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ABSTRACT

Genetic algorithms can be divided into two
categories: single objective and multiple objectives.
With single objective, we introduce two modified genetic
algorithms: the orthogonal genetic algorithm with
quantization (OGA/Q), which utilizes the orthogonal
design and quantization technique, and the Hybrid
Taguchi Genetic Algorithm (HTGA), which utilizes the
Taguchi’s method. Because of the multiple objective
functions, the design of the multi-objective genetic
algorithms focuses on the fitness assignment, the
diversity preservation, and the addition of an elite set.

In this paper, we propose to include an additional
random population besides the original initial
population. In each generation we replace the random
population and select only the non-dominated
individuals into the elite set. The proposed method can
explore more general solution space and can locate
better solutions. We then apply Taguchi’s method to
generate better individuals in the additional random
population.1

1. INTRODUCTION

When the number of variables increases,
optimization problems become extremely complex. In
the past, people are at a loss how to conquer this kind of
problems. With the introduction of the computers,
people now can develop effective algorithms and
perform simulations on the computers thus make the
answer of optimization problems more feasible. For this
reason, a number of stochastic search strategies such as
evolutionary algorithms, table search, simulated
annealing, and ant colony optimization have been
developed [14].

Generally speaking, a stochastic search algorithm
consists of three parts: 1) a working memory that
contains the currently considered solution candidates, 2)

1 This work was supported in part by the National Science Council,
Republic of China under Contract No. 94-2213-E-211-012 and 95-
2221-E-011-059.

a selection module, and 3) a variation module as
depicted in Figure 1 [14].

Figure 1. Components of a general stochastic search
algorithm.

As to selection, one can distinguish between mating
and environmental selection. Mating selection aims at
picking promising solutions for variation and usually is
performed in a randomized fashion. In contrast,
environmental selection determines which of the
previously stored solutions and the newly created ones
are kept in the internal memory. The variation module
takes a set of solutions and systematically or randomly
modifies these solutions to generate potentially better
solutions.

We can divide the evolutionary algorithms into
single-objective evolutionary algorithms
[4][5][8][10][11][15][18] and multi-objective
evolutionary algorithms [6][13][14][16][17] by their
number of objective functions. In single-objective
evolutionary algorithms, the objective function is the
fitness function. Because the number of objective
functions in multi-objective evolutionary algorithms is
equal or more than two, the fitness functions must have
some special arrangements.

2. ORTHOGONAL ARRAY

In the whole factor design, when the number of
factors increases, the required number of experiments
will increase thereupon. Taguchi’s method utilizes
orthogonal array to collect the materials directly, make
us obtain more reliable factor result estimator with less
experiments. It is an important skill that a robust design
utilizes the orthogonal array and carries on the
experiments directly.
A general orthogonal array is defined as follows:
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An example )2( 4
8L orthogonal array is shown in Table

1.
Table 1 )2( 4

8L Orthogonal Array
A B C D

1 1 1 1 1
2 1 1 2 2
3 1 2 1 2
4 1 2 2 1
5 2 1 1 2
6 2 1 2 1
7 2 2 1 1
8 2 2 2 2

2.1. TAGUCHI’S METHOD

Although Taguchi’s parameter design method is
seldom applied in the field of computer science, it is an
important tool for robust design. Taguchi’s method is
often regarded as an engineering methodology to
optimize products and process conditions which are
minimally sensitive to the causes of variations, and
which produce high-quality products with low
development and manufacturing costs. Orthogonal array
and the SNR (Signal-to-Noise Ratio) are two major tools
used in Taguchi’s method.

SNR in Taguchi’s method is used to assess each
level in the contribution degree to the object function of
each factor. Formulation of the SNR is derived from the
unbiasedness in statistics. It is an estimate of how
samples deviate from the center of population. The
general formulation of the SNR is as follows:

3. THE INTELLIGENT MULTIOBJECTIVE
EVOLUTIONARY ALGORITHM (IMOEA)

The IMOEA [6] was proposed by Ho et al. and its
purpose is to optimize multiple objective functions
simultaneously in order to achieve the optimal solution.
In the IMOEA, the Intelligent Gene Collector (IGC) is a
main phase and the generalized pareto-based scale-
independent fitness function (GPSIFF) is the fitness
assignment strategy.

.
3.1 The IGC

The IGC[6] uses a divide-and-conquer approach,
which consists of three parts: 1. the dividing part: divide
large chromosomes into an adaptive number of gene
segments; 2. the conquering part: identify potentially
good gene segments such that each gene segment can
potentially be part of an optimal solution; and 3. the
combination part: combine the potentially better gene
segments of their parents to produce a potentially good
approximation to the best one of all combinations of
gene segments.

