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ABSTRACT 

This work describes the process of efficiently 
streaming a set of multiple-version videos from a remote 
server via proxy to a variety of heterogeneous and 
asynchronous clients that request different quality of the 
video according to their profiles. The process focuses 
on reducing transmission cost by caching the optimal 
version of the video. A set of proxy-based delivery 
schemes are proposed by integrating the proxy caching 
with the reactive transmission schemes such as batching 
or patching. The optimal proxy prefix cache allocation 
is calculated for each transmission scheme to identify 
cache length of all versions of each video to minimize 
the aggregate transmission cost. As a result, it enhances 
the quality of video transmission. Experimental results 
demonstrate that for either the batching or patching 
transmission scheme, the proposed cache scheme can 
lead to significant transmission cost reduction. 
 
 
1: INTRODUCTIONS 
 

Streaming media services, including on-line 
conferences, distance education and movie broadcasting, 
have recently become popular on the Internet. However, 
bridging the gap between rich multimedia contents and 
diverse devices remains a challenge for researchers. 
Rate-adaptive video should be provided in efficient 
approaches to satisfy diverse client profiles and network 
characteristics. Additionally, the high bandwidth 
requirements and long-lived nature of digital video 
complicate adaptation tasks. Scalable video technology 
and video transcoding are both attractive and practical 
approaches of adhering to such demand. To ensure 
efficient delivery, proxy cache is generally deployed to 
reduce the traffic between the content origin and the 
proxies, and to decrease the transmission cost by 
caching popular videos at a proxy. In addition, the 
reactive transmission scheme is another approach to 
reduce transmission cost. How to integrate these 
approaches to provide efficient video transmission 
motivates us to develop this work, which considers the 
problem of efficiently streaming a set of rate-adaptive 
videos from a remote server via a proxy by caching the 
optimal version of each video and using reactive 
transmission schemes to multiple asynchronous and 

diverse clients, enabling them to experience playback 
with a minimum transmission cost.  

For reactive transmission schemes, some previous 
works [2]-[6][18], have focused on employing multicast 
or broadcast connections to transmit a popular video to 
multiple asynchronous clients, thus reducing the server 
load and required network bandwidth. Each scheme has 
a server only to transmit the on-demand video, when 
client requests arriving, e.g., batching, patching and 
stream merging. For the batching transmission scheme 
[2], those requests arriving close together are batched in 
time, and then the server multicasts the stream to clients 
who make the requests. For the patching or stream 
tapping scheme [3]-[5], the server initializes the entire 
video transmission sequentially for the first client, while 
later clients that obtain their future playback data by 
joining an ongoing multicast stream of the same video, 
with the clients only receiving the missing prefix via a 
separate unicast stream. For stream merging [6], all 
streams (prefix and complete) are delivered via 
multicast, and clients can join an earlier multicast 
stream. Eager et al. [18] analyzed the minimum required 
server bandwidth for any delivery technique that 
provides immediate real-time delivery to clients 
increases logarithmically as a function of the client 
request arrival rate, and proposed a delivery technique, 
called hierarchical multicast stream merging (HMSM), 
which has a required server bandwidth that is 
reasonably close to the minimum achievable required 
server bandwidth over a wide range of client request 
rates. 

To enable efficient delivery, a proxy cache is 
typically deployed to lower the traffic between the 
content origin and the proxies, and to decrease the 
latency perceived by a user through caching popular 
objects at a proxy. Caching streaming media is more of 
a challenge than caching simple web objects, since 
streaming media has a larger object size. When 
considering video caching rather than web caching, the 
video objects may be partially cached onto the proxies, 
such as video staging [7], [8], prefix caching [9] and 
selective frame caching [10]. Verscheure et al. [11] 
studied partial caching based on server scheduling. 
Zhang et al. [12] considered some video prefetching 
algorithms in which popular video objects are 
prefetched onto the proxies to reduce the WAN traffic.
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Fig. 1. Streaming multiple-version videos on the Internet: multiple-version video streams from a remote server are 
transmitted to a variety of clients. The proxies located close to the clients perform prefix caching based on the client 
profile. 

