
Adaptive Proxy-Assisted Cache Scheme
for Multiple-version Video Transmission

Chi-Feng Kao^ and Chung-Nan Lee*
Department of Computer Science and Engineering, National Sun Yat-Sen University,

Kaohsiung, Taiwan, Republic of China
E-mail: m9034617@student.nsysu.edu.tw^ and cnlee@mail.cse.nsysu.edu.tw*

ABSTRACT

This work describes the process of efficiently
streaming a set of multiple-version videos from a remote
server via proxy to a variety of heterogeneous and
asynchronous clients that request different quality of the
video according to their profiles. The process focuses
on reducing transmission cost by caching the optimal
version of the video. A set of proxy-based delivery
schemes are proposed by integrating the proxy caching
with the reactive transmission schemes such as batching
or patching. The optimal proxy prefix cache allocation
is calculated for each transmission scheme to identify
cache length of all versions of each video to minimize
the aggregate transmission cost. As a result, it enhances
the quality of video transmission. Experimental results
demonstrate that for either the batching or patching
transmission scheme, the proposed cache scheme can
lead to significant transmission cost reduction.

1: INTRODUCTIONS

Streaming media services, including on-line
conferences, distance education and movie broadcasting,
have recently become popular on the Internet. However,
bridging the gap between rich multimedia contents and
diverse devices remains a challenge for researchers.
Rate-adaptive video should be provided in efficient
approaches to satisfy diverse client profiles and network
characteristics. Additionally, the high bandwidth
requirements and long-lived nature of digital video
complicate adaptation tasks. Scalable video technology
and video transcoding are both attractive and practical
approaches of adhering to such demand. To ensure
efficient delivery, proxy cache is generally deployed to
reduce the traffic between the content origin and the
proxies, and to decrease the transmission cost by
caching popular videos at a proxy. In addition, the
reactive transmission scheme is another approach to
reduce transmission cost. How to integrate these
approaches to provide efficient video transmission
motivates us to develop this work, which considers the
problem of efficiently streaming a set of rate-adaptive
videos from a remote server via a proxy by caching the
optimal version of each video and using reactive
transmission schemes to multiple asynchronous and

diverse clients, enabling them to experience playback
with a minimum transmission cost.

For reactive transmission schemes, some previous
works [2]-[6][18], have focused on employing multicast
or broadcast connections to transmit a popular video to
multiple asynchronous clients, thus reducing the server
load and required network bandwidth. Each scheme has
a server only to transmit the on-demand video, when
client requests arriving, e.g., batching, patching and
stream merging. For the batching transmission scheme
[2], those requests arriving close together are batched in
time, and then the server multicasts the stream to clients
who make the requests. For the patching or stream
tapping scheme [3]-[5], the server initializes the entire
video transmission sequentially for the first client, while
later clients that obtain their future playback data by
joining an ongoing multicast stream of the same video,
with the clients only receiving the missing prefix via a
separate unicast stream. For stream merging [6], all
streams (prefix and complete) are delivered via
multicast, and clients can join an earlier multicast
stream. Eager et al. [18] analyzed the minimum required
server bandwidth for any delivery technique that
provides immediate real-time delivery to clients
increases logarithmically as a function of the client
request arrival rate, and proposed a delivery technique,
called hierarchical multicast stream merging (HMSM),
which has a required server bandwidth that is
reasonably close to the minimum achievable required
server bandwidth over a wide range of client request
rates.

To enable efficient delivery, a proxy cache is
typically deployed to lower the traffic between the
content origin and the proxies, and to decrease the
latency perceived by a user through caching popular
objects at a proxy. Caching streaming media is more of
a challenge than caching simple web objects, since
streaming media has a larger object size. When
considering video caching rather than web caching, the
video objects may be partially cached onto the proxies,
such as video staging [7], [8], prefix caching [9] and
selective frame caching [10]. Verscheure et al. [11]
studied partial caching based on server scheduling.
Zhang et al. [12] considered some video prefetching
algorithms in which popular video objects are
prefetched onto the proxies to reduce the WAN traffic.

