
Physically-based Analysis and Rendering of Bidirectional Texture Functions
Data

Sin-Jhen Chiu, Ying-Chieh Chen, Hsiang-Ting Chen, Chun-Fa Chang
National Tsing Hua University

{nobirdm, louis, timchen, chang}@ibr.cs.nthu.edu.tw

ABSTRACT
In order to draw a photorealistic surface,

Bidirectional Texture Function (BTF), a 6D texture
function which extends Bidirectional Reflectance
Distribution Function (BRDF) to include the
self-shadowing, self-occlusion and inter-reflection
effects, has been used frequently in recent years. Its
main drawback is its massive data size. To solve this,
the Spatial Bidirectional Reflectance Function (SBRDF)
techniques compress BTFs into reflectance model
parameters. However, SBRDF cannot produce the
self-shadowing and self-occlusion effects in real-world
surface geometry. This work is aimed to this drawback.
We investigate how self-shadowing and self-occlusion
affect the surface appearance by additional
physically-based analysis and rely on two physical
phenomena to separate self-shadowing and
self-occlusion into two independent effects. First,
self-shadowing is view independent. Second,
self-occlusion is independent of lighting direction
changes. After these analyses, we add self-shadowing
and self-occlusion to SBRDF to achieve rendering
quality that is much closer to the original uncompressed
BTF data.

1: INTRODUCTIONS

In recent years, we have seen continuing
improvement of visual realism in computer graphics
based feature movies and video games. As the visual
realism in computer graphics based feature movies and
video games keeps improving, the importance of
advanced surface materials and appearance models also
increases. Another driving force of advanced surface and
appearance models is the increasing power of modern
graphics hardware which supports programmable
shading stages. Simply scanning the shape of a 3D object
and then applying uniform colors, simple Phong shading
model, or static textures to the surfaces no longer
suffices.

In addition, good surface appearance models can
even hide the deficiency in the geometric shape,
especially if advanced texturing techniques such as bump
mapping [13], displacement mapping, or view-dependent
texture mapping [5] is used. Imagine that a sphere model
with a golf ball texture on it can be easily recognized as a
golf ball even though we do not explicitly model the
geometric shape of each dimple. In fact, view-dependent

texturing effects can replace fine geometry should be no
surprise if we treat those textures as surface light fields
[14] [9][3] or lumigraph[2][6]. From a different point of
view, we could also consider advanced surface
appearance models such as the surface light fields and
bidirectional texture functions as a way to avoid the
daunting task of modeling the geometric shapes of
micro-level or meso-level structures of complex
materials.

There are many surface models that are extended
from the well-known Bidirectional Reflectance
Distribution Function (BRDF. If the incident light
position is different from its extent position, then we
have the Bidirectional Surface Scattering Distribution
Function (BSSRDF). This extension allows BSSRDF to
model sub-surface scattering effects of translucent
materials, such as human skin or a lighting candle[7].
Furthermore, if different surface points contain different
BRDFs, then the Spatial Bidirectional Reflectance
Distribution Function (SBRDF) [11] and the
Bidirectional Texture Function (BTF) [4] may be
applied. The Bidirectional Texture Function (BTF) is a
6D function which describes the spatially-variant
reflectance and the mesostructure effects, such as
self-shadowing, self-occlusion, and self-reflectance. The
6D function contains two parameters for surface
position, two for viewing direction and the other two for
illumination direction. Therefore, during rendering, we
can determine the color from BTF by the given surface
position, light direction and viewing direction. Because
BTF captures the self-shadowing, self-occlusion, and
self-reflectance effects that are exhibited by the
mesostructures of complex materials, it can reproduce
the surface appearance of real-world objects with
extremely high fidelity. A drawback of BTF, however,
is its requirement of huge storage space since it is a 6D
function. Many works have been focusing on the
compression of the BTF database. A good survey can be
found in [12]. Most of those works are based on the
fitting of analytical BRDF models [11][10] or the matrix
factorization methods.

