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ABSTRACT 
Past experiments of the popular Affymetrix (Affy) 

microarrays have accumulated a huge amount of public 
data sets. To apply them for more wide studies, the 
comparability across generations and experimental 
environments is an important research topic. This paper 
particularly investigates the issue of 
cross-generation/laboratory predictions. That is, 
whether models built upon data of one generation 
(laboratory) can differentiate data of another. We 
consider eight public sets of three cancers. They are 
from different laboratories and are across various 
generations of Affy human microarrays. Each cancer 
has certain subtypes, and we investigate if a model 
trained from one set correctly differentiates another. We 
propose a simple rank-based approach to make data 
from different sources more comparable. Results show 
that it leads to higher prediction accuracy than using 
expression values. We further investigate normalization 
issues in preparing training/testing data. 
 
 
1: INTRODUCTION 
 

Gene expression profiling by DNA microarrays is a 
useful tool in biological and clinical research. Superior to 
traditional biological experiments, it compares thousands 
of genes simultaneously. With fast and systematic 

analysis of expression values, one can quickly identify 
significant genes for certain diseases or build models for 
patient diagnosis/tumor classification. 

Though the microarray technology is popular, not 
many institutions can conduct enough experiments for 
effective analysis due to the lack of patient samples or 
the high cost. Studies in recent years have accumulated a 
huge amount of microarray samples in public databases. 
If data experimented under similar conditions can be 
combined together, not only any laboratory can directly 
apply microarray technology in practical use, but also 
more extensive and reliable studies are possible. A 
microarray experiment from raw samples to expression 
values is a complicated procedure. Expression values 
from various sources are not easily comparable. Many 
recent studies explore the cross-platform comparability 
between cDNA and oligonucleotide arrays, but so far 
contradictive results have been reported. Even using the 
same samples, some papers (e.g., [14, 17]) conclude that 
measurements from the two platforms are poorly 
correlated. Though recent studies (e.g., [2,11,15]) give 
more promising results, they still consider that the 
reproducibility across platforms is not easily available. 

For the same type of arrays, comparability issues also 
occur. In particular, whether results from various 
generations of popular Affymetrix (Affy) human 
oligonucleotide arrays can be used together is an issue. 
Though the same platform tends to produce more 
consistent expression values, cross-generation and 
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cross-laboratory use of Affy arrays remains a 
challenging task. This paper intends to have a detailed 
investigation on this subject. Existing papers of this topic 
mainly study the following three issues: 
1. Whether differentially expressed genes identified 

across two generations (laboratories) are similar or 
related. 

2. Whether the same samples lead to similar 
expression values across two generations 
(laboratories). 

3. Whether models built upon data of one generation 
(laboratory) can differentiate data of another. 

This paper focuses on studying the third issue. 
Most work studying issue 1 concludes that genes 

identified across generations (laboratories) are related 
(e.g., [21]). In contrast, the other two issues are less 
settled. For issue 2, one of the first studies is [18]. Using 
the same samples on two generations, it reports that 
better similarity of the probe sets leads to higher 
correlation between expression values. References [10, 
13] further strengthen this finding by showing that 
considering only probes with overlapping sequences 
gives excellent comparability. However, even with these 
studies, some still doubt the reproducibility of expression 
values across generations, so several papers propose 
more sophisticated techniques. By calculating expression 
changes at the probe-level, Elo et al. [7] report that such 
information gives better comparability. Bhattacharya and 
Mariani [3] propose regression models, which reflect the 
relationship between expression values of two 
generations. 