3.2 The Fitness function GPSIFF
The fitness assignment strategy is an important

issue in solving multi-objective optimization problems.
The IMOEA employs the generalized pareto-based
scale-independent fitness function (GPSIFF) to quantify
the fitness performances in the objective space for both
dominated and non-dominated individuals. Let the
fitness value of an individual X be a score obtained from
all participated individuals by the following function:

where p is the number of individuals which can be
dominated by X, q is the number of individuals which
can dominate X in the objective space, and c is a
constant. Following is an example of the dominate
relationship:
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The definition of dominate is that iX must be
greater than or equal to all jX , with at least one

ikX greater than one jkX . The dominate relationship

does not exist in the following example:
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4. THE FUNDAMENTAL MATRIX AND THE
EIGHT-POINT ALGOTITHM

Given two images in 3D computer vision systems,
to establish a general relationship between the two sets
of image coordinates which expresses the constraints
that the corresponding rays through the two camera
centers must intersect in space [1]. When the intrinsic
parameters of the cameras are known, the epipolar
constraint can be represented algebraically by a 3x3
matrix, called the essential matrix or the fundamental
matrix, F. One can compute the fundamental matrix F
with the eight-point algorithm stated below.

4.1 The Eight-Point Algorithm
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The eight-point algorithm is linear; hence the
fundamental matrix F ca be computed fast and easily.
The eight-point algorithm for computing the essential
matrix was introduced by Longuet-Higgins [1]. The
coefficients in the fundamental matrix are in a nine-
vector which constitutes a linear system.
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. Because the coefficients of the fundamental
matrix is homogeneous, we therefore decide 33F =1 and
let it not zero. Using the eight-points algorithm
  8,,1,, ' ipp ii make equation （4-1） to rewrite the
8×8 linear equation:
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The great advantage of the eight-point algorithm is that
it is linear. If the eight pairs of corresponding points are
known, we can compute the parameters of the
fundamental matrix. With more than eight points, a
linear least squares minimization problem must be
solved.

4.2 The Three-Axis Bucket

Traditional bucketized algorithms divide the plane
into some non-overlapping areas, and then select one
point from each area. We propose to use a 3-axis bucket
to select points which is distributed over the domain.
But in reality, we do not have information about the
third axis. When we obtain the 3D models of scenes
from two images, the disparity is larger when object is
closer to the camera. So we assume that the disparity can
be the third axis in our bucket selection scheme. .

Given the coordinates of a pair of correspondence
points are  11, yx and  22 , yx , we have three ways to
compute the disparity of correspondence points, as
describes below:
1.












21

21

yy

xx

2.    221
2

21 yyxx 

3. When the Y-axis values of the correspondence points
are the same, we use just 21 xx  .

In this paper, we use the second method above to
compute the disparity of correspondence points.
The method of selecting correspondence points:

1. Compute the disparity (d) of correspondence points.
2. Find the largest and smallest value on X-axis and

Y-axis and 1/d of correspondence points, and
equally divide them into Q parts.

3. Use the orthogonal array  3
2 QLQ 2Q we select

the 2Q orthogonal areas.

4. Select eight areas from the 2Q orthogonal areas
and then select one point form each area to form a
chromosome.

For example, we first compute the disparity of all
correspondence points with 3Q . We can then divide
all correspondence points into 27 areas as shown in
Figure 2 and Figure 3. Figure 2 depicts the original date
points and Figure 3 depicts the points with added third
axis to form the 3-axis bucket.

Figure 2. The 2D coordinates of correspondence
points.

Figure 3. The 3D coordinates of correspondence
points in the 3-axis bucket.

5. THE ADDITION OF RANDOM POPULATION

After the initial population is generated in IMOEA, all
individuals' genes are fixed if there is no mutation
operation. When the search space is fixed, we can only
find local optima. We propose a new method which
includes a randomized population with all individuals is
regenerated again with generations. We only include
non-dominated individuals in our randomized
population to the elite set and exclude other individuals
to participate in later evolutions. The proposed method
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which includes a randomized population can search
more feasible solution space and can include better
individuals than the ones in the initial population.

In The Large Parameter Optimization Problems
(LPOPs), individuals in the randomized population are
generated in one of the following two ways: 1.
Randomly generated individuals: We randomly generate
a random population of K individuals, and it is the same
way as generating the initial population. 2. Orthogonal
quantization generated individuals: It employs the
quantization method that originated from the OGA/Q to
quantize the domain of every gene, so the individuals
can be distributed over the entire domain. We then use
Taguchi’s method to all individuals that are generated
by method 1 or 2. Those result individuals are put in the
randomized population.

In the fundamental matrix optimization problems,
individuals in the randomized population are generated
in two ways: 1. randomly generates individuals and 2.
use 3-axis bucket to generate individuals. We then
employ Taguchi’s method on the result individuals.
Those chromosomes that are selected by the above
operations have to go through the following operations,
as shown below, before include them in the randomized
population.
1. Randomly select two chromosomes that are

generated by the 3-axis bucket and put them into
Taguchi’s method.

2. Pu the individuals generated by 1 into the
randomized population.

3. Repeat 1 and 2, until the desired number of
individuals in the population is met.

Figure 4. Producing individuals in randomized
population.

The proposed modification of IMOEA with
additional randomized population is described as
follows:

1. Initialization: randomly generate an initial
population of Npop individuals and create an
empty elite set e and an empty temporary
elite set 'e .