In this paper, we demonstrate a physically-based
analysis of BTF model and its rendering in real-time. In
the first part of our work, we present a method to detect
the data points under self-shadowing by treating them as
outliers during the SBRDF [11] fitting process. And we
later store those outliers as a 6D shadow function.

- 1041 -

Figure 1 The framework of my preprocess system

In the second part of our work, we use two

phenomena to separate self-shadowing and self-
occlusion into two independent effects. First, when the
self-shadowing occurs is often a view independent
problem (Figure 5). Second, the surface point we look at
is independent of lighting direction changes (Figure 8).
We use the first phenomenon to reduce the dimension of
6D shadow function into 4D and use the second
phenomenon to analyze the self-occlusion effect.

Finally, we use SBRDF parameters with additional
self-shadowing and self-occlusion representations to
represent the original BTF efficiently. And we also
apply this representation onto the powerful
programmable graphics hardware. So a complex
mesostructure surface can be rendered and relighted in
real-time.

2: PRECOMPUTATION OF SURFACE
GEOMETRY EFFECT

Geometric effects can influence function fitting of a
reflectance model significantly. Fewer specular lobes of
a reflectance model may be used if the geometry effect
can be separated from the fitting data.

The geometry effects can be roughly divided into
self-shadowing, self-occlusion, and inter-reflection parts.
However, determining when they occur in the surface is
very difficult. Inter-reflection exists all the time, and
detect self-occlusion automatically is still an open
problem in computer vision.
 In this section, we propose a method to separate
self-shadowing and self-occlusion into independent
effects by the physical phenomenon. This physically-
based analysis will reduce the 6D shadow function into
two 4D functions. One is the shadow map without
viewing influence, the other is viewing shift map which
will not be changed with the lighting. Figure 1 shows
the framework of our preprocessing system.

The iterative SBRDF refinement method is
introduced in section 2.1. Why and how to analyze
self-shadow effect are explained in section 2.2 and
self-occlusion in section 2.3.

2.1: ITERATIVE SBRDF REFINEMENT

Lafortune el al. [8] propose a reflectance model that
uses several cosine lobes to represent the surface
appearance. As done in [11], we first fit the BTF dara
into spatially-varying BRDF(SBRDF) using the
Lafortune model. This section will describe how to find
the outliers (data affected by self-shadowing and
self-occlusion).

It is reasonable to assume that these two appearances
are the material property when we detect the self-
shadowing only. Although detecting self-shadowing
correctly is also difficult, it can be approximated by
using the following observation.

A reflectance model can represent a BRDF which
changes rather regularly as shown in Figure 2(b).
However, self-shadowing makes BRDF exhibit
discontinuity as shown in Figure 2(a). So the shadow
can be detected by comparing the color difference
between the original pixel-wise BTF data and the BRDF
reconstructed from the reflectance model. The data will
be decided as shadow if its Error(x,Li,Vi) <
thresholderror and its BTF(x,Li,Vi) < thresholdBTF. The
Error function is defined as follow:

),,(
),,(),,(),,(

ii

iiii
ii VLxBTF

VLxBTFVLxSBRDFVLxError −
=

After this, the shadow data will be discarded from the
original pixel-wise BRDF and refit the remainders to get
more correct parameters. In our experiment, we set both
thresholderror and thresholdBTF to be 0.3 and repeat this
process three times for each pixel. Figure 3 shows the
results after the refinement, and Figure 3(c) is the
approximate shadow map and the gray level means the
shadow level which is determined as follow:

⎩
⎨
⎧

=
otherwiseVLxSBRDFVLxBTF
shadownotisVLxBTFif

VLxShadowMap

iiii

ii

ii

),,,(/),,(
),,(,1

),,(

After this processing, the BTF reconstruction function
will be:

BTF(x,L,V) = SBRDF(x,L,V) × ShadowMap(x,L,V)

Figure 3(c) shows the difference between the original
pixel-wise BRDF and the SBRDF multiplied by shadow
map. Compare Figure 4(b) and Figure 4 (c), the
self-shadowing effect can be perceived after applying
the approximate shadow map.

