
A Dynamic Visibility Inference Scheme
Based on New Spatial Knowledge Representations from Observer’s Perspective

Yeong-Ren Jean and Hsing-Pang Chang
Department of Computer Science and Information Management,

Providence University, Taichung, Taiwan, R.O.C.
yrjean@pu.edu.tw and garros@mail.ltu.edu.tw

ABSTRACT

In this article, we propose two new spatial knowledge
representations called OG-string and Visibility-string
for a dynamic environment seen from the observer’s
perspective. The OG-string preserves the objects’ VBSs
(Virtual Blocking Set) and can be used to determine
visibility of objects. Because of having the same VBS,
objects with the same begin-bound in ring-direction are
grouped together. As a result the size of OG-string also
can be reduced. The Visibility-string contains the
objects’ visibility information, and thus can cooperate
with OG-string to provide enough spatial information
for dynamic visibility inference. We also represent a
Dynamic Visibility Inference Scheme consisting of an
Initialization, an Addition and a Deletion Algorithm
based on the two new representations. The scheme
assist with visibility inference for a dynamic
environment where objects are added and deleted
frequently just like in a warehouse so that a mobile
robot’s path planning can be improved.

1: INTRODUCTIONS

In recent years, applications involving digital images
and multimedia are increasing in number day by day. To
make better use of these images, the spatial knowledge
representation that is used to describe the spatial
relations between objects in the images is being
innovated continually. One of the applications is the
visibility inference that the visibility of objects seen from
a point of view of an observer can be inferred. Just like a
robot viewing the goods from a point in a warehouse. In
the past, many methods to represent the spatial relations
between objects have been presented. Some are based on
a Cartesian coordinate system [1-6] and the basic
concept is to project the objects depicted in a picture
along x- and y-coordinates and to capture two strings to
represent the relative positions of objects in the x- and y-
axis. Alternatively, some are based on a polar coordinate
system [7-10] that projects all objects along radial and
angular coordinates. The ring- and sector-directions
associated with these coordinates used to create string
again representing relative positions of objects. In
polar coordinates, the PCOS-string [11] is found to be
particularly useful for visibility inference.

2: VISIBILITY INFERENCE BASED ON
PCOS-STRING

In this section, we discuss Huang’s [11] visibility
inference algorithm which uses a PCOS-string for
inferring the visibility of objects from the observer’s
perspective. Assume that there is an image with several
objects and we can trace two bounds for each object
along the ring-direction or sector-directions based on a
polar coordinate system [10]. In the ring-direction, each
of the two bounds is the point of tangency and both of
them are generated by concentric circles outward along
the ring-direction from the viewing point of an observer.
The point closer to the observer is called the begin-bound
while the farther point is called the end-bound. In the
sector-direction, the two bounds are determined by a
half-line that rotates in clockwise direction. The
begin-bound and end-bound are the first and second
point of tangency found for each object encountered
during a complete revolution. As we show in Figure 1,
br

T and er
T are the begin- and end-bound of OT in the

ring–direction and b s
T and e s

T are the begin- and
end-bound of OT in the sector–direction. Therefore the
spatial position of OT can be specified as (br

T , er
T , bs

T ,
es

T). If there are n objects in the picture then we can
generate a PCOS-string containing the spatial positions
of all n objects. The PCOS-string is of the form{O1(br

1 ,
er

1 , bs
1 , es

1), O2(br
2 , er

2 , bs
2 , es

2) …On(br
n , er

n , bs
n ,

e s
n)} with b r

1 ≤ b r
2 ≤…≤ b r

n . For example, the
PCOS-string for the picture of the Figure 2 is presented
as {O1(11, 66, 1, 3), O2(22, 55, 7, 8), O3(33, 77, 2, 5),
O4(44, 99, 9, 10), OT(88, 110, 4, 6)}.

