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ABSTRACT 
In the past, several papers discussed the access of 

individual object in R-tree, but rare mentioned how to 
access several objects simultaneously. In this paper, we 
propose a new operation, called spatial-migration, for 
R-tree. The function of this operation is to combine one 
group of objects into another group of objects 
according to a special relationship between the two 
groups of objects. That is, more than one spatial object 
in one R-tree is migrated to another R-tree at the same 
time. If objects are migrated one by one, several R-tree 
nodes may overflow or underflow repeatedly. The 
database performance may decrease because the R-tree 
may be reconstructed again and again. When many 
single-object insertions/deletions are replaced by a 
single multiple objects insertion/deletion, many 
redundant node-splits and/or MBR-adjustments can be 
omitted. When a node overflows due to the insertion of 
many objects, we once generate enough nodes to 
contain all the objects inserted into the node. Each node 
at most has only one node-split and/or MBR-adjustment. 
Therefore, the proposed spatial-migration operation 
can efficiently migrate objects between two R-trees 
without effecting database performance much. 
Keywords: Multiple objects access, Spatial-migration, 
R-tree 
 
 
1: Introduction 
 

Spatial databases have been more and more important 
in many applications such as Geographical Information 
System (GIS), Computer Aided Design (CAD), etc. 
Many dynamic indexes of spatial objects have been 
proposed for speeding up object search. In general, 
multi-dimensional data can be classified into two types: 
zero-size objects and non-zero-size objects. The K-D-B 
tree [11], proposed by Robinson, and the G-tree [8], 
proposed by Kumar, are index structures for zero-size 
objects. The Grid files [9], proposed by Nievergelt et al., 
and the Filter tree [14], proposed by Sevcik and koudas, 
are index structures for non-zero-size objects. A detailed 
survey on spatial objects access methods can be found 
in ”Multidimensional access methods” [3] where the 
R-tree family is the most popular one [1,2,4,5,6,7,12,13]. 
In the past, some papers for the R-tree were proposed to 
improve the access speed [2,4], to reduce dead space 
[13,14], or to improve storage utilization [1,7]. No paper 

mentioned how to access several objects simultaneously. 
In general, the R-tree inserts or deletes an object at a time. 
However, we may need to move several objects from a 
database B into another database A for some reasons. If 
each migration includes only one object, we should need 
much time to finish the job. The database performance 
will be influenced obviously because the corresponding 
R-trees of databases A and B also need to be 
reconstructed again and again.  

Suppose that there is a particular relationship, such as 
overlap, between the objects of databases A and B. 
Sometimes, some objects in database B must be migrated 
to database A because of the overlap relationship. For 
example, database A stores the data of community while 
database B stores the data of park. If a part has to be 
combined to a community which overlaps the park, then 
some objects in database B must be taken out to insert 
into database A. The traditional operation is to take out 
park objects from database B one by one and then to 
insert them into database A one by one. It should take 
much time to execute the operation of searching, 
inserting, and deleting objects repeatedly. Especially, 
node-split or MBR-adjustment may occur again and 
again in the R-tree for database A. Some leaf nodes in the 
R-tree for database B may underflow and all objects in 
these nodes must be reinserted. It makes the R-tree be 
reconstructed again and again. Hence, the database 
performance may decrease dramatically. To speed up the 
migration, we propose a new operation, called 
spatial-migration, for R-tree. The proposed operation 
can efficiently find and move the related objects from 
one R-tree into another R-tree. To erase unnecessary 
node-splits and/or MBR-adjustment, we in advance 
compute enough extra leaf nodes for the inserted objects. 
Each node in the R-tree at most has only one node-split 
or MBR-adjustment. 
 
2: Previous Work 
 
2.1: R-tree 
 

An R-tree [4] is a height-balanced tree similar to a 
B-tree with index records in the leaf nodes containing 
pointers to data objects. The B-tree stores 
one-dimensional data of character or number, while the 
R-tree keeps two (or more) -dimensional data of spatial 
objects. There is no order relationship between R-tree 
nodes. Each node is composed of several entries. Each 
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entry includes a minimal bound rectangle (MBR) and a 
pointer. The format of an entry in a leaf node is (I, 
obj-id). The I is an MBR and obj-id is a pointer to 
address a spatial object. The format of an entry in a 
non-leaf node is (I, child-pointer). As an MBR, the I 
covers all the rectangles of the lower node entries and 
the child-pointer is the address of a lower node. We 
assume that M is the maximum number of entries in one 
node and m is the minimum number of entries in a node. 
An R-tree satisfies the following properties. The root 
has at least two children unless it is also a leaf node. 
Each non-root node has the number of children between 
m and M. All leaves appear on the same level. 
 
