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ABSTRACT 
In this paper, we present an M-estimator based robust 

radial basis function (RBF) learning algorithm with 
growing and pruning techniques. The Welsch 
M-estimator and median scale estimator are employed 
to avoid the influence from outliers. The concept of 
neuron significance is adopted to implement the 
growing and pruning techniques of network nodes. The 
proposed method not only eliminates the influence of 
the outliers, but also dynamically adjusts the number of 
neurons to approach an appropriate size of the network. 
The results from experiments show that the proposed 
method can give a minimum prediction error compared 
with other methods. Furthermore, even 30% of all 
observations are the outliers this method still has a 
good performance. 
 
 
1: INTRODUCTION 
 

The radial basis function (RBF) neural network is 
considered as a good candidate for approximation and 
prediction problems due to its rapid learning capacity. In 
typical RBF networks, the Gaussian function is selected 
as the activation function of network. A network 
iteratively adjusts parameters of each node by 
minimizing the LMS (least-mean-square) criterion 
according to gradient descent algorithm. Nevertheless, 
there still exist some problems in this approach. When 
some of the training patterns contain large errors 
resulting from the presence of outliers, the network will 
yield inadequate responses in the neighborhood of the 
outliers due to the MSE criterion. Another frequently 
encountered problem for neural networks is that it is 
difficult to determine the number of neurons of the 
network. If the number of centers is underestimated, the 
capability of the network is limited and the performance 
therefore might be degraded. On the other hand, if the 
number of centers is over-determined, a large network is 
generated and an increase in time is required for the 
network process. In order to take care of these two 

problems, an M-estimator based robust RBF learning 
algorithm with growing and pruning techniques is 
introduced in this paper. 

M-estimator statistics is a widely used robust 
statistics [1]-[7]. It uses some cost functions which 
increase less than that of least square estimators as the 
residual departs from zero. When the residual error goes 
beyond a threshold, the M-estimator suppresses the 
response instead. Therefore, the M-estimator based error 
function is more robust for the presence of the outliers 
than LMS based error function. M-estimator replaces the 
MSE criterion and then provides the robustness for the 
traditional neural networks. The simulation results show 
that the proposed method can produce the minimum 
prediction error than other methods, even outliers are 
included. 
The optimal size of network for a given problem is 
usually unknown. If the number of neurons is 
underestimated, the network may not approximate or 
predict the problem accurately. On the other hand, if too 
many neurons are used, the network will overfit the 
training pattern, result in inferior outcome, and also 
increase the computation time. In the past, several 
methods for growing and pruning in RBF networks 
have been proposed [8]-[11]. Huang et al. [11] proposed 
a concept of significance of a neuron, which is wholly 
different from and much simpler than other methods. 
The significance is defined as a neuron’s statistical 
contribution to the overall performance of the network, 
and it is used in growing and pruning strategies. A new 
neuron will be added only if its significance is larger 
than the chosen threshold. Conversely, if the 
significance for a neuron is less than the threshold, the 
neuron will be pruned. In this paper, we adopt this 
concept of the significance of a neuron to define the 
network growing and pruning algorithm. According to 
the approach, the network can produce a proper size for 
a given problem. 

The paper is organized as follow. The M-estimator 
based radial basis function neural network and the 
growing and pruning techniques are given in Section 2. 
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The simulation results are conducted in Section 3. 
Finally, conclusions are included in Section 4. 
 
2: M-ESTIMATOR BASED RADIAL 
BASIS FUNCTION NEURAL 
NETWORKS 
 
2.1: BASIC ARCHITECTURE OF RADIAL 
BASIS FUNCTION NETWORKS  
 

The basic architecture of an RBF network is a single 
hidden layer feed forward neural network, as shown in 
Fig.1. 

 
Fig. 1. Basic architecture of RBF neural network 

The output of the RBF network is described by  
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where y is the actual network output, x∈Rm×1 is an input 
vector signal, with individual vector components given 
as xj, for j=1, 2, …,m, that is, x=[x1, x2, …, xm]T ∈Rm×1. 
w=[ w1, w2, …, wN]T ∈RN×1 is the vector of the weights in 
the output layer, N is the number of neurons in the hidden 
layer, and φk(⋅) is the basis function of the network from 
Rm×1 to R. ck=[ ck1, ck2, …, ckm]T ∈Rm×1 is called the center 
vector of the kth node, k is the bandwidth of the basis 
function φk(⋅), and ||⋅|| denotes the Euclidean distance. For 
each neuron in the hidden layer, the Euclidean distance 
between its associated center and the input to the network 
is computed. The output of the neuron in a hidden layer is 
a nonlinear function of the distance, and the Gaussian 
function is most widely selected as the nonlinear basis 
function. After the computation of the output for each 
neuron, the output of the network is computed as a 
weighted sum of the hidden layer outputs. 