To understand how the visibility inference algorithm

handles its task using a PCOS-string, we first introduce
some concepts about VBS (Virtual Blocking Set). It is
significant that each object in a PCOS-string is projected

br
T

er
T

es
T bs

T OT

Figure1. The spatial position of OT can
be specified as (br

T , er
T , bs

T , es
T).

Observer

- 1139 -

into the ring-direction and sector-direction and that there
are two projection intervals that can be found for each
object, one for ring-direction and one for sector-direction.
Of course, we can discover two projection intervals in
the ring-direction or sector-direction associated with two
nonzero sized objects and find out the spatial
relationships of the two intervals through the spatial
knowledge representation. There are 13 possible spatial
relationships [12] of the two objects in one direction
shown in Figure 3. All of the spatial relationships can be
represented by the seven spatial operators [5] whose
notations and semantics are given in Table 1. If and only
if the intersection of the above two projection intervals is
not empty, we say that the two intervals can be merged
in the sector-direction. Then, the interval {min(bs

1 , bs
2)

max(es
1 , es

2)} is called the connected projection interval
merged from the object O1 and the object O2 in the
sector-direction. A MCPI (Maximal Connected
Projection Interval) is an interval such that no other
projection intervals in the same direction can be merged
with it. The VBS (Virtual Blocking Set) for a given
object OT is the set of all MCPIs in the sector-direction
that were merged from the projection intervals along the
sector-direction for all objects preceding the object OT.
The arrangement of objects illustrated in Figure 2
provides a setting in which to determine an example of
VBS for the object OT. The VBS is the set of intervals
{(1,5)(7,8)(9,10)} and can determine the visibility of the
object OT.

The VBSs of all objects’ in the image can be

computed using the PCOS-string and can be used to

infer all objects’ visibility through a process that
compares every object’s projection interval in
sector-direction with its VBS, separately. Based on
those concepts, Huang proposed a visibility inference
algorithm [11] that can handle both static and dynamic
situations. However, the algorithm is complex because
every object’s VBS must be re-computed for dynamic
visibility inference.

Assume that there are n objects in a dynamic

environment and some object is added or deleted. Then a
DS (Derivative Scope) will be produced by a deleted
object or a DB (Derivative Blocking) produced by an
added object. As seen in Figure 4, if the object O2 is the
deleted/added object and then the DS/DB will be the
interval ([5,10]). In fact, the DS/DB is also the VS
(Viewed Scope) of the object. Moreover, some objects
may be viewed by the DS for deletion or some objects
may be obstructed by the DB for addition. An easy
explanation is as follows: objects preceding the object in
the ring-direction can be treated as the preceding objects,
and objects succeeding the object in the ring-direction
can be treated as the succeeding objects. If the object is
invisible as the object O3 in Figure 4 then we can say
that the preceding and succeeding objects won’t be
affected because the DS/DB of O3 is empty. If the object
is partly- or fully-visible such as object O6 in Figure 4,
we can say that preceding objects (O1, O2, O3, O4 and O5)
won’t be affected. And say that some succeeding
objects (O9, O10 and O11) won’t be affected because the
DS/DB won’t affect those objects’ visibility and some
other succeeding objects will be affected (O7 and O8)
because those objects can be viewed/obstructed by the
DS/DB.

A more efficient means of dynamic visibility
inference requires objects’ viewed state and visible
scope which forming our Visibility-string and objects’
VBSs which forming our OG-string. The OG-string and
Visibility-string facilitate inference of objects’ visibility
without re-computing and re-inferring wholly.

3: NEW SPATIAL KNOWLEDGE
REPRESENTATIONS

Two new spatial knowledge representations, called
OG-string and Visibility-string, can be used to speed up
the dynamic visibility inference. Assume that there are n
objects in the image field and they are grouped
according to their begin-bound in ring-direction.
Because of having the same VBS, objects with the same
begin-bound in ring-direction are grouped together. Thus,
their visibility can be determined by the VBS called
GVBS (Group’s Virtual Blocking Set). This kind of

Notations Conditions
A < B end(A) < begin(B)
A = B begin(A) = begin(B) , end(A) = end(B)
A | B end(A) = begin(B)
A % B begin(A) < begin(B) , end(A) > end(B)
A [B begin(A) = begin(B) , end(A) > end(B)
A] B begin(A) < begin(B) , end(A) = end(B)
A / B begin(A) < begin(B) < end(A) < end(B)
Table 1. The definitions of spatial operators.