2. Randomized population: use the method
proposed in section 7.1 to generate K
individuals of random population.

3. Evaluation: compute two distances
(geometric distance and algebraic distance)
and transform them into the fitness values of

each individual in the populations. Assign
each individual a fitness value by using
GPSIFF.

4. Update elite sets: add the non-dominated
individuals in both the population, random
population and 'e to e and empty 'e .
Considering all individuals in e , then
remove the dominated ones. If the number
NE of non-dominated individuals in e is
greater than NEmax, then randomly discard
excess individuals

5. Selection: Select Npop-Nps individuals from
the population using the binary tournament
selection and randomly select psN
individuals from e to form a new
population, where spopps PNN  . If

psN > psN , let eps NN  .

6. Recombination: perform the IGC operations
for cpop pN  selected parents. For each IGC

operation, add non-dominated individuals
derived from by-products OA combinations
(by-products) and two children to 'e .

7. Mutation: apply the conventional mutation
operation with PM to the population.

8. Termination test: if a stopping condition is
satisfied, stop the algorithm. Otherwise, go
to Step 2).

6. EXPERIMENTS

In this section, we perform experiments that
employ the additional random population on top of the
IMOEA to solve the Large Parameter Optimization
Problems (LPOP) and the estimation of fundamental
matrix problems.

6.1 The Large Parameter Optimization Problems
While single objective genetic problems can

optimize a single function, the multi-objective genetic
problem can optimize two or more objective functions in
parallel. Our first experiment try to minimize

  
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i
ii xx
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together [6], where 12.512.5  ix and D=8.

Table 2 LPOP experimental settings.

algorithm IMOEA IMOEA with
Orthogonal
random
population

IMOEA with
Random
population

Size of
population

200 200 200

# of
generations

1000 1000 1000

Pc 0.8 0.8 0.8

PM 0.02 0.02 0.02
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Table 3 LPOP experiment results.

algorithm IMOEA IMOEA with
Orthogonal random
population

IMOEA with
Random
population

time (in
sec)

6554 9070 8869

The non-dominated individuals in all experiments
are depicted in Figure 5 and Figure 6.

Figure 5. IMOEA(+)、IMOEA+rand. pop.(.) and
IMOEA+orthogonal rand. pop.(o) in LPOP.

Figure 6. A zoom in picture of Figure 5.

In the LOPO experiments, the original IMOEA, the
IMOEA with random population and the IMOEA with
orthogonal random population methods can all
minimize the two objective functions in parallel. In
Figure 6, we show that by adding the randomized
population we can find better solutions than the
original IMOEA method. And the IMOEA with
orthogonal random population outperforms the
IMOEA with orthogonal random population method.

6.2 The Fundamental Matrix Optimization Problems

We employ the eight-point algorithm to estimate
the fundamental matrices with two objective functions.
The first function is the geometric distance that
measures the distance of all corresponding points to
their epipolar lines in image. The second function is the
algebraic distance of all corresponding points in the

fundamental matrix. We want to minimize both
functions and together we quantize the performance of
the estimated fundamental matrices. In this experiment,
Function 1 (F1) is geometric distance and Function 2
(F2) is the algebraic distance. We take the 884
corresponding point pairs (depicted in red as shown in
Figure 7) as our experiment data. Table 4 shows the
experimental settings.

Figure 7. Corresponding Points.

Table 4. Experimental settings (fundamental matrix
estimation).

algorithm IMOEA
with 2D
bucket

IMOEA with
Random
population

IMOEA with 3-
axis bucket and
random population

Size of population 200 200 200

# of generations 500 500 500

Pc 0.8 0.8 0.8

PM 0.02 0.02 0.02

# test data points 884 884 884

- 1053 -



Figure 8. IMOEA+bucket(.)、IMOEA+ rand. pop.(+)
and IMOEA+ 3-axis bucket random population (o) –

fundamental matrix estimation results.

As shown in Figure 8, IMOEA with the
randomized population can find better solutions than the
original IMOEA and sometimes even outperforms the
IMOEA with bucketization. The domain quantization
with the orthogonal array method can generate more
representative individuals than the pure random
generation and the populations are more evenly
distributed in the solution domain. However, both the
pure random and bucketization can populate more
evenly distributed individual in the solution space and
the best solutions found by both methods can dominate
the solutions generated by the traditional IMOEA. We
conclude that by adding the randomized population, we
can improve the chance of finding optimal solutions in
the IMOEA method.

7. CONCLUSION

In this paper, we propose to use an additional
randomized population to expand the search space in
genetic algorithms to produce better individuals and thus
lead to better solutions. The randomized population is
not just randomly generated but Taguchi’s method is
also employed to select more representative individuals
in the populations. Our experiment results suggest that
the proposed method is feasible and can generate better
solution than the original IMOEA method. In 2D
coordinate system the visual disparity is meaningful. But
when we transform the visual disparity into a third axis,
how to more evenly distribute the inverse of visual
disparity onto the third Z-axis remains an important
problem. Our future directions include the use of
Principal Component Analysis (PCA) to determine main
axis and better quantization on these main axes to locate
more diverse corresponding point pairs and eventually
lead to better solutions.
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