2.2: Spatial Join 
 

The concept of spatial join has been applied to 
several access methods such as spatial-merge join [10]. 
Brinkhoff et. al. [2] proposed five methods with the 
depth-first search to perform spatial join for R-tree. 
Each node must be checked to determine whether it 
overlaps with other nodes or not. Therefore, the five 
methods accomplish only local optimization. Later, 
Hung et. al. [5,6] proposed the method Breadth-First 
R-tree Join (BFRJ) with the feature of global 
optimization for the optimization of memory, buffer 
management, and the order of overlap data within 
non-leaf nodes. BFRJ adopts the breadth-first search to 
traverse nodes from the top of two R-trees 
level-by-level to leaf nodes. BFRJ uses search pruning 
to reduce the number of node-pair checking. BFRJ also 
uses several tables, called intermediate join indexes (IJI), 
to save pairs of overlap nodes. Each entry in an IJI 
includes two fields to record two overlap nodes 
belonging to different R-trees. Search pruning is 
performed by using IJI to implement join computation. 
Thus, the number of node-pair checking is reduced. 

 
 
3: Spatial-migration operation 
 

In this section, we describe the spatial-migration 
operation how to migrate objects from the combined 
R-tree to the combining R-tree at the same time. Assume 
that there are two groups of spatial objects associated 
with the combining R-tree R and the combined R-tree S, 
as shown in Figures 1 and 2, respectively. Figure 3 
shows the overlap situation of the two groups of spatial 
objects. The spatial-migration operation is composed of 
two phases. The first phase is to find the related objects 
and the relevant leaf nodes in the two R-trees. Then, take 
out these related objects from S to insert into the relevant 
leaf nodes in R. The second phase is to delete these 
inserted objects from S. 
 
3.1: The first phase of spatial-migration 
operation 
 

We must first find the overlap objects that belong to 
R or S. With the concept of spatial-join [6], we can finish 

the above requirement without IJI tables. Instead, we use 
a queue, called Spatial Join Queue (SJQ), and a data 
structure, called Overlap Pair of Nodes (OPN), to save 
the overlap pair-nodes. SJQ is used to save OPN records. 
An OPN is composed of four fields. The parentR and 
parentS fields denote a pair of overlap parent nodes that 
belong to R and S, respectively. The childR and childS 
fields represent a pair of overlap child nodes or objects 
that belong to parentR and parentS, respectively.  

Our spatial-join action starts from the roots of the two 
R-trees with level-by-level to check whether each pair of 
nodes at each level overlaps or not. If two nodes have an 
overlap, they are stored as an OPN record to SJQ. Next 
the first OPN record in SJQ is taken to check whether the 
children of the two overlap nodes have an overlap or not. 
If yes, an OPN record for the overlap pair of children is 
stored to SJQ. A table called PATH is used to record each 
ancestor node (at each level) of each object (in R) which 
overlaps objects in S. These ancestor nodes can be 
referenced when node-split and/or MBR-adjustment 
propagate upward. Each row, called a branch, in PATH is 
composed of two fields. The field nodeP denotes a 
certain node of R which overlaps a certain node N in S. 
The field nodeC denotes a certain child node or object of 
nodeP which overlaps a child node or object of N. The 
process of fetching an OPN record, examining overlap 
nodes, producing new OPN records, and storing OPN 
records to SJQ is repeated until all related nodes of the 
two R-trees are checked. Figure 4 shows the results of 
SJQ and PATH after spatial-join. 

 
3.1.1: Delete the invalid OPN records in SJQ 
 

Now, several OPN records are stored in SJQ. 
However, some of these OPN records are invalid because 
of the following two cases. First, the same object may 
overlap different objects in different leaf nodes at the 
same time. The same object may be repeatedly inserted 
into different leaf nodes. Second, the same object may 
overlap different objects in the same leaf node at the 
same time. The same object may be repeatedly inserted 
into the same leaf node. Therefore, these invalid OPN 
records in SJQ must be erased. 

To erase the invalid OPN records in case 1, only one 
of the different leaf nodes must be determined. The 
determined leaf node is the one that contains an object 
which has the largest overlap area with the combined 
object. Resolve ties by choosing the one with fewer 
entries. The remaining OPN records in case 1 must be 
deleted after the determined leaf node is found. For 
example, object s9 overlaps object r11 in leaf node R4 
and object r17 in leaf node R6, respectively, as shown in 
Figure 4. We must decide that s9 should be inserted into 
R4 or R6. Since the overlap area of objects r17 and s9 is 
larger than that of objects r11 and s9, as shows in Figure 
3, the determined leaf node is R6. In level-3 SJQ of 
Figure 4, the 11th OPN record is retained while the 1st 
OPN record is deleted. To erase the invalid OPN records 
in case 2, all the OPN records, except one, must be 
deleted if these records have the same values of parentR 
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and childS. For example, the 2nd to 4th OPN records in 
Figure 4 indicate that object s4 will be inserted into leaf 
node R7 three times. Thus, only one OPN record is kept, 
others must be deleted. The same way is also applied to 
records 5th to 7th, records 8th to 12th. The final result of 
SJQ is show in Figure 5. 
 