 
Lee et al. [13] adopted video summaries to cache the 
media stream. Rejaie et al. [14] developed a layered 
video caching mechanism to maximize the quality of 
popular streams delivered to interested clients. Ma et al. 
[15] designed a progressive video caching policy, in 
which each video is cached at several levels according 
to cached data sizes and required WAN bandwidths. 
Kangasharju et al. [22] proposed some heuristics to 
determine which videos and which layers in the videos 
should be cached in order to maximize the revenue from 
the streaming service. However, most existing 
investigations have concentrated on unicast delivery of 
an individual stream to each client without considering 
the impact of the transmission scheme on the cache 
efficiency.  

Tang et al. [20] combined caching with the 
transcoding of streaming objects. Algorithm FVO (Full 
Version Only) caches only the full, original version and 
serves requests to lower versions with transcoding. 
However, the transcoded objects are not cached. TVO 
(Transcoded Version Only) always caches the 
transcoded objects, and if a request does not yield an 
exact hit, the full version is fetched from the origin to 
generate a transcoded version. Shen et al. [19], 
developed a transcoding-enabled caching (TeC) system 
that performs transcoding and caching for multimedia 
efficient delivery to heterogeneous network users. 
However, the TeC strategy fails to make optimal cache 
replacement decisions, and uses only the least recently 
used (LRU), as the replacement policy.  

Although Eager et al. [16], and Sen et al. [17] 
combined caching with transmission schemes, they 
focused on utilizing nonreactive schemes such as 
periodic broadcast. Ramesh et al. [21] combines caching 
with video transmission on networks with end-to-end 
multicast/broadcast capability. Wang et al. [1] explored 
the combination of proxy prefix caching and reactive 
transmission to reduce the transmission cost of multiple 
heterogeneous videos, which is most relevant to this 
work. However, in [1], only the transmission scheme 
and proxy caching for a single version of the video was 

considered, the multiple-version videos as well as the 
transcoding-enabled proxy are yet to be explored.  

This work to our knowledge is the first work to 
combine proxy prefix caching and reactive transmission 
schemes for multiple-version videos to determine the 
optimal version to be cached, the most appropriate 
prefix cache length and the best batch/patch threshold 
for a given transmission scheme.  

The remainder of this paper is organized as follows. 
Section 2 introduces the proposed system environment 
and parameter definitions. Section 3 then presents the 
proposed optimal proxy prefix caching. Next, Section 4 
introduces a set of proxy-assisted reactive transmission 
schemes for multiple-version videos. Performance 
analysis is presented in Section 5 and, finally, 
conclusions are drawn in Section 6.  
 
2: SYSTEM ENVIRONMENT AND 

PARAMETER DEFINITION 
 

Figure 1 shows the system environment consisting 
of a variety of clients receiving videos streamed across 
the Internet from a server via a proxy. Clients receive 
different versions of the video based on their 
capabilities, such as storage capacity, rendering power 
and network bandwidth. The proxy determines which 
version and prefix length of each video should be 
cached to achieve the maximum benefit. The proxy 
intercepts the client request. If a prefix of  version of 
the requested videos is already stored at the proxy, then 
the proxy streams the prefix directly to the client. If the 
complete video is not stored at the proxy, then the proxy 
informs the server to transmit the suffix of the video, 
and relays the incoming data to the client. The server 
has the video with multiple versions, and higher 
versions can be transcoded into lower versions. The 
proxy can transcode a higher version into a lower 
version to meet the clients’ requirements. Thus, the 
proxy only cache one version of a video to achieve 
better cache efficiency. 
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This work employs a single server and a single 
proxy to verify the proposed schemes, which can be 
directly applied to multiple-proxy content distribution 
networks where the server adopts unicast connections to 
the proxies. Each proxy serves a group of clients which 
do not overlap, and the proxies do not interact with each 
other. 

Table 1 lists the key parameters used in analysis and 
simulation. 

Table 1 
Analysis and Simulation Parameters 

Parameters Definition 
N Number of videos 
Li Length of video i (sec) 
li Cached length of video i (sec) 
bi,j Bit rate of  version j of video i (kbps) 
u Caching grain (kbits) 
ni,j Size of version j of video i (units)  
fi Access probability of video i 
pj Access probability of version j 
λi,j Access rate of version j of video i 
λ Aggregate request arrival rate 
S Proxy cache size (units)  
vi Cached version of video i 
cs Transmission cost on server-proxy path 

(per bit) 
cp Transmission cost on proxy-client path 

(per bit) 
Ci(vi, li) Transmission cost per unit time for all 

versions of video i when a length li 
seconds prefix of version vi of video i is 
already cached at the proxy 