O1
1

3

O3

2

5

OT
4 6

O2

7

8

O4 10

9

Observer
Figure 2. The VBS for OT is the set of {(1,5)(7,8)(9,10)}.

11
22

33

44

55

66

77

99

110

88

Figure 3. The 13 possible spatial relationships
between any two objects in one direction.

A
(1) A < B

B
A

(2) A | B

B

A
(3) A / B

B
A

(4) A] B

B

A
(5) A % B

B
A

(6) B [A

B

A
(7) A = B

B
A

(8) A [B

B

A
(9) B % A

B
A

(10) B] A

B
(11) B / A (12) B | A

(13) B < A

A
B B

A

B
A

- 1140 -

group can be formed as {Gj (Cj,Gbr
j ,GVBSj)}, where the

Gj is the jth group and the Cj is a counter to record how
many objects there are in the group Gj. The Gbr

j is equal
to each object’s begin-bounds in ring-direction in the jth
group. The GVBSj is equal to each object’s VBS in the
jth group. Then the OG-string can be formed as { G1 (C1,
Gbr

1 , GVBS1), G2 (C2, Gbr
2 , GVBS2) … Gj (Cj, Gbr

j ,
GVBSj) … Gm(Cm, Gbr

m, GVBSm) } with 1≤m≤n. If all n
objects have the same begin-bound in ring-direction,
m=1. If all n objects have different begin-bound in
ring-direction, m=n.

The Visibility-string contains the viewed state and
visible scope of all objects in the image field. It is of the
form {V1 (S1, VS1), V2 (S2, VS2) …Vi (Si, VSi) … Vn (Sn,
VSn) }, where the Vi is the visibility information of the
ith object. Si is the ith object’s viewed state. Each
object’s viewed state can be invisible (IV), partly-visible
(PV) or fully-visible (FV). The visible scope of the ith
object is VSi. If the Si is IV, VSi is equal to ø. If the Si is
PV then VSi is of the form ([p1], [p2] …[px]) for x visible
pieces where each piece is represented in the form
[begin-bound, end-bound]. Finally, the VSi is equal to
([bs

i , es
i]) if the Si is FV. For example, the object O5 in

Figure 4, has a visibility information V5(S5, VS5) given
by V5(PV,[4,5][10,11]).

Figure 4 provides an example of the OG-string and

Visibility-string for an entire field of objects. Objects O5
and O6 have the same begin-bound (44) in the
ring-direction and of course share the same GVBS
([0,4][5,10][17,19]) and thus they are grouped into the
same group G4(2,44,([0,4][5,10][17,19])). To compare
their projection intervals in sector-direction (O5=[3,11],
O6=[12,16]), traced from PCOS-string, with the sharing
GVBS respectively will produce their visibility
information {V5(PV,([4,5][10,11])), V6(FV,([12,16]))}.

4: A DYNAMIC VISIBILITY
INFERENCE SCHEME

The Dynamic Visibility Inference Scheme consists
of three primary algorithms; Initialization, Addition and
Deletion Algorithm, which use PCOS-string, OG-string
and Visibility-string to assist with dynamic visibility
inference. There are two primary situations, addition and
deletion, in the dynamic environment. For the Deletion
Algorithm, we define three Interval Difference
Operations, denoted by , and . They can be
used for two overlapping intervals to execute the
difference operation which compares a projection
interval with one of the pieces of the DS. Each operation
provides difference functionality and they are detailed in
Figure 5. Besides, an Interval Mergence Operation,
denoted by , is used for the Addition Algorithm. It
deals with the situations where two intervals are adjacent
or overlapping as seen in Figure 6. After the Mergence
Operation for two intervals, another interval is produced
by a combination of the two intervals.