- 1042 -

(a) (b) (c)

Figure 2 The original pixel-wise BRDF vs. SBRDF
reconstructed BRDF at two different pixel locations. (a)
is the original, (b) is the SBRDF, (c) is the error
between original and SBRDF where darker levels
represent large errors

Figure 3 Original pixel-wise BRDF vs. refined SBRDF
reconstructed BRDF. (a) is original, (b) is refined
SBRDF, and (c) is the error between them where darker
levels represent large errors

(a) (b) (c)

Figure 4 Original BTF image vs. SBRDF reconstructed
surface. (a) is original [1], (b) is SBRDF, (c) is the result
of refined SBRDF multiplied by shadow map,

Figure 5 Shadow regions are view independent,
meaning they do not vary with the viewing position
when the lighting is fixed.

Figure 6 Occlusion results in error of applying top view
shadow to other views. (a) is P occluded by Q, and (b) is
Q is a invisible point at top view

2.2: SHADOW ANALYSIS

In the section 2.1, we present the method to generate the
approximate shadow map, but there is a thorny problem
that is those shadow maps are too irregular to find an
effective representation. The reason why shadow map is
irregular is that surface geometry effects such as
self-shadowing and self-occlusion affect it complexly,
so the whole shadow maps can only be represented as a
6D function. In our observation there is a lot of
redundant data in the 6D representation, and it is
possible to reduce the 6D function down to 4D if there
is no occlusion effect. Take Figure 5 for an example.
When the lighting direction is fixed, P is always in the
shadow side and Q is always in the bright side no matter
how the viewing direction could be changed if there is
no self-occlusion. In other words, without self-occlusion,
the shadow regions will not change with the viewing
direction. So it only needs to save the surface shadow
regions once for each lighting direction regardless of the
viewing direction. The representative view we choose is
the Top View because it is the symmetrical center of all
sampled viewing directions, and the Top View Shadow
(TVS) is called the shadow regions. After this step, the
dimensionality of shadow function is reduced from 6D
function ShadowMap(x,L,V) to 4D function 4D
TopViewShadowMap(x,L) and BTF reconstruction
function will be modified to

BTF(x,L,V)≒STVS(x,L,V)
 ＝SBTDF(x,L,V) × TopviewShadowMap(x,L),
 STVS is the acronym of SBRDF multiplied by TVS.

(a) (b) (c)

topV

targetV

(a) (b)

topV

targetV

Shifted Hidden Surface

topV

targetV

- 1043 -

 (a) (b) (c)

 (d) (e) (f)
Figure 7 Original pixel-wise BRDF vs. STVS. (a) is
original, (b) is STVS reconstructed result, (c) is top view
shadow, (d) is the error between them, and (e) is the error
by 6D shadow function where darker levels represent
large errors. (f) shows where the sample point is on
original surface.

Figure 8 Surface point we look at is independent of
lighting direction changes.

and Figure 7 shows the STVS reconstructed result, and
the error of STVS as Figure 7(d) and SBRDF
multiplied by 6D shadow function as Figure 7(e) are
almost the same. So using 4D shadow function TVS to
approximate 6D shadow function is enough for lots of
viewing directions. However, the more viewing
direction is closer to the surface the more occlusion is
occurred. It can be figure out that Figure 7(d) shows
more error than Figure 7(e) at lower viewing direction.
Take Figure 6(a) for an example. P is in shadow region
at topV , but is occluded by Q at ettV arg and Q is in the
bright region. If TVS is applied to ettV arg , Q will use P’s
shadow level and make a critical error. The other critical
error will be occurred as Figure 6(b). It shows that Q is
a invisible surface at topV but not at ettV arg . Such this
case the shadow map will very different than TVS as
shown in Figure 7(f).

2.3: OCCLUSSION ANALYSIS

In this section, we focus on self-occlusion of BTF.
By the similar analysis, there is a simple property of
self-occlusion. The property is that the surface point we
look at is independent of lighting direction changes as
shown in Figure 8. According to this property, we can
discard the lighting effect and only analyze when the
occlusion effect occurs for each view direction. In the
other words, the self-occlusion effect can be represented
by a 4D function.