Assume that a server has a repository of N 
constant-bit-rate (CBR) videos as in [1]. Each video has 
R versions. The higher versions can be transcoded into 
lower versions. Additionally, suppose that the access 
probabilities of each version of all videos and the 
aggregate access rate to the video repository are known 
as a priori. These parameters can be obtained by 
monitoring a real system. Let fi denote the access 
probability of video i, , which is a measure of 

the relative popularity of a video. Let p

∑
=

=
N

i
if

1

1

j denote the 
access probability of version j, , which is 

dependent on the client device distribution (e.g. 
notebooks tend to request higher versions with better 
quality, while PDA tends to request lower versions). 
The access probability of version j of video i is 

1
1

=∑
=

R

j
jp

ji pf × . 
Let 

ji,λ  denote the access rate of version j of video i, 
and λ  represent the aggregate access rate to the video 
repository. Thus, 

ji ,λ = .1 ,1 , RjNipf ji ≤≤≤≤××λ  
The smallest unit of cache allocation is a caching 

grain of size u kbits, and all allocations are set to 
multiples of this unit. The size of video i and the proxy 
cache size is a multiple of a caching grain. Assume that 
version j of video i has playback bandwidth bi,j kbps. 
Version j of video i has size ni,j units and length Li 

seconds, and 
ijiji Lbun ,, = . Assume that the proxy can 

store S units, also is S×u kbits. The storage vector Sv = 
(l1,l2,…, lN) specifies that a length li seconds prefix of 
video i is cached at the proxy, i=1,2,…,N. The version 
vector Vv = (v1,v2,…,vN) specifies the cached version vi 
of video i, i=1,2,…,N. Notably, the videos cached at the 
proxy cannot exceed the storage capacity of the proxy, 
that is, , where  denotes the bit rate of 

the cached version v

∑
=

≤
N

i
vii Subl

i
1

, ivib ,

i of video i. Let cs and cp 
respectively represent the transmission costs of one bit 
of video data on the server-proxy path and the 
proxy-client path. The objective is to develop 
appropriate transmission and caching schemes that 
minimize the mean transmission cost per unit time 
aggregated over all versions of the videos in the 
repository, that is , where C∑

=

N

i
iii lvC

1
),( i(vi, li) denotes 

the transmission cost per unit time for all versions of 
video i when a length li seconds prefix of version vi of 
video i is already cached at the proxy.  

On receiving a client request for a version of a video, 
the proxy determines a transmission schedule based on 
the transmission scheme utilized. The transmission 
scheme determines when and on what transmission 
channel the proxy transmits the video. The proxy also 
requests the suffix from the server, and transmits a 
reception schedule from the proxy to the client, when 
and from which transmission channel the client should 
receive the data. Significantly, a client may have to 
receive data from multiple transmission channels 
simultaneously. Frames received ahead of their 
playback times are stored in a client buffer. Finally, the 
server only needs to transmit a suffix of the video 
requested by the proxy via a unicast connection. Hence, 
the proposed delivery techniques can be applied to 
unicast-based media servers. 
 
3: OPTIMAL PROXY PREFIX CACHE 

ALLOCATION 
 

This section presents a general approach to calculate 
the optimal proxy prefix cache allocation for a 
proxy-assisted multiple-version video transmission 
scheme. For a given transmission scheme, the average 
transmission cost per unit time for all versions of video i, 

, is a function of the length l),( iii lvC i seconds prefix of 
version vi of video i already cached at the proxy, where 
0≤ li ≤ Li. The total length of video i is Li seconds, and 
the highest version R of video i has size ni,R units. Let 

}0|{ ,Riiii nmmA ≤≤=  denote the set of possible prefixes 
of video i, where mi is the size, and miu/bi,k is the length 
in seconds of a possible prefix of version k of video i, 

ikii Lu/bmRk ≤≤≤ , ,1 . Let saving(mi) denote the maximal 
saving in transmission cost from caching an mi-unit 
prefix of video i than caching no prefix of the video at 
the proxy. The transmission cost of video i when 
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caching no prefix of video i is . Given m)00( ,Ci i units to 
cache the video i, the optimal version of video i must be 
determined to be cached to maximize the transmission 
cost saving (saving(mi)) over all versions of video i. 