O1

O6

O4

O5

4

1 3

9 12

Figure 4.
1. The OG-string is{G1(2,11,(ø)),G2(1,22([0,4][5,10])),

G3(1,33,([0,4][5,10])),G4(2,44,([0,4][5,10][17,19])) ,
G5(2,55,([0,11][12,16][17,19])),G6(3,66,([0,19]))}

2. The Visibility-string is{V1(FV,([0,4])),V2(FV,([5,10])),
V3(IV,(ø)),V4(FV,([17,19])), V5(PV,([4,5][10,11])),
V6(FV,([12,16])),V7(PV,([11,12])) ,V8(PV,([16,17]))
, V9(IV,(ø)) , V10(IV,(ø)) , V11(IV,(ø))}.

Observer

O7
O9

2 10 11

0

13

O2

5
8

G1 G3 G5 G6

11
11

33

44
44

55 66

G4

O3
22

6 7
O10

15

19

66

O8

66

14

16
O11

17
18

G2

55

Figure 5: The all possible cases of Interval Difference
Operations, denoted by , , and .

: The anterior piece of A non-overlap with B.
: The posterior piece of A non-overlap with B.
: The anterior and posterior piece(s) of A non-overlap with B.

Case 1
A
B

φ

Case 2
A
B

φ

Case 3
A
B

Case 4
A
B

φ

Case 5
A
B

φ

Case 6
A
B

φ

Case 7
A
B

φ

Case 8
A
B

φ

Case 9
A
B

φ

φ

φ

φ

φ

φ
φ

φ

φ

A B
A B
A B

A B
A B
A B

A B
A B
A B

A B
A B
A B

A B
A B
A B

A B
A B
A B

A B
A B
A B

A B
A B
A B

A B
A B
A B

Figure 6: The possible cases of Interval Mergence
Operation, denoted by .

: Combine two adjacent or overlapping Intervals.
Case 1
A
B

A B

Case 4
A
B

A B

Case 7
A
B

A B

Case 10
A
B

A B

Case 2
A
B

A B

Case 5
A
B

A B

Case 8
A
B

A B

Case 11
A
B

A B

Case 3
A
B

A B
Case 6
A
B

A B
Case 9
A
B

A B

- 1141 -

The previously described Visibility Inference
Algorithm, based on the PCOS-string, was intended to
infer given objects’ visibility and output a visibility list.
This algorithm will become the Initialization Algorithm
in our improved dynamic visibility inference scheme.
The task of the former algorithm was only to infer the
visibility of objects and output a visibility list. The task
of the new, modified, Initialization Algorithm is to
gather the visibility and VBS information for all objects
in the field and be able to output the OG-string and
Visibility-string for additions and deletions associated
with further dynamic change. The pseudo-code for the
Initialization Algorithm is shown in Figure 7. We also
use the I s

i to indicate the projection interval of the
object Oi in the sector-direction. The related subroutines
are shown in Figure 8 and are also used in the Deletion
Algorithm and Addition Algorithm too.

It is important that the Visibility-string stores not

only viewed state but also visible scope, denoted by S
and VS. This information is necessary for the Deletion
Algorithm. As pointed out above, VS is also a DS when
an object is deleted. As a result, in the case of dynamic
deletion, it is easy to determine whether an object’s
viewed state, S, is IV, PV or FV, and an object’s visible
scope, VS, is empty, one piece or several pieces.
Assume that the deleted object is the ith object and
resides in jth group in OG-string. If the Si is IV then
OG-string and Visibility-string can be immediately
refined without re-computing and re-inferring. It is only

necessary to remove the deleted object’s related
information from the original PCOS-string and
Visibility-string. Moreover, it is needed to remove Gj
from the original OG-string if the Cj equals to 1 or to
subtract 1 from the Cj if the Cj is greater than 1.