- 1217 -

mailto:m9034617@student.nsysu.edu.tw
mailto:cnlee@mail.cse.nsysu.edu.tw*

IP Network

Transcoding Proxy

RTP / RTSP Client Module

RTP / RTSP Server Module

Transcoder
Cache System

Transmission Scheme
Module

RTP / RTSP Server

Server

RTP / RTSP Client

RTP / RTSP Client

RTP / RTSP Client

32 kbps

64 kbps

128 kbps

Smart
Phone

PDA

Notebook

IP Network

Fig. 1. Streaming multiple-version videos on the Internet: multiple-version video streams from a remote server are
transmitted to a variety of clients. The proxies located close to the clients perform prefix caching based on the client
profile.

Lee et al. [13] adopted video summaries to cache the
media stream. Rejaie et al. [14] developed a layered
video caching mechanism to maximize the quality of
popular streams delivered to interested clients. Ma et al.
[15] designed a progressive video caching policy, in
which each video is cached at several levels according
to cached data sizes and required WAN bandwidths.
Kangasharju et al. [22] proposed some heuristics to
determine which videos and which layers in the videos
should be cached in order to maximize the revenue from
the streaming service. However, most existing
investigations have concentrated on unicast delivery of
an individual stream to each client without considering
the impact of the transmission scheme on the cache
efficiency.

Tang et al. [20] combined caching with the
transcoding of streaming objects. Algorithm FVO (Full
Version Only) caches only the full, original version and
serves requests to lower versions with transcoding.
However, the transcoded objects are not cached. TVO
(Transcoded Version Only) always caches the
transcoded objects, and if a request does not yield an
exact hit, the full version is fetched from the origin to
generate a transcoded version. Shen et al. [19],
developed a transcoding-enabled caching (TeC) system
that performs transcoding and caching for multimedia
efficient delivery to heterogeneous network users.
However, the TeC strategy fails to make optimal cache
replacement decisions, and uses only the least recently
used (LRU), as the replacement policy.

Although Eager et al. [16], and Sen et al. [17]
combined caching with transmission schemes, they
focused on utilizing nonreactive schemes such as
periodic broadcast. Ramesh et al. [21] combines caching
with video transmission on networks with end-to-end
multicast/broadcast capability. Wang et al. [1] explored
the combination of proxy prefix caching and reactive
transmission to reduce the transmission cost of multiple
heterogeneous videos, which is most relevant to this
work. However, in [1], only the transmission scheme
and proxy caching for a single version of the video was

considered, the multiple-version videos as well as the
transcoding-enabled proxy are yet to be explored.

This work to our knowledge is the first work to
combine proxy prefix caching and reactive transmission
schemes for multiple-version videos to determine the
optimal version to be cached, the most appropriate
prefix cache length and the best batch/patch threshold
for a given transmission scheme.

The remainder of this paper is organized as follows.
Section 2 introduces the proposed system environment
and parameter definitions. Section 3 then presents the
proposed optimal proxy prefix caching. Next, Section 4
introduces a set of proxy-assisted reactive transmission
schemes for multiple-version videos. Performance
analysis is presented in Section 5 and, finally,
conclusions are drawn in Section 6.

2: SYSTEM ENVIRONMENT AND

PARAMETER DEFINITION

Figure 1 shows the system environment consisting
of a variety of clients receiving videos streamed across
the Internet from a server via a proxy. Clients receive
different versions of the video based on their
capabilities, such as storage capacity, rendering power
and network bandwidth. The proxy determines which
version and prefix length of each video should be
cached to achieve the maximum benefit. The proxy
intercepts the client request. If a prefix of version of
the requested videos is already stored at the proxy, then
the proxy streams the prefix directly to the client. If the
complete video is not stored at the proxy, then the proxy
informs the server to transmit the suffix of the video,
and relays the incoming data to the client. The server
has the video with multiple versions, and higher
versions can be transcoded into lower versions. The
proxy can transcode a higher version into a lower
version to meet the clients’ requirements. Thus, the
proxy only cache one version of a video to achieve
better cache efficiency.