.L
b

um subject to

, 
b

umkC,Cmsaving

i
ki

i

ki

i
iiRki

≤
×

×
−=

≤≤

,

,
1

)},()00({max)(  

Based on the above equations, the optimal version vi of 
video i can be found to be cached to maximize the 
saving, given mi units to cache the video i. Next, the 
purpose is to maximize the aggregate savings, i.e., 
minimize the aggregate transmission cost over all 
versions of videos. The optimization problem can 
therefore be formulated as 
maximize : , subject to , ∑

=

N

i
imsaving

1
)( i

N

i
ii AmSm∑

=

∈≤
1

,

where the size of the proxy is S units. The dynamic 
programming algorithm is then adopted to find the 
optimal allocation. Let M=(Ix,y) be a two-dimensional 
matrix, where entry Ix,y represents the maximum saving 
in transmission cost for the first x videos in a proxy 
cache of size y, and has the following form: 

⎩
⎨
⎧

=

>+
= ∈∀

0,                                        0

0 )},({max 1

x

xmsavingI
I i,y-mx-Am

x,y
i

ii  

This matrix is filled in row order from I0,y, y = 0,…,S. 
The value IN,S denotes the maximum saving in 
transmission cost when all N videos have been 
considered. The minimum transmission cost is given by 

, since the saving is relative to caching 

nothing at the proxy. The optimal cache allocation can 
be determined as follows. For each entry, store a pointer 
to an entry from which this current entry is computed. 
The optimal allocation is obtained by tracking the 
pointers back from the entry I

∑
=

−
N

i
SNi IC

1
,)0,0(

N,S.  
 
4: PROXY-ASSISTED 
MULTIPLE-VERSION VIDEO 
TRANSMISSION SCHEMES 
 
This section presents the optimal proxy prefix caching 
for a given reactive multiple-version video transmission 
scheme. For each scheme, a closed-form expression for 
the transmission cost Ci(vi,li) associated with video i is 
derived, when a length li seconds prefix of version vi of 
video i is already cached, Ni ≤≤1 . 

The transmission cost Ci(vi,li) is employed to 
determine the proxy prefix cache allocation for each 
video that minimizes the aggregate transmission cost. 
These transmission schemes are general and applicable 
to any client arrival process. A Poisson arrival process, 
which is a conservative assumption for reactive schemes 
[18], is adopted to estimate the transmission costs. 
Wang et al. [1] proposed three schemes:  

(1)SBatch utilizes the video prefix cached at the proxy, 
so that multiple requests share a single 
server-to-proxy transmission to save transmission 
costs.  

(2)UPatch employs patching for the suffix.  
(3)MPatch exploits prefix caching at the proxy under a 

multicast-enabled proxy-to-client environment.  
Though these schemes perform well for the single 
version video, the multiple-version videos and 
heterogeneous clients have not been considered. 
Therefore, new schemes are proposed for 
multiple-version videos transmission. In this work, the 
server-to-proxy path and proxy-to-client path are only 
unicast-enabled, the multicast-enabled proxy-to-client 
path is not considered since the transmission bottleneck 
is mainly from the WAN (Server-to-proxy path). 
However, it is expected that if proxy-to-client is 
multicast-enabled, the transmission cost can be reduced. 
In addition, we assume that clients always request 
playback from the beginning of a video, as in [1].  
 
4.1 Version-dominated Batching (VBatch) 
 

VBatch is proposed for multiple-version video 
transmission. Suppose that the first request for version k 
(k ≤ vi) of video i arrives at time 0. The length li seconds 
prefix of version vi of video i is already cached at the 
proxy. For these requests arrive in time (0,li] and 
requested versions are equal to or lower than the cached 
version vi, the proxy immediately start transcoding the 
cached version into these requested versions and 
transmitting the prefix of requested versions of video i 
to the clients as illustrated in Fig. 2. VBatch schedules 
the transmission of the suffix of version vi from the 
server to the proxy as late as possible, just in time to 
guarantee continuous playback for the clients. That is, 
the first frame of the suffix of version vi is scheduled to 
reach the proxy a little earlier than time li, which is the 
length of the prefix of version vi. Then, the proxy 
transcoding the version vi suffix into these requested 
versions and simply forwards these suffixes of 
requested versions (of length Li-li) to these requested 
clients, and no new suffix transmission is required from 
the server. Multiple requests for the suffix of video i are 
thus batched together. Note that though the first 
requested version is k (k ≤ vi), the version vi suffix, 
rather than version k,  is transmitted from server to 
proxy, since version vi can be transcoded into version k 
and can be shared by later requests for equal to or lower 
than version vi. Thus, the average transmission cost per 
unit time for delivering version k (k ≤ vi) of video i, 
based on a Poisson arrival process, is given by  

∑∑
∑ ==

=

+×
+

−
=
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kikiip
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kiv
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kii

viiis
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1
,,

1
,

1
,

,

1

)(
),(1cos λλ
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If requested version k is higher than the cached version 
vi, the proxy must immediately request an entire version 
k of video i from the server to proxy, and the 
transmission cannot be shared. In this case, the 
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transmission cost per unit time for delivering version 
k(k>vi) of video i is formulated as follows.  