Figure 7. Initialization Algorithm.

Initialization Algorithm
Input:PCOS-string
Outputs:OG-string, Visibility-string
1. i = 0 , j = 0, M =φ , Gbr=φ , Visibility-string=φ ,

OG-string=φ
2. Find the next m objects { Oi+1, Oi+2 … Oi+m } with br

i +1 = br
i

+2 = … = br
i +m.

3. j++ , k = 1
4. GVBSj = M; Gj = [m, br

i +m , GVBSj]
5. OG-string= OG-string∪ Gj
6. while(k≤ m){

if there exists a MCPI∈GVBSj such that
(MCPI = Is

i +k) or (MCPI [Is
i +k) or

(MCPI] Is
i +k) or (MCPI % Is

i +k)
{

 Si+k = IV // Si is invisible.
} else if there exists a MCPI∈GVBSj such that
(MCPI / Is

i +k) or (Is
i +k / MCPI) or

(Is
i +k [MCPI) or (Is

i +k] MCPI) or
(Is

i +k % MCPI)
{

 Si+k = PV // Si is partly-visible.
} else {

 Si+k = FV // Si is fully-visible
}
VSi+k = AnalyzeObjectVisibleScope(Is

i +k , GVBSj)
V= Vi+k (Si+k , VSi+k)
Visibility-string= Visibility-string∪ V

M = AdjustGVBSbyMergence(Is
i +k , M)

k ++
 }
7. if (i + m == n){

Return the OG-string and Visibility-string
 }else{ i = i + m , GoTo 2 }

Subroutine: AnalyzeObjectVisibleScope (I, GVBS)
Inputs: I, GVBS
Output: VS
1. k=1, VS=φ , temp=I
2. y=the number of the MCPIs in GVBS
3. while(k ≤ y && temp ≠φ){

if(temp overlaps MCPIk){
VS = VS∪ (temp MCPIk)
temp =temp MCPIk

}
k ++

}
4. VS=VS∪ temp
5. return VS

Subroutine: AdjustGVBSbyMergence (I, GVBS)
Inputs: I, GVBS
Output: GVBSnew
1. temp = I, i = 1
2. y = the number of the MCPIs in the GVBS
3. while(i≤y){

if(temp ≠φ){
if there exists a spatial relationship such that (MCPIi < temp){

GVBSnew = GVBSnew∪MCPIi
}else if there exists a spatial relationship such that (temp < MCPIi){

GVBSnew= GVBSnew∪ temp ∪ MCPIi
temp =φ

}else{ temp = temp MCPIi }
}else{

GVBSnew= GVBSnew ∪ MCPIi
}
i ++

}
4. if(y ==0){ return (GVBSnew∪ temp) } else { return GVBSnew}

Subroutine: AdjustDSorDB (I, DS(or DB))
Inputs: I , DS(or DB)
Output: DSnew(or DBnew)
1. k = 1; DSnew =φ
2. z = The number of the derivative scope (or blocking) pieces.
3. while(k ≤ z){
 if(I overlaps pk) { pk = (pk I) }
 DSnew = DSnew∪ pk
 k++
 }
4. return DSnew

Subroutine: GetFirstObjectIndexInAdjustingArea (O,PCOS-string)
inputs: PCOS-string, O //The object can be specified as (br

T , er
T , bs

T , es
T).

output: i
1. i = 1, n = the number of PCOS-string
2. while(i≤n){

if(br
i > br

T){ break }
 i++

}
3. return i

Subroutine: GetFirstGroupIndexInAdjustingArea (O,OG-string)
inputs: OG-string, O //The object can be specified as (br

T , er
T , bs

T , es
T).

output: j
1. j = 1, m=the number of OG-string
2. while(j≤m){

 if(Gbr
j > br

T){ break }
 j++

}
3. return j

Subroutine: AdjustGVBS(DS , GVBS)
Inputs: DS , GVBS

Figure 8. Subroutines.

