can not be blended. The action of blend will

make value larger and make a big mistake. A better

method is only save the nearest pixel’s alpha value.

3: SHADOW COMPUTATION

Shadow map and smoothie map are the two maps

used to compute shadow. Compare the sample pixel in

the scene with relative point in maps. The result

determines generation of shadow.

Smoothie map is similar to shadow map. It has two

parts: smoothie depth map and smoothie alpha map.

Using both shadow map and smoothie map can improve

aliasing problem in original shadow map.

The creation of smoothie depth map and alpha map is

the same as shadow map. The only difference is smoothie

map just needs to save smoothies. Smoothie depth map

saves depth value, and alpha map saves alpha value. The

alpha value can not be blended. It will become larger and

cause error. A better way is to save the nearest pixel’s

alpha value.

The compared process has two stages.

Stage 1: Determine if the sample pixel is in shadow

after depth comparison with shadow map. If

the result is in shadow, stage 2 is unnecessary

and compared process ends. If it is illuminated,

do stage 2 continuously.

Stage 2: Compare the sample pixel with smoothie depth

map and determine if the pixel is in shadow. If

it is, the sample pixel’s intensity equals the

relative alpha value in alpha map. If it is

illuminated, the sample pixel’s intensity is 0.

Figure 19 illustrates the comparison of maps. There

are three different results.

(1)There is no occluder between light and receiver.

Point a is illuminated. Its intensity is 1.

(2)The ray of light passes through the smoothie. Then,

point b is partly in shadow, and its intensity equals

the relative alpha value in smoothie alpha map.

(3)There has an occluder between light and receiver.

This causes point c completely in shadow. The

intensity of point c is 0.

Figure 19 Test of each map [2]

4: IMPLEMENTATION

The algorithms mentioned above are implemented on

the following platform: operate system is Microsoft

Windows XP Home Edition Version 2002 Service Pack

2; CPU is Intel Pentium M processor 1.73GHz; memory

is 1G DDR2; display card is ATI MOBILITY RADEON

X700 PCI Express /64MB; development environment is

Microsoft Visual C++ 6.0; system main programming

language is C, FLTK, OpenGL v2.0, and GLSL v1.10.

The program uses OFF (Object File Format)[6] to

implement. OFF saves number of vertices, edges and

faces, coordinates of vertices and point indices of faces.

Point indices of faces are saved counterclockwise. OFF

has enough information to construct smoothies.

Figures 20 to 23 illustrate the effectiveness of

smoothie map in shadows. Smoothies really improve the

aliasing problem generated by shadow map.

Figure 20 Shadow created with smoothie map (right)

or not (left) – stick

Figure 21 Shadow created with smoothie map (right)

or not (left) – cup

Figure 22 Shadow created with smoothie map (right)

or not (left) – a man known as “Al”.

- 1039 -

Figure 23 Shadow created with smoothie map (right)

or not (left) - hand

5: CONCLUSION AND FUTURE WORK

Shadow in a scene can express the relative position

between objects and create visual effects. The article

focuses on the augmentation of shadow map with

smoothie map to create realistic soft shadows. Although

smoothies are geometric and complex to compute, they

completely improve aliasing problem. A smoothie

includes a silhouette edge and two smoothie vertices.

Increasing the performance of finding silhouette edges is

the main way to increase performance. For this reason,

only check the neighbor edges of a silhouette edge. This

method just finds probable edges and saves searching

time. The performance will increase obviously when the

model has more than 10000 faces.

Shadow map can be accelerated in modern graphics

hardware. The prototype implementation uses GLSL to

implement shadow map and smoothie map and also use

fragment shader to blend the color of shadow and

receiver.

The method of searching neighbor silhouette edges

suffers from bifurcation problem. Part silhouette edges

will lose if there are bifurcations. Bifurcation problem is

partially solved by periodic exhaustive search. The

action only decreases the error. A probable method to

solve the problem is to adjust the end condition. When

meeting a checked silhouette edge, the search does not

stop and continuously search neighbor edges until all

neighbor edges are checked.

Another problem is smoothie intersection. As the

models become more complex, there may have smoothie

intersection. Smoothie intersection makes smoothie

broken. There have two ways to solve the problem. First,

reduce the width of smoothies. The method can avoid

some intersection but not all. Secondly, save the smallest

alpha value when creating smoothie map. This method

may improve the discontinuous alpha value caused by

intersected smoothies.

REFERENCES

[1] Andrew V. Nealen, “Shadow Mapping and Shadow

Volumes: Recent Developments in Real-Time Shadow

Rendering”, Project report for Advanced Computer

Graphics: Image Based Rendering (CS514) in

University of British Columbia, 2002

[2] Eric Chan and Frédo Durand, “Rendering Fake Soft

Shadow with Smoothies,” Proceedings of the 14th

Eurographics workshop on Rendering, 2003, Pages:

208-218

[3] GAME TUTORIALS,

http://www.gametutorials.com/gtstore/pc-321-1-shadow

-mapping-with-glsl.aspx

[4] Marc Stamminger and George Drettakis, “Perspective

Shadow Maps,” Proceedings of the 29th annual

conference on Computer graphics and interactive

techniques, 2002, Pages: 557-562

[5] Mark J. Kilgard, “Shadow Mapping with Today’s

OpenGL Hardware,” NVIDIA SDK White Paper,

http://developer.nvidia.com/object/gdc2001_shadows.ht

ml, 2001

[6] Object File Format (.off) ,

http://shape.cs.princeton.edu/benchmark/documentation

/off_format.html

[7] Pradeep Sen, Mike Cammarano, and Pat Hanrahan,

“Shadow Silhouette Maps,” ACM Transactions on

Graphics (TOG) 22, 3, July 2003, Pages: 521-526

[8] Tobias Isenberg, Bert Freudenberg, Nick Halper, Stefan

Schlechtweg, and Thomas Strothotte, “A Developer's

Guide to Silhouette Algorithms for Polygonal Models,”

IEEE Computer Graphics and Applications 23, 4, July

2003, Pages: 28-37

[9] Tom Hall, “Silhouette Tracking,”

www.geocities.com/tom_j_hall , May 2003

- 1040 -