3.1.2: Prepare enough leaf nodes for inserted objects 
 

It is possible to insert a lot of objects into one leaf 
node for the spatial-migration operation. The leaf node 
may split many times if many objects are inserted one by 
one. The more the number of node-split makes the less 
the performance of R-tree. To erase redundant 
node-splits, we prepare enough extra leaf nodes to 
contain the inserted objects at the same time. The number 
of prepared leaf nodes can be computed as follows. 
Suppose that the maximum number and the possession 
number of entries in a leaf node N are MR and MRC, 
respectively, in R-tree R while the number of objects to 
be inserted into N is MSC. There are two conditions can be 
considered. First, if  then all the 
M

SCRCR MMM +≥

SC can be inserted into N directly. No extra leaf node is 
needed. Second, if then one or more 
extra leaf nodes are needed. The number of enough leaf 
nodes is X=

SCRCR MMM +<

⎡ RSCRC MMM )( + ⎤ . According to the 
node-split technique [4], the MRC+MSC objects must be 
divided into X groups to distribute these objects to the X 
leaf nodes, respectively. These X leaf nodes later should 
be inserted into the parent node P of N. If P also 
overflows, the same idea is applied to P until one of P’s 
ancestors does not overflow. After node-split process, 
the MBR of the leaf nodes must be adjusted in its parent 
node and the adjustment must be propagated upward 
until the root. Figure 6 shows the final R-tree R after the 
insertion of the objects in R-tree S. 
 
3.2: The second phase of spatial-migration 
operation 
 

Finally, the related objects should be deleted from S 
after they are successfully inserted into R. If a leaf node 
in S is underflow, the remainder objects in this leaf node 
must be reinserted [4]. When many objects are deleted 
once, the number of underflow nodes and reinsertion 
times will increase. The corresponding R-tree needs to be 
reconstructed again and again. The deletion performance 
will be influenced obviously. The deletion of original 
R-tree [4] may not be suitable when deleting large 
number of objects once. We use a merge method to deal 
with the objects in underflow leaf nodes to achieve 
optimal results for reconstructing an R-tree. Composed 
of four steps, the merge method is described as follows. 

In the first step, we delete the corresponding objects 
in S according to the objects identified by the childS 
values from SJQ. In the second step, reset PATH and 
record the paths of all nodes and objects of S to PATH 
level-by-level. The third step is to reconstruct S for all 
the objects instead of reinserting the remainder objects. 

We assume that the number of all objects in S is Nro and 
the maximum number of entries of a leaf node in S is Ms. 
The least number of desired leaf nodes is Y= ⎡ ⎤sro MN . 
The objects in S must be divided into Y groups with the 
following strategy. Add an object to the group whose 
covering rectangle will have to be enlarged least to 
accommodate the object. Resolve ties by adding the 
object to the group with smaller area. The fourth step is to 
adjust node’s MBRs ascending from leaf nodes to the 
root.  

An example is illustrated as follows. First, we 
retrieve the records in SJQ to find that six objects, s4, s5, 
s9, s10, s11, and s12 should be deleted from S. After the 
deletion, we traverse S level-by-level to record all the 
branches of all the paths to all nodes and objects in S to 
PATH. The result is shown in Figure 7. Now, Nro is 3 
(objects s6, s7, and s8) and we need 
Y= ⎡ ⎤ ⎡ ⎤ 143 ==sro MN  leaf node to contain these 
objects. The objects s6, s7, and s8 are inserted into the 
same node as shown in Figure 8. Final, the R-tree S has 
only one node, the root, as shown in Figure 9. 
 
4: Conclusion 
 

In tradition, the data access operations of R-tree 
including search, insert, delete, and update, aim at a 
single object. For real applications, the user may need to 
process large number of objects simultaneously. It is 
necessary to develop a special operation to process 
several objects at the same time. This is the motivation 
for us to propose the spatial-migration operation to 
combine two groups of objects together. The 
spatial-migration operation has some characteristics as 
follows. The OPN structure can be extended dynamically 
to keep information for user's demands such as adding a 
field to record the overlap area value of two overlap 
objects. Traditional object insertion may lead to many 
times of node-splits and MBR-adjustments that decrease 
the database performance. We solve the problem by 
preparing enough extra leaf nodes to contain all inserted 
objects once. Each node has only one node split and/or 
MBR-adjustment. In general, a leaf node in R-tree may 
be unable to meet the minimum number of entries after 
some objects are deleted from that leaf node. All objects 
in an under-flow node must be reinserted. Reinsertion 
makes database performance degrade. Therefore, our 
method deletes all objects from related leaf nodes once. 
All objects in the R-tree are redistributed. Our method 
avoids the R-tree shorten after some objects are deleted 
from the R-tree but recover again after some objects are 
inserted into the R-tree. 
 