- 1218 -

This work employs a single server and a single
proxy to verify the proposed schemes, which can be
directly applied to multiple-proxy content distribution
networks where the server adopts unicast connections to
the proxies. Each proxy serves a group of clients which
do not overlap, and the proxies do not interact with each
other.

Table 1 lists the key parameters used in analysis and
simulation.

Table 1
Analysis and Simulation Parameters

Parameters Definition
N Number of videos
Li Length of video i (sec)
li Cached length of video i (sec)
bi,j Bit rate of version j of video i (kbps)
u Caching grain (kbits)
ni,j Size of version j of video i (units)
fi Access probability of video i
pj Access probability of version j
λi,j Access rate of version j of video i
λ Aggregate request arrival rate
S Proxy cache size (units)
vi Cached version of video i
cs Transmission cost on server-proxy path

(per bit)
cp Transmission cost on proxy-client path

(per bit)
Ci(vi, li) Transmission cost per unit time for all

versions of video i when a length li
seconds prefix of version vi of video i is
already cached at the proxy

Assume that a server has a repository of N
constant-bit-rate (CBR) videos as in [1]. Each video has
R versions. The higher versions can be transcoded into
lower versions. Additionally, suppose that the access
probabilities of each version of all videos and the
aggregate access rate to the video repository are known
as a priori. These parameters can be obtained by
monitoring a real system. Let fi denote the access
probability of video i, , which is a measure of

the relative popularity of a video. Let p

∑
=

=
N

i
if

1

1

j denote the
access probability of version j, , which is

dependent on the client device distribution (e.g.
notebooks tend to request higher versions with better
quality, while PDA tends to request lower versions).
The access probability of version j of video i is

1
1

=∑
=

R

j
jp

ji pf × .
Let

ji,λ denote the access rate of version j of video i,
and λ represent the aggregate access rate to the video
repository. Thus,

ji ,λ = .1 ,1 , RjNipf ji ≤≤≤≤××λ
The smallest unit of cache allocation is a caching

grain of size u kbits, and all allocations are set to
multiples of this unit. The size of video i and the proxy
cache size is a multiple of a caching grain. Assume that
version j of video i has playback bandwidth bi,j kbps.
Version j of video i has size ni,j units and length Li

seconds, and
ijiji Lbun ,, = . Assume that the proxy can

store S units, also is S×u kbits. The storage vector Sv =
(l1,l2,…, lN) specifies that a length li seconds prefix of
video i is cached at the proxy, i=1,2,…,N. The version
vector Vv = (v1,v2,…,vN) specifies the cached version vi
of video i, i=1,2,…,N. Notably, the videos cached at the
proxy cannot exceed the storage capacity of the proxy,
that is, , where denotes the bit rate of

the cached version v

∑
=

≤
N

i
vii Subl

i
1

, ivib ,

i of video i. Let cs and cp
respectively represent the transmission costs of one bit
of video data on the server-proxy path and the
proxy-client path. The objective is to develop
appropriate transmission and caching schemes that
minimize the mean transmission cost per unit time
aggregated over all versions of the videos in the
repository, that is , where C∑

=

N

i
iii lvC

1
),(i(vi, li) denotes

the transmission cost per unit time for all versions of
video i when a length li seconds prefix of version vi of
video i is already cached at the proxy.

On receiving a client request for a version of a video,
the proxy determines a transmission schedule based on
the transmission scheme utilized. The transmission
scheme determines when and on what transmission
channel the proxy transmits the video. The proxy also
requests the suffix from the server, and transmits a
reception schedule from the proxy to the client, when
and from which transmission channel the client should
receive the data. Significantly, a client may have to
receive data from multiple transmission channels
simultaneously. Frames received ahead of their
playback times are stored in a client buffer. Finally, the
server only needs to transmit a suffix of the video
requested by the proxy via a unicast connection. Hence,
the proposed delivery techniques can be applied to
unicast-based media servers.