 (a) (b) (c)

 (d) (e)
Figure 9 Vote-based optical flow result. (a) is the top
view image, (b) is the target view image, (c) is the motion
vector field after voted, (d) is hidden surface map ratio
where darker levels represent low hidden probability, (e)
is determined hidden surface map which threshold is 0.7,
and white parts are detected hidden surface.

The occlusion effect can be separated into two cases.
One is shifted, and the other is hidden surface as shown
in Figure 6. The shifted effect is shown in Figure 6(a).
P is occluded by Q at Vtarget, but Q is still a visible point
at Vtop. For this case, we only need a texture shift to
move P to the correct point Q. The other case is hidden
surface as shown in Figure 6(b). For this case, we
cannot find the relative texture shift between Vtop and
Vtarget. So It need additional process to deal with it.

In subsection 2.3.1, we represented a method, called
vote-based optical flow, to recognize if a surface point at
Vtarget is a shifted point or a hidden surface point. In
subsection 2.3.2, we represent a method to refine the
distinguished result more correctly. In subsection 2.3.3,
we present the additional process to deal with hidden
surface points.

2.3.1 Vote-based Optical Flow. Optical flow is a
method which finds the motion between two similar
pictures. But it does not work well when applied to any
two images in BTF data. It is because that the color of
two images with different view direction and the same
lighting direction may change significantly, so two
images are not enough.

As we mention that when the view setting is fixed,
the surface point we look at will not be changed no
matter where the light is located. In the ideal case, every
image pair with different views and the same lighting
direction should have the same occlusion shift and
hidden surface map.

- 1044 -

Figure 10 Illustration of searching the most similar
reconstructed point (green points) to replace hidden
surface point (red point), orange window is the
searching region.

According to this assumption, all the images with
the same view direction can be considered as a group
and replace the two images in original optical flow
algorithm with the corresponding two image sets. Then
the new result of the two image sets is several optical
flow results. These several optical flow results can vote
a best occlusion shift map from all occlusion shift maps
and determine whether the pixels are hidden surface
points or not by all hidden surface maps. The condition
to determine that a pixel x is a hidden surface point is
that HiddenRatio(x) >Thresholdhidden. HiddenRatio(x) is
defined as follow.

HiddenRatio(x)＝avg(HiddenMap(x))

If x is not a hidden surface point, then the motion vector
of x should be calculated. The method of how to vote its
motion vector is as follow. VotedOcclusionShift(x) is a
function to query the motion vector of point x. It is
decided by majority from motion vectors of all sample
lighting pairs between two views. And this is why we
call it vote-based optical flow.

Figure 9 shows vote-based optical flow results. The
hidden surface map is detected at the fillisters of the
brick as Figure 9(d) as we expect. But the detected
result as Figure 9(e) is not well enough. There are some
parts like the four upstairs squares on the surface in
Figure 9(a)(b). They should not be the hidden surface
but we consider them as hidden one after the threshold
determined. So we want to correct those parts by a
refinement process which will be introduced in the next
subsection.

2.3.2 Refinement of Hidden Surface Map. The idea of
the refinement process is very simple. The method is to
minimize the color different between the reconstructed
point color and the hidden point color. The
reconstructed color is generated by the function STVS
which is defined in section 2.2. The distance function is
as follow:

directions lighting all
,),,(x) (),,(

),(tan

∈

+−=∑
i

ii

L
VLormotionVectxSTVSVLxBTF

Vxcedis

If this error is below the threshold, then this hidden
surface point can be elevated to a non-hidden one and
its motion vector will direct to the reconstructed surface.