- 1142 -

On the other hand, if the status of the deleted object

Oi is PV or FV, it is also unnecessary to re-compute all
objects’ VBSs and re-infer all objects’ visibility
information. All objects reside in one of three areas, the
Anterior Area, the Adjusting Area or the Posterior Area.
Objects in the Anterior Area share a characteristic that
their begin-bounds are less than the begin-bound of
deleted object in ring-direction and it means that those
objects precede the deleted object in ring-direction.
Therefore, we can confirm that their VSs and VBSs are
not be effected by the DS. The objects that are in the
Adjusting Area share the feature that the objects’
visibility are affected by the DS because initially they
are partly or fully obstructed by the deleted object. But
now, they may partially or fully exposed by the DS.
Finally, if the DS is entirely obstructed by some object
along ring-direction, we can call the object a critical
object. It signifies that the affection of the DS
disappears due to the critical object. Objects following
the critical object will belong to the Posterior Area. In
the other words, the visibility of the objects in Anterior
Area and Posterior Area will not be affected. More
precisely, the Adjusting Area is the area where objects
succeed the deleted object and precede the critical
object. AS a result it is only necessary to re-compute the
VBSs and re-infer the visibility information of the
objects that belong to the Adjusting Area. Figure 9
illustrates what happens when the object O2 is deleted.

The Adjusting Area is denoted by the dotted region in
Figure 9 and includes the objects O3 and O4. The DS
([3,9]) is produced by the deletion of the object O2 and
disappears behind the critical object O4.

Without loss of generality, the DS may have several
pieces in sector-direction and each piece can be formed
as [begin-bound, end-bound]. The DS can be of the form
([p1][p2]…[pz]) if it contains z pieces. The Deletion
Algorithm is shown in Figure 10.

Just as a DS can be generated by a deleted object, a

DB can be generated by an added object. The DB can be
trace from a process that to compare the added object
projection interval of sector-direction with some GVBS.
The GVBS reside in one of the objects’ group in
OG-string that is the first group in the Adjusting Area or
the group and added object with the same begin-bound
in ring-direction. The process of visibility inference for
addition is similar to the process of visibility inference
for deletion and the Adjusting Area also can be found.
Moreover, each object’s VBS and visibility in the
Adjusting Area also can be re-computed and re-inferred.
The process will go on until the DB declines and
disappears or no more any projection interval can be
compared with DB along ring-direction. It should also
be noted that the DB are of the form ([p1][p2]…[pz]) if

4

1

3 7

O5
2 8 9

0

5
6

O3
O4

O2

O1

Figure 9. The Adjusting Area is denoted by

dotes and consists of object O3 and O4.

Observer

O7

O6
10

11
12

13

Deletion Algorithm
Inputs:PCOS-string , Visibility-string , OG-string , Od //Od is the

deleted object.
Outputs: PCOS-string , Visibility-string , OG-string
1. DS = VSd
2. if(Sd ≠ " IV "){

i = GetFirstObjectIndexInAdjustingArea(Od , PCOS-string)
g = j = GetFirstGroupIndexInAdjustingArea(Od , OG-string) -1
/* re-compute objects’ GVBSs and re-infer objects’ visibility

information in Adjusting Area */
while(i ≤ n and DS ≠φ){

if(Gb
r
j ≠ b

r
i){

j++
GVBSj = AdjustGVBS(DS, GVBSj)

}
if there exists a MCPI∈GVBSj such that
(MCPI = Is

i) or (MCPI [Is
i) or

(MCPI] Is
i) or (MCPI % Is

i)
{

Vi = (IV,φ) // invisible
} else if there exists a MCPI∈GVBSj such that
(MCPI / Is

i) or (Is
i / MCPI) or

(Is
i [MCPI) or (Is

i] MCPI) or
(Is

i % MCPI)
{

VSi=AnalyzeObjectVisibleScope(Is
i , GVBSj)