3: OPTIMAL PROXY PREFIX CACHE

ALLOCATION

This section presents a general approach to calculate
the optimal proxy prefix cache allocation for a
proxy-assisted multiple-version video transmission
scheme. For a given transmission scheme, the average
transmission cost per unit time for all versions of video i,

, is a function of the length l),(iii lvC i seconds prefix of
version vi of video i already cached at the proxy, where
0≤ li ≤ Li. The total length of video i is Li seconds, and
the highest version R of video i has size ni,R units. Let

}0|{ ,Riiii nmmA ≤≤= denote the set of possible prefixes
of video i, where mi is the size, and miu/bi,k is the length
in seconds of a possible prefix of version k of video i,

ikii Lu/bmRk ≤≤≤ , ,1 . Let saving(mi) denote the maximal
saving in transmission cost from caching an mi-unit
prefix of video i than caching no prefix of the video at
the proxy. The transmission cost of video i when

- 1219 -

caching no prefix of video i is . Given m)00(,Ci i units to
cache the video i, the optimal version of video i must be
determined to be cached to maximize the transmission
cost saving (saving(mi)) over all versions of video i.

.L
b

um subject to

,
b

umkC,Cmsaving

i
ki

i

ki

i
iiRki

≤
×

×
−=

≤≤

,

,
1

)},()00({max)(

Based on the above equations, the optimal version vi of
video i can be found to be cached to maximize the
saving, given mi units to cache the video i. Next, the
purpose is to maximize the aggregate savings, i.e.,
minimize the aggregate transmission cost over all
versions of videos. The optimization problem can
therefore be formulated as
maximize : , subject to , ∑

=

N

i
imsaving

1
)(i

N

i
ii AmSm∑

=

∈≤
1

,

where the size of the proxy is S units. The dynamic
programming algorithm is then adopted to find the
optimal allocation. Let M=(Ix,y) be a two-dimensional
matrix, where entry Ix,y represents the maximum saving
in transmission cost for the first x videos in a proxy
cache of size y, and has the following form:

⎩
⎨
⎧

=

>+
= ∈∀

0, 0

0)},({max 1

x

xmsavingI
I i,y-mx-Am

x,y
i

ii

This matrix is filled in row order from I0,y, y = 0,…,S.
The value IN,S denotes the maximum saving in
transmission cost when all N videos have been
considered. The minimum transmission cost is given by

, since the saving is relative to caching

nothing at the proxy. The optimal cache allocation can
be determined as follows. For each entry, store a pointer
to an entry from which this current entry is computed.
The optimal allocation is obtained by tracking the
pointers back from the entry I

∑
=

−
N

i
SNi IC

1
,)0,0(

N,S.

4: PROXY-ASSISTED
MULTIPLE-VERSION VIDEO
TRANSMISSION SCHEMES

This section presents the optimal proxy prefix caching
for a given reactive multiple-version video transmission
scheme. For each scheme, a closed-form expression for
the transmission cost Ci(vi,li) associated with video i is
derived, when a length li seconds prefix of version vi of
video i is already cached, Ni ≤≤1 .

The transmission cost Ci(vi,li) is employed to
determine the proxy prefix cache allocation for each
video that minimizes the aggregate transmission cost.
These transmission schemes are general and applicable
to any client arrival process. A Poisson arrival process,
which is a conservative assumption for reactive schemes
[18], is adopted to estimate the transmission costs.
Wang et al. [1] proposed three schemes:

(1)SBatch utilizes the video prefix cached at the proxy,
so that multiple requests share a single
server-to-proxy transmission to save transmission
costs.

(2)UPatch employs patching for the suffix.
(3)MPatch exploits prefix caching at the proxy under a

multicast-enabled proxy-to-client environment.
Though these schemes perform well for the single
version video, the multiple-version videos and
heterogeneous clients have not been considered.
Therefore, new schemes are proposed for
multiple-version videos transmission. In this work, the
server-to-proxy path and proxy-to-client path are only
unicast-enabled, the multicast-enabled proxy-to-client
path is not considered since the transmission bottleneck
is mainly from the WAN (Server-to-proxy path).
However, it is expected that if proxy-to-client is
multicast-enabled, the transmission cost can be reduced.
In addition, we assume that clients always request
playback from the beginning of a video, as in [1].