 (a) (b) (c)

 (d) (e)
Figure 11 After hidden surface map refinement. And
hidden surface maps at different depressive angle. (a) is
before refinement process, (b) is after refinement
process (c) is 30°, (d) is 45°,(e) is 60°,and horizontal
angle is 0°

Before Refinement After Refinement
 Non-hidden

Surface
Points

Hidden
Surface
Points

Non-hidden
Surface
Points

Hidden
Surface
Points

IM
PA

L
L

A

209542 122234 274269 57507

Table 1 The number of hidden surface points and
non-hidden surface points before and after the hidden
surface map refinement. Test cases’ resolutions are 64 x
64 and number of simple view directions is 81, so total
surface points are 64 x 64 x 81= 331776

The reconstructed point will be searched in a
window relative to the hidden surface point as shown in
Figure 10. The hidden surface point will be replaced by
the green point which has the minimum distance,
distancemin. In our experiment, the window size is 256 x
256.

As of the threshold for elevating a hidden surface
point to non-hidden one, instead of determining by user
himself, we present a reasonable and automatic
determining system. As the result of vote-based optical
flow, we distinguish hidden surface points and
non-hidden ones roughly. We assume the non-hidden
parts that the vote-based optical flow found are correct.
So, we can find the distances of all non-hidden surface
points at target view by the distance function which is
defined in subsection 2.3.2, and the threshold will be the
average distance of them as follow:

threshold = average(distance(x, Vtarget)),
 x is all non-hidden surface points

If a hidden surface point can match some reconstructed
surface point where the distancemin is lower than the
threshold, then it means that this hidden surface point
can match a surface point which has more similar
behaviors than non-hidden surface points.

- 1045 -

 (a) (b)

 (c)
Figure 12 Put top view shadow maps, occlusion shifted
maps, hidden surface maps, and cluster centers into a
four channel 32-bit texture.

So it is perfectly reasonable to be considered a
non-hidden surface point. In the contrary, if distancemin
is above the threshold, it can be determined as a hidden
surface point confidently. Figure 11 show the result of
the refinement process. The four elevated squares on the
surface are all determined as non-hidden surface parts
after the refinement process. Table 1 demonstrates the
refinement process can reduce a lot of the hidden surface
points.

2.3.3 Hidden Surface Points Clustering. Each
non-hidden surface point can be represented as STVS(x,
L, V) which is mentioned in section 2.2, but all hidden
surface points cannot. So those points need another
representation method. The most instinctive and simplest
representation method is to store them all and extract
them while rendering. But as shown in Table 1, the
number of hidden points is about one-sixth of whole BTF
size, it is impossible to do so. Fortunately, the surface or
BTF is combined with similar patches that mean hidden
points are also similar, so we instead of saving them all
but save some representative points of them by
clustering.
The clustering method we choose is k-means cluster.
K-means is one of the simplest unsupervised learning
algorithms that solve the well known clustering problem.
The procedure follows a simple and easy way to classify
a given data set through a certain number of clusters
(assume k clusters) fixed a priori. The main idea is to
define k centroids, one for each cluster. These centroids
should be placed in a cunning way because of different
location causes different result. So, the better choice is to
place them as much as possible far away from each other.
The next step is to take each point belonging to a given
data set and associate it to the nearest centroid. When no
point is pending, the first step is completed and an early
grouping is done. At this point we need to re-calculate k
new centroids as barycenters of the clusters resulting
from the previous step. After we have these k new
centroids, a new binding has to be done between the
same data set points and the nearest new centroid. A loop
has been generated. As a result of this loop we may
notice that the k centroids change their location step by
step until no more changes are done. In other words
centroids do not move any more. Finally, we can use

these k centroids or k data points which are closest to
individual centroids to represent whole data set.
The total number of centroids k we choose is 1984 (this
will be explain it in section 3.1). And because the number
of hidden surface points is different at different view as
shown in Figure 11, and so are their behaviors, we apply
k-means cluster to each view and the centroids k’ of each
view is shared from k according to the proportion of their
hidden surface points ratio. So the final reconstruction
method is as follow:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧
+=
×

≅

int
 ,

),,(int
int ot

),,('
),'(),,'(

),,(

posurfacehiddenaisxif
usedxcentertheisCwhere

CLxsClusteracePoHiddenSurf
posurfacehiddennisxif

VxormotionVectxxwhere
LxShadowMapVLxSBRDF

VLxBTF

3: RENDERING

All the work mentioned in previous sections is to
make an efficient representation of BTF for real-time
rendering. And in this section, we will introduce how it
works in the real-time rendering system with
programmable graphics processors (GPU).