Vi = (PV , VSi) // partly-visible
} else {

Vi = (FV , Is
i) // fully-visible

}
if(Is

i overlaps DS){
DS = AdjustDSorDB (Is

i , DS) // Decline the DS.
}
i++

}
}
3. Delete the Od from PCOS-string and the Vd from Visibility-string.
4. if(Cg+1==1){ Delete the Gg+1 from OG-string }else{ Cg+1 -- }

5. Return PCOS-string, Visibility-string and OG-string

Figure 10. Deletion Algorithm.

Figure 8. Subroutines (continued).

Output: GVBS
1. i = 1, k =1, temp =φ , GVBSnew =φ , result =φ ;
2. y = The number of the MCPIs in the GVBS.
3. z = The number of the pieces in the DS.
4. while(i ≤ y){

if(MCPIi overlap p1){
temp = MCPIi
while(k ≤ z && temp≠φ){

if(temp overlaps pk){
result = result∪ (temp pk)
temp = temp pk

}
k++

}
result = result∪ temp
replace MCPIi with result

}
GVBSnew = GVBSnew∪MCPIi
i++

}
5. return GVBSnew

- 1143 -

there are z pieces. Each piece also can be formed as
[begin-bound, end-bound]. The Addition Algorithm is
presented in Figure 11.

5: CONCLUSION

A visibility inference mechanism with high
performance is essential for a dynamic environment
where objects are added or deleted frequently. In this
article, two new spatial representations are proposed
called OG-string and Visibility-string for all objects in a
dynamic environment seen from the observer’s

perspective. The OG-string contains the GVBSs of all
objects with the same begin-bound in ring-direction.
This grouping helps to reduce the size of OG-string.
Moreover, all objects’ visibility can be determined
through the OG-string. The Visibility-string contain all
objects’ visibility information and thus can cooperate
with the OG-string and PCOS-string to provide enough
spatial information including each object’s VBS,
visibility state, visible scope and projection interval for
dynamic visibility inference. We also propose a
Dynamic Visibility Inference Scheme consisting of
three algorithms based on PCOS-string, OG-string and
Visibility-string for the dynamic environment seen from
the observer’s perspective without the need to
re-compute and re-infer all objects’ VBSs and visibility
information. The dynamic visibility inference algorithm
provided by this scheme gives a robust and efficient
method to assist in guiding a mobile robot’s path as it
navigates through a changing warehouse environment.

6: REFERENCES

[1] S.K. Chang, Q.Y. Shi, and C.W. Yan, ‘‘Iconic indexing by

2-D strings,’’ IEEE Trans. Patt. Anal. Mach. Intell.,
PAMI-9, 413–428 (May 1987).

[2] S.Y. Lee, M.C. Yang, and J.W. Chaen, ‘‘2D B-string: a
spatial Knowledge Representation for Image Database
Systems,’’ proc. ICSC’92 Second Int. Computer Sci. Conf.,
pp. 609-615, 1992.

[3] E. Jungert, ‘‘Extended Symbolic Projection used in a
knowledge structure for spatial reasoning,’’ The 4th BPRA
Conference on Pattern Recognition. Springer V,
Cambridge, pp.343-351, 1988.

[4] S.K. Chang, E. Jungert and Y.Li, ‘‘Representation and
Retrieval of Symbolic Pictures using Generalized 2D
String,’’ Technical Report, University of Pittsburh, 1988.

[5] S.Y. Lee and F.J. Hsu, ‘‘2D C-string: A New Spatial
Knowledge Representation for Image Database Systems,’’
Pattern Recognition, vol. 23 no. 10, pp. 1077-1088, 1990.

[6] S.Y. Lee and F.J. Hsu, ‘‘Spatial Reasoning and Similarity
Retrieval of Images Using 2D C-string Knowledge
Representation,’’ Pattern Recognition, vol. 25, no. 3, pp.
305-318, 1992.