4.1 Version-dominated Batching (VBatch)

VBatch is proposed for multiple-version video
transmission. Suppose that the first request for version k
(k ≤ vi) of video i arrives at time 0. The length li seconds
prefix of version vi of video i is already cached at the
proxy. For these requests arrive in time (0,li] and
requested versions are equal to or lower than the cached
version vi, the proxy immediately start transcoding the
cached version into these requested versions and
transmitting the prefix of requested versions of video i
to the clients as illustrated in Fig. 2. VBatch schedules
the transmission of the suffix of version vi from the
server to the proxy as late as possible, just in time to
guarantee continuous playback for the clients. That is,
the first frame of the suffix of version vi is scheduled to
reach the proxy a little earlier than time li, which is the
length of the prefix of version vi. Then, the proxy
transcoding the version vi suffix into these requested
versions and simply forwards these suffixes of
requested versions (of length Li-li) to these requested
clients, and no new suffix transmission is required from
the server. Multiple requests for the suffix of video i are
thus batched together. Note that though the first
requested version is k (k ≤ vi), the version vi suffix,
rather than version k, is transmitted from server to
proxy, since version vi can be transcoded into version k
and can be shared by later requests for equal to or lower
than version vi. Thus, the average transmission cost per
unit time for delivering version k (k ≤ vi) of video i,
based on a Poisson arrival process, is given by

∑∑
∑ ==

=

+×
+

−
=

ii

i

i

v

k
kikiip

v

k
kiv

k
kii

viiis
iii bLc

l

blLc
lvt

1
,,

1
,

1
,

,

1

)(
),(1cos λλ

λ

If requested version k is higher than the cached version
vi, the proxy must immediately request an entire version
k of video i from the server to proxy, and the
transmission cannot be shared. In this case, the

- 1220 -

transmission cost per unit time for delivering version
k(k>vi) of video i is formulated as follows.

∑
+=

+=
R

vk
kikiipsiii

i

bLcclvt
1

,,)(),(2cos λ

In summary, when the length li seconds prefix of
version vi of video i is already cached at the proxy, the
transmission cost per unit time for all versions of video i
is formulated as follows.
Ci(vi,li) = + .),(1cos iii lvt),(2cos iii lvt

Fig. 2. Version-dominated batching with prefix caching
(VBatch)

4.2 Version-dominated Patching(VPatch)

This section presents a VPatch scheme that utilizes
patching for multiple-version video transmission.
Suppose that the first request for version k (k ≤ vi) of
video i arrives at time 0, the length li seconds prefix of
version vi of video i is already cached at the proxy, and
the version vi suffix reaches the proxy from the server a
little earlier than time li,as illustrated in Fig. 3. For these
requests arrive in time (0, li] and requested versions are
equal to or lower than the cached version vi, the
transmission scheme is the same as VBatch scheme. In
another case, suppose that later request for version k (k
≤ vi) of video i occurs at time t2, li<t2<Li. The proxy can
schedule a transmission of the complete suffix of
version vi at time t2+li from the server. Alternatively, a
patch of [li, t2) of the version k suffix can be scheduled
from the server, since segment [t2, Li] of version vi has
already been scheduled to be transmitted and can be
transcoded to meet the version k (k ≤ vi) request. The
decision to transmit a complete suffix or a patch
depends on a suffix threshold Gi, measured from the
beginning of the suffix. If one request for version k (k ≤
vi) arrives within Gi from when the nearest complete
transmission of the version vi suffix was started, then
the proxy schedules a version k patch from the server
for the version k request. Otherwise, a complete
transmission of the version vi suffix is started. The
suffix threshold Gi is chosen to minimize the
transmission cost. Assuming a Poisson arrival process,
the average transmission cost per unit time for
delivering version k (k ≤ vi) of video i is given by

kii

v

k
kip

v

k
ki

ii

v

k
ki

viii

v

k

kiiki

siii

bLc

Gl

blL
bG

clvt

i

i

i

i

i

,
1

,

1
,

1
,

,
1

,
2

,

)
)(1

)(
2(),(3cos

∑

∑
∑

∑

=

=

=

=

+

×
++

−+
=

λ

λ
λ

λ

,
where the average patch length for the request arriving
in time (li, li+Gi] is Gi/2 based on a Poisson arrival
process and the number of requests for version k within
Gi is . Thus, the total patch bits for version k per

unit time is

iki G,λ

2
,

2
, kiiki bGλ .