In the training procedure, the steepest gradient of 
descent learning process is to adjust the appropriate 
settings of the parameters (e.g. weights, centers, and 
bandwidths), which make the performance of the 
network mapping optimized. A common optimization 
criterion is to minimize the LMS between the actual and 
desired network outputs. LMS error function is as Eq (2), 
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where rn= d(n)- y(n) represents the residual error between 
the desired, d(n), and the actual network outputs, y(n). n 
indicates the index of the series.   

The cost function can be defined as an ensemble 
average errors, 
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where θ is one of the parameter sets of the network.  

According to the gradient descent method, the 
gradient of the cost function J(θ) needs to be computed. 
The gradient surface can be estimated by taking the 
gradient of the instantaneous cost surface. That is, the 
gradient of J(θ) is approximated by Eq (4) 
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The update equation for the network parameters is 
given by 
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The cost function is not necessary defined as LMS 
criterion; that is, we can define the influence function as 
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We rewrite Eq (7), the generalized update equation is 
the following 
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2.2: M-ESTIMATOR BASED RBF 
LEARNING RULE 
 

Most of the learning rules of neural networks are 
based on the LMS criterion, which minimize the 
quadratic function of the residual errors. However, LMS 
is not a good criterion for some training patterns in which 
there exist huge errors by the presence of outliers. Those 
errors cause the training patterns move far away from the 
underlying position. Consequently, approximations can’t 
be precise. To illustrate this problem, we give an 
example to show the weakness of LMS criterion in the 
case of outliers. We generate the sine function, which 
includes 200 training data. 18 outliers are randomly 
selected and 12 neurons are used in the network training. 
After 400 training iterations by traditional RBF network, 
the RMSE is 0.1413 and the approximation result is 
shown in Fig. 2. The influence function in LMS criterion 
(ψ(rn)= rn) is linearly with the size of its error. Seeing 
Fig. 2, we can find the outliers magnify the influence 
values. Thus, it is not a good approximation by using 
LMS criterion in this case of outliers.  

Recalling Eq (7), the network updates are 
proportional to the linear influence function ψ(rn). It 
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would offer the key to an understanding of overcoming 
the outlier problem. One possible solution for improving 
this problem is to employ a robust criterion instead of 
LMS. Among several methods, which deal with the 
outlier problem, M-estimator technique [1], [2] is the 
most robust and has been applied in many applications 
[3]-[6]. The M-estimator uses some cost functions which 
increase less rapidly than that of least square estimators 
as the residual departs from zero. When the residual error 
increases over a threshold, the M-estimator suppresses 
the response instead. Therefore, the M-estimator based 
error function is more robust to outliers than LMS based 
error function. 
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Fig. 2. The approximation result when training 
patterns contain outliers. The learning rules of 
neural networks were based on the LMS 
criterion 

 
Several M-estimators have been studied [1]-[7] 

including Huber, Cauchy, Geman-McClure, Welsch, and 
Tukey. In our paper, we employ the Welsch function as 
the error function, given by 
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where α is a scale parameter. The corresponding 
influence function can be given by 
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The Influence function ψw(⋅) with different scale 
parameter α is plotted in Fig. 3. From Fig. 3, the output 
of influence functions varies with respect to scale 
parameter. For example, the maximum values of ψw(⋅) 
are 1.287, 0.858, and 0.429 for α=3, 2, and 1, 
respectively. This experiment causes the fraction of 
network parameter update is difficult to control. To solve 
this problem, a normalization factor z is employed to 
normalize the function output to [-1, 1]. We rewrite Eq 
(11) as   
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where ( )( )2/1exp α−=z , and Eq (10) can be also 
rewritten as 
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The update equation (7) can also be rewritten as  
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Fig. 3. Influence function ψw(⋅) with different 

spread parameters 
 
Furthermore, Fig. 3 also indicates the interval among 

the extreme points of ψw(⋅). The interval can be regarded 
as the confidence interval of the residuals. In other words, 
if the residual error falls into this interval, the estimate is 
proportional to the size of the error; otherwise, the data is 
treated as an outlier and the update is suppressed.  

The extreme points can be detected by letting dψw 
(rn)/drn =0, that is, 
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Obviously, the extreme points are , and the 
confidence interval is the range [ ]. The 
interval depends on the scale α. When α is large, outliers 
may not be discriminated from the majority. Conversely, 
if α is small, some of desired data will be treated as 
outliers.  We use a median operator to estimate the scale, 
since it is simple to understand and easy to calculate. 
Furthermore, it also gives a more robust measure in the 
presence of outlier values than the mean value [7].  