∑
+=

+=
R

vk
kikiipsiii

i

bLcclvt
1

,,)(),(2cos λ  

In summary, when the length li seconds prefix of 
version vi of video i is already cached at the proxy, the 
transmission cost per unit time for all versions of video i 
is formulated as follows. 
Ci(vi,li) = + .  ),(1cos iii lvt ),(2cos iii lvt

 
Fig. 2. Version-dominated batching with prefix caching 
(VBatch) 
 
4.2 Version-dominated Patching(VPatch) 
 

This section presents a VPatch scheme that utilizes 
patching for multiple-version video transmission. 
Suppose that the first request for version k (k ≤ vi) of 
video i arrives at time 0, the length li seconds prefix of 
version vi of video i is already cached at the proxy, and 
the version vi suffix reaches the proxy from the server a 
little earlier than time li,as illustrated in Fig. 3. For these 
requests arrive in time (0, li] and requested versions are 
equal to or lower than the cached version vi, the 
transmission scheme is the same as VBatch scheme. In 
another case, suppose that later request for version k (k 
≤ vi) of video i occurs at time t2, li<t2<Li. The proxy can 
schedule a transmission of the complete suffix of 
version vi at time t2+li from the server. Alternatively, a 
patch of [li, t2) of the version k suffix can be scheduled 
from the server, since segment [t2, Li] of version vi has 
already been scheduled to be transmitted and can be 
transcoded to meet the version k (k ≤ vi) request. The 
decision to transmit a complete suffix or a patch 
depends on a suffix threshold Gi, measured from the 
beginning of the suffix. If one request for version k (k ≤ 
vi) arrives within Gi from when the nearest complete 
transmission of the version vi suffix was started, then 
the proxy schedules a version k patch from the server 
for the version k request. Otherwise, a complete 
transmission of the version vi suffix is started. The 
suffix threshold Gi is chosen to minimize the 
transmission cost. Assuming a Poisson arrival process, 
the average transmission cost per unit time for 
delivering version k (k ≤ vi) of video i is given by 
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, 
where the average patch length for the request arriving 
in time (li, li+Gi] is Gi/2 based on a Poisson arrival 
process and the number of requests for version k within 
Gi is . Thus, the total patch bits for version k per 

unit time is 

iki G,λ

2
,

2
, kiiki bGλ . 

If requested version k is higher than the cached 
version vi, the proxy must immediately request an entire 
version k of video i from the server to proxy, and the 
transmission cannot be shared. In this case, the 
transmission cost per unit time for delivering version 
k(k>vi) of video i is the same as cost2i(vi,li). 

In summary, when the length li seconds prefix of 
version vi of video i is already cached at the proxy, the 
transmission cost per unit time for all versions of video i 
is formulated as follows. 
Ci(vi,li) = + . ),(3cos iii lvt ),(2cos iii lvt

Fig. 3. Version-dominated patching with prefix caching 
(VPatch) 
 
5: PERFORMANCE EVALUATION 
 

This section presents the performance evaluation for 
the above caching and transmission schemes, which was 
based on a repository of 100 CBR video clips whose 
popularity followed a Zipf distribution with a skew 
factor α of 0.271 [2]. In the multiple-version case, all 
videos were assumed to be two hours long with five 
versions. The bit rate of version 1 was 32kbps, version 2 
was 64kbps, version 3 was 128kbps, version 4 was 
256kbps and version 5 was 512kbps. Let cs=1 and cp=0, 
the transmission cost is the required server bandwidth 
per second. The default cache capacity of the proxy was 
assumed to be 20% of total sizes of all 32kbps versions 
of all videos. The caching grain was set to three minutes 
of 32kbps video version.  
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5.1 The Impact of Access Patterns  
 
This set of experiments examined the performance 

of transmission schemes in various access patterns. The 
access to different versions is modeled as follows. As in 
Shen et al. [19], assume that the accesses to different 
versions of the videos follow a normal distribution with 
mean m, where version m denotes the dominant version. 
The access probability of a version x is 

,
2
1)(

22 2/)( σ

σπ
mxexp −−=  

where m and σ2 represent the mean and variance, 
respectively, of how the versions are accessed. When σ 
is small, most of the accesses tend to be one version (m). 
When σ is large, the accesses are evenly distributed 
among the different versions. The access model 
examines the concentration level of access versions for 
the impact of transmission performance. In this 
experiment, m = 2 (i.e. the version 3(128kbps) is the 
dominant version when σ is small). 