[7] G. Petraglia, M. Sebillo, M. Tucci, and G. Tortora,
‘‘Towards Normalized Iconic Indexing,’’ Proc. 1993 IEEE
Symp. Visual Language, pp. 392-394, 1993.

[8] G. Petraglia, M. Sebillo, M. Tucci, and G. Tortora,
‘‘Rotation-invariant Iconic Indexing for Image Database
Retrieval, Progress in Image Analysis and Processing III,’’
S. Impedovo, ed., pp. 271-278, World Scientific, 1994.

[9] G. Petraglia, M. Sebillo, M. Tucci, and G. Tortora, Senior
Member, ‘‘Virtual Images for Similarity Retrieval in
Image Databases,’’ IEEE Transactions Knowledge and
Data Engineering, vol. 13 no. 6, pp. 951-967, 2001.

[10] P.W. Huang and Y.R. Jean, ‘‘Spatial Reasoning and
Similarity Retrieval for Image Database Systems Based on
RS-string,’’ Pattern Recognition, vol. 29 no. 12, pp.
2103-2114, 1996.

[11] P. W. Huang, P. L. Lin, “Visibility Inference Based on
Spatial Knowledge Representation From Observer's
Perspective,” International Journal of Intelligent Systems,
Vol. 12, pp. 191-202, 1997.

[12] J.F. Allen, ‘‘Maintaining knowledge about temporal
intervals,’’ Commun. ACM, vol. 26 no. 11, 832–843, 1983.

Figure 11. Addition Algorithm.

Addition Algorithm
Inputs: PCOS-string , Visibility-string , OG-string and Oa //Oa is

the added object.
Outputs: PCOS-string , Visibility-string , OG-string
1. Gnew =φ
2. i = GetFirstObjectIndexInAdjustingArea (Oa , PCOS-string)
3. j = GetFirstGroupIndexInAdjustingArea (Oa , OG-string) -1

4. if(Gbr
j == br

a){

 Gr
j = (Cj + 1, Gbr

j , GVBSj)

 DB =VSa = AnalyzeObjectVisibleScope (Is
a , GVBSj)

}else{
Gbr

n ew = br
a

GVBSnew = GVBSj+1
Gnew = (1, Gbr

n ew, GVBSnew)
DB = VSa = AnalyzeObjectVisibleScope(Is

a , GVBSnew)
}

5. if (VSa == Is
a) { Sa = FV } // fully-visible

else if (VSa ==φ) { Sa = IV } // invisible
else { Sa = PV } // partly-visible

6. Va= (Sa, VSa)
7. if(Sa ≠ " IV "){
/* re-compute objects’ GVBSs and re-infer objects’ visibility
information in Adjusting Area */

while(i ≤ n && DB ≠φ){

 if(Gb
r
j ≠b

r
i){

 j++
GVBSj = AdjustGVBSbyMergence(Is

a , GVBSj)
}
if there exists a MCPI∈GVBSj such that
(MCPI = Is

i) or (MCPI [Is
i) or

(MCPI] Is
i) or (MCPI % Is

i)
{

Vi = (IV,φ) // invisible
} else if there exists a MCPI∈GVBSj such that
(MCPI / Is

i) or (Is
i / MCPI) or

(Is
i [MCPI) or (Is

i] MCPI)or
(Is

i % MCPI)
{

VSi = AnalyzeObjectVisibleScope (Is
i ,GVBSj)

Vi = (PV, VSi) // partly-visible
 } else {

Vi = (FV, Is
i) // fully-visible

 }
 if(Is

i overlaps DB){
DB = AdjustDSorDB (Is

i , DB) // Decline the DB
}
i++

}
}
8. Insert the Oa into PCOS-string and the Va into Visibility-string.
9.if (Gnew≠φ){ Insert Gnew into OG-string }

- 1144 -