 
 
 
 
 
 
 
 

- 1135 -



References 
 
[1]  N. Beckmann, H.P., Kriegel, R. Schneider, B. Seeger, 

“The R*-tree: An Efficient and Robust Access Method 
for Points and Rectangles,” Proc. ACM SIGMOD Int. 
Conf. on Management of Data, Atlantic City, NJ, 
pp.322-331, 1990. 

[2] T. Brinkhoff, H.P., Kriegel and B. Seeger, “Efficient 
processing of spatial joins using R-trees,” in: Proc. ACM 
SIGMOD Int. Conf. on Management of Data, pp.237-246, 
1993. 

[3] V. Gaede and O. Gunther, “Multidimensional access 
methods,” ACM Computing Surveys, pp.170–231, 1997. 

[4] A. Guttman, “R-trees: a dynamic index structure for 
spatial searching,” in: Proceedings of the ACM SIGMOD, 
pp.47-57, 1984. 

[5]  Y.W. Hung, N. Jing, and E.A. Rundesteiner, “Spatial 
Joins Using R-trees: Breadth-First Traversal with Global 
Optimizations,” in: Proc. 23rd Int. Conf. on VLDB, 
pp.396-405, 1997. 

[6]  Y.W. Hung, N. Jing and E.A. Rundesteiner, “BFRJ: 
global optimization of spatial joins using R-trees,” Dept. 
of Computer Science, Worcester Polytechnic Institute, 
Tech. Report WPI-CS-TR-97-5, January, 1997. 

[7] P.W. Huang, P.L. Lin, H.Y. Lin, “Optimizing storage 
utilization in R-tree dynamic index structure for spatial 
databases,” Journal of Systems and Software of Elsevier 
Science, 55(3), pp.291-299, 2001. 

[8] A. Kumar, “G-tree: A new data structure for organizing 
multidimensional data,” IEEE Trans. Knowl. Data Eng. 
6(2), pp.341–347, 1994 

[9] J. Nievergelt, H. Hinterberger and K.C. Sevcik, “The grid 
file: An adaptable, symmetric multikey file structure,” 
ACM Trans. Database Syst. 9(1), pp.38–71, 1984. 

[10] J.M. Patel, and D.J. DeWitt, “Partition Based 
Spatial-Merge Join,” in: Proc. ACM SIGMOD Int. Conf. 
on Mangement of Data, pp.259-270, 1996. 

[11] J.T. Robinson, “The K-D-B-tree: A search structure for 
large multidimensional dynamic indexes,” In Proceedings 
of the ACM SIGMOD International Conference on 
Management of Data, pp.10–18, 1981. 

[12] N. Roussopoulos, D. Leifker, “Direct spatial search on 
pictorial databases using packed R-trees,” In: 
Proceedings of the ACM SIGMOD, pp.17-31, 1985. 

[13] T.Sellis, N. Roussopoulos, C. Faloutsos, “The R+-Tree: 
A Dynamic Index for Multi-Dimensional Objects,” Proc. 
13th Int. Conf. on Very Large Databases, Brighton, 
England, pp.507-518, 1987. 

[14] K. Sevcik and D N. Koudas, “Filter trees for managing 
spatial data over a range of size granularities,” In 
Proceedings of the 22th International Conference on Very 
Large Data Bases (Bombay), pp.16–27, 1996. 

- 1136 -



 
 

R1 R4

r11 R5 r13

r14

r12

R2 R7 r19
r18

r20

R3 r9

r10r8

R6

r15

r16r17

R1 R4

r11 R5 r13

r14

r12

R2 R7 r19
r18

r20

R3 r9

r10r8

R6

r15

r16r17

 
Figure 1(a) The spatial objects indexed by R-tree R. 
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Figure 2(a) The spatial objects indexed by R-tree S.
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Figure 1(b) The structure of R-tree R. 
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Figure 7 The PATH contents after deleting objects. 

 
S3S2S1

s8s7s6

Figure 8 The structure of R-tree S after deleting 

 

objects. 

s8s7s6
 

Figure 9 The final R-tree S after restruct ring S. u
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