α5.02−±

αα 5.05.0 2,2 −−−

 
2.3: GROWING AND PRUNING 
TECHNIQUES 
 

Another major challenge in this design of the robust 
RBF neural network is to determine the number of the 
centers. Huang et al. [11] have proposed the concept of 
significance of a neuron, which is wholly different from 
and much simpler than other methods. The significance 
is defined as a neuron’s statistical contribution to the 
overall performance of the network, and it is used in 
growing and pruning strategies. A new neuron will be 
added only if its significance is larger than the chosen 
threshold. Conversely, if the significance for a neuron 
becomes less than the threshold, then that neuron will be 
pruned. In this paper, we adopt the concept of the 
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significance of a neuron to define the network growing 
and pruning algorithm. 

To define the significance of a neuron for pruning 
(SNP), we assume the output of a RBF network with N 
neurons for an input x is given by (1). If the neuron q is 
removed, the output of the RBF network with the 
remaining N-1 neurons is  
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Therefore, for an input xi the error resulting from 
removing neuron q is the absolute difference between y 
and yq, that is 
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The significance of a neuron for pruning is defined as 

the average error for all M sequentially learned inputs 
due to removing neuron q, given by 
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If SNP(q) < TPErr (TPErr is a predefined threshold 
value), it means the neuron q does not make significant 
contribution to the overall performance of the network; 
hence, this neuron should be removed. Similarly, the rule 
of growing node can be defined by this way. 
 
3: SIMULATION RESULTS AND 
PERFORMANCE EVALUATION 
 

We examine the performance of the proposed 
M-estimator on the prediction of one time series data. 
The data is generated by the chaotic Mackey-Glass 
differential delay function as 
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where　>17. In this experiment, 1500 points are 
generated with an initial condition x(0)=1.2 and 　=17. 
500 points of the series data are generated from 
x(100)-x(599) and used as training data, and the other 
500 points are generated from x(600)-x(1099) and used 
to validate the prediction performance. The networks are 
employed to predict the values of the time series at point 
x(t) from the four past samples [x(t-6), x(t-12), x(t-18), 
x(t-24)]. Two neurons are given in the beginning of the 
training, and the corresponding centers are uniformly 
assigned from data range. The initial weights are 
randomly selected from [-0.3, 0.3], and the total number 
of training iterations is set to 500. Fig. 4 shows the test 
result of noise-free time series using the proposed 
method, and the RMSE is 0.006807. The number of 
neurons dynamically increases from 2 to 19. 

Table 1 shows the comparison results of the 
prediction performance among different methods 
including our proposed method. The data of last four 
rows in Table 1 are taken from [12]. From the 
comparison results, we can see that our proposed 
algorithm results in the smallest prediction error than 
other methods. 

To further examine the advantage of the robustness of 
our proposed RBF neural network, 30% of training data 
are replaced by random outliers to test the capability of 
the anti-outlier. Fig. 5 shows the results of the training 
phase, and the corresponding RMSE is 0.027035. The 
results show that it is nearly equal to the result of Kim 
and Kim’s method even there is no outlier included. 
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Fig. 4. Mackey-Glass Chaotic Time Series 

Prediction 
 

Method Prediction 
Error (RMSE) 

Iterations

Our Method 0.006807 500 
Traditional RBF (with 
19 neurons) 

0.011526 500 

ANFIS  0.007 500 
Backpropagation NN 0.02 500 
Auto Regressive 
Model  

0.19 500 

Kim and Kim 
(Ensemble) 

0.0262431 500 

Table 1. Comparison results of the prediction 
error of different methods 
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Fig. 5. Training results of 30% of training data 
are replaced by random outliers 
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4: CONCLUSIONS 
 
In this paper, we have successfully proposed an 

M-estimator based robust RBF neural network with 
growing and pruning techniques to predict the noisy time 
series. The Welsch M-estimator and median scale 
estimator are employed to avoid the influence from the 
outliers. The concept of significance of a neuron is 
adopted to implement the growing and pruning 
techniques of network nodes. The results show that the 
proposed method not only eliminates the influence of the 
outliers but also dynamically adjusts the number of 
neurons to approach an appropriate size of the network. 
In the experiment of time series prediction, the proposed 
method results in the minimum prediction error than 
other methods. The experiment also shows that even the 
observations contain the outliers of 30 % this method still 
has a good performance. 
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