If requested version k is higher than the cached
version vi, the proxy must immediately request an entire
version k of video i from the server to proxy, and the
transmission cannot be shared. In this case, the
transmission cost per unit time for delivering version
k(k>vi) of video i is the same as cost2i(vi,li).

In summary, when the length li seconds prefix of
version vi of video i is already cached at the proxy, the
transmission cost per unit time for all versions of video i
is formulated as follows.
Ci(vi,li) = + .),(3cos iii lvt),(2cos iii lvt

Fig. 3. Version-dominated patching with prefix caching
(VPatch)

5: PERFORMANCE EVALUATION

This section presents the performance evaluation for
the above caching and transmission schemes, which was
based on a repository of 100 CBR video clips whose
popularity followed a Zipf distribution with a skew
factor α of 0.271 [2]. In the multiple-version case, all
videos were assumed to be two hours long with five
versions. The bit rate of version 1 was 32kbps, version 2
was 64kbps, version 3 was 128kbps, version 4 was
256kbps and version 5 was 512kbps. Let cs=1 and cp=0,
the transmission cost is the required server bandwidth
per second. The default cache capacity of the proxy was
assumed to be 20% of total sizes of all 32kbps versions
of all videos. The caching grain was set to three minutes
of 32kbps video version.

- 1221 -

5.1 The Impact of Access Patterns

This set of experiments examined the performance

of transmission schemes in various access patterns. The
access to different versions is modeled as follows. As in
Shen et al. [19], assume that the accesses to different
versions of the videos follow a normal distribution with
mean m, where version m denotes the dominant version.
The access probability of a version x is

,
2
1)(

22 2/)(σ

σπ
mxexp −−=

where m and σ2 represent the mean and variance,
respectively, of how the versions are accessed. When σ
is small, most of the accesses tend to be one version (m).
When σ is large, the accesses are evenly distributed
among the different versions. The access model
examines the concentration level of access versions for
the impact of transmission performance. In this
experiment, m = 2 (i.e. the version 3(128kbps) is the
dominant version when σ is small).

Figure 4 depicts the required server bandwidth of
transmission schemes under different access patterns
when the arrival rate λ is 100 requests/min. Clearly, the
patch-based schemes have lower required bandwidth
than the batch-based ones. For instance, when the value
of σ = 1.4, the required bandwidth of VPatch, and
VBatch are 19.3%, and 65.2%, respectively, of the
original bandwidth that, in the following, called as
“original bandwidth”. When the value of σ = 1.4, the
VBatch and VPatch schemes require 167.32MB/s and
49.62 MB/s bandwidth. Notably, as the value of σ rises,
the accesses become more evenly distributed among
different versions, and required server bandwidth
increases, since the limited cache space can not
accommodate all popular objects when the accesses are
dispersed. As the value of σ rises, the required
bandwidth of batch-based schemes increases more than
that of patch-based schemes. This is because that the
patch-based schemes can dynamically tune up the
threshold G according to access patterns to minimize the
required server bandwidth.

0

50

100

150

200

250

300

0.2 0.4 0.6 0.8 1 1.2 1.4

R
eq

ui
re

d
se

rv
er

 b
an

dw
id

th
(M

B
/s

)

VBatch
VPatch
Original

Fig. 4. Required server bandwith versus access pattern
when λ=100/min.