Figure 4 depicts the required server bandwidth of 
transmission schemes under different access patterns 
when the arrival rate λ is 100 requests/min. Clearly, the 
patch-based schemes have lower required bandwidth 
than the batch-based ones. For instance, when the value 
of σ = 1.4, the required bandwidth of VPatch, and 
VBatch are 19.3%,  and 65.2%, respectively, of the 
original bandwidth that, in the following, called as 
“original bandwidth”. When the value of σ = 1.4, the 
VBatch and VPatch schemes require 167.32MB/s and 
49.62 MB/s bandwidth. Notably, as the value of σ rises, 
the accesses become more evenly distributed among 
different versions, and required server bandwidth 
increases, since the limited cache space can not 
accommodate all popular objects when the accesses are 
dispersed. As the value of σ rises, the required 
bandwidth of batch-based schemes increases more than 
that of patch-based schemes. This is because that the 
patch-based schemes can dynamically tune up the 
threshold G according to access patterns to minimize the 
required server bandwidth.  
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Fig. 4. Required server bandwith versus access pattern 
when λ=100/min. 
 
 
 

5.2 The Impact of Proxy Cache Size 
 

Figure 5 depicts the required server bandwidth of 
transmission schemes under various cache sizes when λ 
= 100 requests/min, and the value of σ is set to be 1.4. 
The required bandwidth of patch-based schemes is 
clearly lower than that of batch-based schemes over all 
the range of proxy cache sizes. The patch-based 
schemes can save much bandwidth even if the cache 
size is very small. For example, when cache size = 10% 
of total sizes of all minimal versions, the VPatch 
scheme only needs 20% of the original bandwidth. The 
required bandwidth reduction is significantly less for the 
patch-based schemes than that of the batch-based 
schemes as the cache size increases. Thus, increasing 
cache size is more beneficial when adopting the 
batch-based transmission schemes. For instance, when 
cache size = 10% of total sizes of all minimal versions, 
the VBatch scheme needs 77.1% of original bandwidth. 
However, when cache size = 90% of total sizes of all 
minimal versions, it only needs 33.1% of original 
bandwidth.  
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Fig. 5. Required server bandwidth versus proxy cache 
size when λ=100/min. 
 
5.3 The Impact of Arrival Rate 
 

Figure 6 illustrates the required server bandwidth of 
transmission schemes as the arrival rate increases from 
10 to 100 requests/min where the cache size is 20% of 
total size of all minimal versions and the value of σ is 
set to be 1.4. Comparing patch-based schemes with 
batch-based schemes, the gap significantly increases as 
the arrival rate rises. When the arrival rate is 10 
request/min, the VPatch scheme needs 65.1% of 
required bandwidth of VBatch. When the arrival rate is 
100 requests/min, the required bandwidth of the VPatch 
scheme becomes 29.6% of that of VBatch, respectively. 
This finding clearly demonstrates that using patch-based 
schemes can produce more bandwidth savings than 
batch-based schemes as the arrival rate increases.  

σ
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Fig. 6. Required sever bandwidth versus arrival rate. 
 
6: CONCLUSIONS 
 

This work has proposed an approach for determining 
an optimal proxy prefix cache allocation for 
multiple-version videos that minimizes the required 
server bandwidth for a given transmission scheme. Two 
transmission schemes: the version-dominated batching 
scheme, and the version-dominated patching scheme are 
proposed.  Experimental results demonstrate that, an 
adaptive proxy-assisted transmission scheme can result 
in significant required server bandwidth reduction. We 
expect such schemes to provide higher reception quality 
(more detailed versions) at the client side than without 
schemes, due to lower server bandwidth requirements. 
In other words, given the same bandwidth constraints, 
the proposed schemes can provide better viewing 
quality. In the future we will study the cache scheme for 
layered video. 
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