3.1: CONVERTING DATA TO TEXTURE

In recent years, GPUs have showed how powerful
they are by their parallel arithmetic ability. In order to
use GPU, the fitting results must convert to the textures
which GPUs support. These fitting results include
SBRDF parameters, top view shadow maps, occlusion
shifted maps, hidden surface maps, and cluster centers.

SBRDF parameters can be converted to the texture
form easily, because the sample surface is rectangle of a
two-to-the-power size. So for each SBRDF parameters
can be stored into 32-bit floating textures, where the
texture size equals the surface resolution. All SBRDF
parameters contain a diffuse parameter dρ , four
parameters nCCC zyx ,,, for each specular lobe, and three
for RGB colors BGR CCC ,, . The modern GPUs can handle
four channel floating texture at once, so we can
store BGR CCC ,, , dρ in one 128-bit texture and use another
one for each specular lobe. In our experiment, we use
three specular lobs, so there are four 128-bit textures to
express the SBRDF parameters.

Next a 32-bit texture which contain four channels is
used to store the top view shadow maps, occlusion
shifted maps, hidden surface maps, and cluster centers.

First, because the number of top view shadow maps
is related to the number of BTF lighting direction
samples, and the texture size of each shadow map is
equal to the sample surface resolution in our experiment.
So we can put them from top to low and left to right to
the texture by their sample lighting direction in the
order of counter clockwise horizontal angle and

- 1046 -

increasing depressive angle like Figure 12(a). For
shadow maps is used one 8-bit channel to store it.

Second, for each sample view direction, there is a
corresponding hidden surface map and an occlusion
shifted map. Hidden surface map is a Boolean texture
which represents whether the surface point at this view
direction is hidden or not. It can be store in one 8-bit
channel. As for occlusion shifted map, It is stored in two
8-bit channels. If the surface point is non-hidden, one of
these two channels stores the x shift and the other stores
y shift. If the surface point is hidden, we use these two
channels to encode the cluster center index in our
implementation. So in our experiment, the maximum
number of cluster center index is 256x256 = 65536.
Fortunately, the number of sample lighting direction and
sample viewing direction is just the same, so those maps
can be put into texture just like top view shadow map as
shown in Figure 12(b).

Because the texture size which GPU supports is 2 to
the power, there may have some unused texture spaces.
Figure 12(b) show the unused area as black. In order to
achieve maximum utility of this texture, we use these
free spaces to store the cluster centers. In our
experiment, the resolution of the sample surface is 64 x
64 and number of sampling directions is 81. The texture
which is used to store these data is 1024 x 512. So 80
maps take up 1024 x 320 texture spaces. The remainder
texture spaces are 1024 x 192. The cluster center is a 1 x
81 vector, so the number of cluster centers which can be
filled in is (1024 x floor(192/81)) = 2048. But there is a
reminder one map, so the maximum number of center
which can be filled in is 2048-64 = 1984.

4: RESULTS AND COMPARISON

Our experiments are performed on a PC containing a
2.8GHz Pentium4 CPU and an nVidia GeForce 6600
graphics card. The output image size is 300×300. We
achieve real time rendering of the BTF data at above 24
frames per second (FPS) and the compression ratios are
shown in Table 2.

Figure 13 shows the rendering results. Compare
with the original BTF (Figure 13(a)), our rendering
results (Figure 13(d)) present more surface detail than
both SBRDF and STVS. Those textures can also be
applied to any 3D model which only has rough
geometry to represent more complex mesostructure,
relighting, and render them in real-time.

 BTF SBRDF STVS
Our

method

Storage Size

(MB)
80.621 0.596 1.008 2.58

Compression

Ratio
0% 99.26%

98.75

%
96.80%

Table 2 Compression ratio of all methods in this paper.

Figure 13 Rendering results and comparisons. (a) is
rendered by original BTF. (b) is by SBRDF. (c) is STVS,
(d) is our final method.