5.2 The Impact of Proxy Cache Size

Figure 5 depicts the required server bandwidth of
transmission schemes under various cache sizes when λ
= 100 requests/min, and the value of σ is set to be 1.4.
The required bandwidth of patch-based schemes is
clearly lower than that of batch-based schemes over all
the range of proxy cache sizes. The patch-based
schemes can save much bandwidth even if the cache
size is very small. For example, when cache size = 10%
of total sizes of all minimal versions, the VPatch
scheme only needs 20% of the original bandwidth. The
required bandwidth reduction is significantly less for the
patch-based schemes than that of the batch-based
schemes as the cache size increases. Thus, increasing
cache size is more beneficial when adopting the
batch-based transmission schemes. For instance, when
cache size = 10% of total sizes of all minimal versions,
the VBatch scheme needs 77.1% of original bandwidth.
However, when cache size = 90% of total sizes of all
minimal versions, it only needs 33.1% of original
bandwidth.

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90
Proxy cache size

(% of total sizes of all minimal versions)

R
eq

ui
re

d
se

rv
er

 b
an

dw
id

th
(M

B
/s

)

VBatch

VPatch

Original

Fig. 5. Required server bandwidth versus proxy cache
size when λ=100/min.

5.3 The Impact of Arrival Rate

Figure 6 illustrates the required server bandwidth of
transmission schemes as the arrival rate increases from
10 to 100 requests/min where the cache size is 20% of
total size of all minimal versions and the value of σ is
set to be 1.4. Comparing patch-based schemes with
batch-based schemes, the gap significantly increases as
the arrival rate rises. When the arrival rate is 10
request/min, the VPatch scheme needs 65.1% of
required bandwidth of VBatch. When the arrival rate is
100 requests/min, the required bandwidth of the VPatch
scheme becomes 29.6% of that of VBatch, respectively.
This finding clearly demonstrates that using patch-based
schemes can produce more bandwidth savings than
batch-based schemes as the arrival rate increases.

σ

- 1222 -

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100
Arrival rate(per minute)

R
eq

ui
re

d
se

rv
er

 b
an

dw
id

th
(M

B
/s

)
VBatch
VPatch
Original

Fig. 6. Required sever bandwidth versus arrival rate.

6: CONCLUSIONS

This work has proposed an approach for determining
an optimal proxy prefix cache allocation for
multiple-version videos that minimizes the required
server bandwidth for a given transmission scheme. Two
transmission schemes: the version-dominated batching
scheme, and the version-dominated patching scheme are
proposed. Experimental results demonstrate that, an
adaptive proxy-assisted transmission scheme can result
in significant required server bandwidth reduction. We
expect such schemes to provide higher reception quality
(more detailed versions) at the client side than without
schemes, due to lower server bandwidth requirements.
In other words, given the same bandwidth constraints,
the proposed schemes can provide better viewing
quality. In the future we will study the cache scheme for
layered video.

REFERENCES
[1] B. Wang, S. Sen, M. Adler, and D. Towsley, “Optimal

proxy cache allocation for efficient streaming media
distribution,” IEEE Trans. Multimedia, vol. 6, no. 2, pp.
366-374, Apr. 2004.

[2] C. Aggarwal, J. Wolf, and P. Yu, “On optimal batching
policies for video-on-demand storage servers,” in Proc.
IEEE Int. Conf. Multimedia Computing and Systems, pp.
253–258, June 1996.

[3] S. Carter and D. Long, “Improving video-on-demand
server efficiency through stream tapping,” in Proc. Int.
Conf. Computer Communications and Networks, Las
Vegas, NV, 1997.

[4] L. Gao and D. Towsley, “Threshold-based multicast for
continuous media delivery,” IEEE Trans. Multimedia, vol.
3, no. 4, pp. 405–414, Dec. 2001.

[5] K. Hua, Y. Cai, and S. Sheu, “Patching: a multicast
technique for true video-on-demand services,” in Proc.
ACM Multimedia, Sept. 1998, pp. 191–200.

[6] D. Eager, M. Vernon, and J. Zahorjan, “Optimal and
efficient merging schedules for video-on-demand
servers,” in Proc. ACM Multimedia, Nov. 1999, pp.
199–202.