5: CONCLUSION AND FUTURE WORK

In this paper we represent a physically-based analysis
of BTF data. This analysis is based on traditional SBRDF
method first represented by McAllister [11]. we find that
traditional SBRDF cannot represent the self-shadowing
and self-occlusion effects very well because they assume
each sample points on the surface has individual BRDF
and fit them into a reflectance model. As we know that all
reflectance models are smooth curve functions. Both
self-shadowing and self- occlusion will make the shape
of BRDF sharply, so they cannot be reconstructed very
well by SBRDF. So we analysis when they are occurred
by some phenomena..

As for further work, first is to find the outliers more
correct. Currently, we only use the color different to find
them. In the future, they may be decided by some
computer vision methods. And the occlusion effects can
be detected by using another method to find a more
efficient and reliable shifted maps and hidden surface
maps to make the rendering result more correct.

REFERENCES

[1] BTF Database of University of Bonn.

http://btf.cs.uni-bonn.de
[2] Buehler C., Bosse M., McMillan L., Gortler S, and

Cohen M. Unstructured Lumigraph Rendering. In
Proceedings of ACM SIGGRAPH 2001. pages 425-432

[3] Chen W. C., Bouguet J. Y., Chu M. H., and
Grzeszczuk R. Light Field Mapping: Efficient
Representation and Hardware Rendering of Surface
Light Fields. In Proceedings of ACM SIGGRAPH 2002,
pages 447–456.

(a)

(b)

(c)

(d)

- 1047 -

[4] Dana K. J., Ginneken B. V., Nayar S. K., and
Koenderink J. J. Reflectance and Texture of
Real-World Surfaces. In Proceeding of ACM
Transactions on Graphics (TOG), January 1999,
Volume 18 Issue 1, pages 1-34.

[5] Debevec P., Yu Y., and Borshukov G. D. Efficient
View-Dependent Image-Based Rendering with
Projective Texture-Mapping. In Proceeding of
Eurographics Rendering Workshop 1998, pages
105-116

[6] Gortler S., Grzeszczuk R., Szeliski R., and Cohen M.
The Lumigraph. In Proceedings of ACMSIGGRAPH
1996, pages 43–54.

[7] Jensen H. W., Marschner S. R., Levoy M., and
Hanrahan P. A Practical Model for Subsurface Light
Transport. In Proceedings of ACM SIGGRAPH
2001, pages 511-518

[8] Lafortune E. P. F., Foo S.C., Torrance K.E., and
GreenBerg D.P. Non-linear Approximation of
Reflectance Functions. In Proceeding of ACM
SIGGRAPH 1997, pages 117-126.

[9] Levoy M., and Hanrahan P. Light field rendering.
In Proceedings ACM SIGGRAPH 1996, pages 31–42.

[10] Wan-Chun Ma, Sung-Hsiang Chao, Bing-Yu Chen,
Chun-Fa Chang, Ming Ouhyoung, and Tomoyuki
Nishita. An Efficient Representation of Complex
Materials for Real-Time Rendering. In Proceedings of
ACM Symposium on Virtual Reality Software and
Technology (VRST) 2004

[11] McAllister D., Lastra A., Heidrich W. Efficient
Rendering of Spatial Bi-directional Reflectance
Distribution Functions. In Proceeding of Graphics
Hardware 2002, Eurographics/SIGGRAPH Workshop
Proceedings.

[12] Muller G., Meseth J., Sattler M., Sarlette R.,and Klein
R. Acquisition, Synthesis and Rendering of
Bidirectional Texture Functions. In Proceeding of
Eurographics State of The Art Reports 2004, pages
69-94

[13] Alan Watt. 3D Computer Graphics (3rd Edition).
ISBN: 0-201-39855-9, Published by Addison-Wesley

[14] Wood D. N., Azuma D.I., Aldinger K., Curless B.,
Duchamp T., Salesin D.H., and Stuetzle W. Surface
light fields for 3D photography. In Proceedings of
ACM SIGGRAPH 2000 , pages 287–296.

- 1048 -