[7] W. Ma and D. H. C. Du, “Reducing bandwidth
requirement for delivering video over wide area networks
with proxy server,” IEEE Trans. Multimedia, vol. 4, no. 4,
pp. 539–550, Dec. 2002.

[8] Y. Wang, Z.-L. Zhang, D. H. C. Du, and D. Su, “A
network-conscious approach to end-to-end video delivery
over wide area networks using proxy servers,” in Proc.
IEEE INFOCOM, San Francisco, CA, vol. 2, pp. 660-667,
Apr. 1998.

[9] S. Sen, J. Rexford, and D. Towsley, “Proxy prefix caching
for multimedia streams,” in Proc. IEEE INFOCOM, New
York, Mar. 1999, pp. 1310–1319.

[10] Z. Miao and A. Ortega, “Scalable proxy caching of video
under storage constraints,” IEEE J. Select. Areas
Commun., vol. 20, no. 7, pp. 1315–1327, Sept. 2002.

[11] O. Verscheure, C. Venkatramani, P. Frossard, and L.
Amini, “Joint server scheduling and proxy caching for
video delivery,” Computer Communications, vol. 25, no.
4, pp. 413–423, Mar. 2002.

[12] Z.-L. Zhang, Y. Wang, D. H. C. Du, and D. Su, “Video
staging: A proxyserver-based approach to end-to-end
video delivery over wide-area networks,” IEEE/ACM
Trans. Networking, vol. 8, no. 4, pp. 429–442, Aug.
2000.

[13] S.-J. Lee, W.-Y. Ma, and B. Shen, “An interactive video
delivery and caching system using video
summarization,” Computer Communications, vol. 25,
no. 4, pp. 424–435, Mar. 2002.

[14] R. Rejaie, H. Yu, M. Handely, and D. Estrin,
“Multimedia proxy caching mechanism for quality
adaptive streaming applications in the internet,” in Proc.
IEEE INFOCOM, Tel Aviv, Vol 2, pp. 980-989, Mar.
2000.

[15] W. Ma, and D. H. C. Du, “Design a progressive video
caching policy for video proxy servers,” IEEE Trans.
Multimedia, vol. 6, no. 4, pp. 599–610, Aug. 2004.

[16] D. Eager, M. Ferris, and M. Vernon, “Optimized regional
caching for on-demand data delivery,” in Proc.
Multimedia Computing and Networking (MMCN ’99),
San Jose, CA, Jan. 1999.

[17] S. Sen, L. Gao, and D. Towsley, “Frame-based periodic
broadcast and fundamental resource tradeoffs,” in Proc.
IEEE Int. Performance Computing and Communications
Conf., Phoenix, AZ, Apr. 2001.

[18] D. Eager, M. Vernon, and J. Zahorjan, “Minimizing
bandwidth requirements for on-demand data delivery,”
IEEE Trans. Knowledge and Data Engineering, vol. 13,
no. 5, pp. 742–757, Sept./Oct. 2001.

[19] B. Shen, S. J. Lee, and S. Basu, “Caching strategies in
transcoding-enabled proxy systems for streaming media
distribution networks,” IEEE Trans. Multimedia, vol. 6,
no. 2, pp. 375–386, Apr. 2004.

[20] X. Tang, F. Zhang, and S.T. Chanson, “Streaming media
caching algorithms for transcoding proxies,” in Proc. Intl
Conf. on Parallel Processing, pp. 287 – 295, 2002.

[21] S. Ramesh, I. Rhee, and K. Guo, “Multicast with cache
(Mcache): an adaptive zero-delay video-on-demand
service,” IEEE Trans. Circuits and Systems for Video
Technology, vol.11, Issue 3, pp. 440 – 456, March 2001.

[22] J. Kangasharju, F. Hartanto, M. Reisslein, and K. W. Ross,
“Distributing Layered Encoded Video through Caches,”
IEEE Transactions on computer, vol. 51, no. 6, pp. 622-636,
June 2002.

- 1223 -