Compared to issue 2, issue 3 concerns more about the 
practical use of data from different sources. Many 
applications such as cancer diagnosis and tumor 
classification are of this type. If data of other laboratories 
can be used, an institution can classify its patient samples 
without huge initial experiments/costs. Some have 
checked issue 3: Bloom et al. [4] collect samples of 21 
tumor types across different laboratories and two Affy 
generations. They normalize expression values of 
various sources and apply an Artificial Neural Networks 
(ANN) model. High prediction accuracy (88%) is 
reported. Jiang et al. [12] consider lung cancer data sets 
across two generations. They develop special data 
transformation and report high prediction accuracy. Xu 
et al. [33] study prostate cancer samples across different 
laboratories but under the same Affy generation. Using a 
classifier based on only two genes, a model built on data 
from three laboratories successfully separates a test set 
from another laboratory to normal or cancer. 

In this paper, we investigate whether expression 
values are reliable for the prediction tasks. In 
cross-platform analysis (e.g., cDNA and 
oligonucleotide), quite a few (e.g., [26, 31]) observe 
inconsistent expression values, so they use information 
less dependent on the scale of values (e.g., rank levels). 
While expression values seem to be more consistent if 
only Affy arrays are considered, it is essential to check 
which way is better. We propose a rank-based approach 
and compare it with using expression values. 

 
Figure 1. Workflow of the analysis. The width of 
each box reflects the number of genes. Details are 
in the beginning of Section 2. 
 
2: METHODS 
 

Figure 1 outlines our approach. In each experiment 
two sets of the same cancer type are used as 
training/prediction sets. The details of our methods are 
described in the following subsections. 
 
2.1: MICROARRAY DATA COLLECTION 
AND PREPROCESSING 

To conduct the integrated, cross-generation and 
cross-laboratory predictions of Affy human arrays, we 
select public data of three cancer types. The first type, 
acute lymphoblastic leukemia (ALL), includes two data 
sets of different generations published from the same 
laboratory. The data set of Yeoh et al. [34], from 
HG-U95Av2 array, is denoted as ALL-95. Another data 
set of Ross et al. [23], from HG-U133A array, is called 
ALL-133. The 132 samples of ALL-133 were chosen 
from the original 335 HG-U95Av2 data obtained by 
Yeoh et al. To generate an independent source, ALL-95 
includes only 203 non-replicated cases. The subtypes to 
be predicted are ALLs with defined recurrent 
chromosomal aberrations: t(12;21), t(1;19) and 
hyperdiploid with more than 50 chromosomes (HD>50). 
The second cancer type is acute myeloid leukemia 
(AML). Three data sets are generated by three different 
institutions using HG-U133A chips: The set Ross et al. 
[22], abbreviated as AML-1, is a childhood study. The 
other two studies, AML-2 (Valk et al. [29]) and AML-3 
(Guti´errez et al. [8]), involve adult samples. The 
predicted subtypes are AMLs with t(8;21), inv(16) and 
t(15;17). These biologically distinct subtypes are 
identical both in pediatric and adult AMLs. The last 
group is breast cancer. Three data sets across three 
generations of chips (HuGeneFL, HGU95Av2 and 
HG-U133A) are collected from three different 
institutions. They are denoted as Breast-FL (West et al. 
[32]), Breast-95 (Huang et al. [9]) and Breast-133 (Wang 
et al. [30]), according to the generation of chip used in 
each individual study. The estrogen receptor (ER) status 
(positive or negative) is the variable to be predicted. The 
summary of key characteristics and URL addresses of all 
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the eight microarray data sets can be found at 
http://biominer.bime.ntu.edu.tw/˜cychen/datasets.pdf. 

After expression values are downloaded from the 
referred public websites, values of each array are 
rescaled by setting the 2% trimmed mean of all the genes 
in an array to be 500, as suggested in the Affy Microarray 
Suite 5.0 (MAS 5.0) program. 
 
2.2: GENE MAPPING (COMMON PROBE 
SETS IDENTIFICATION) 

According to their launch time, the three array 
generations can be aligned as the order of HuGeneFL, 
HG-U95Av2, and HG-U133A. Because of multiple 
design advances used to produce newer Affy human 
arrays, many probe sets differ between generations of 
arrays. For a comparative analysis, it is critical to identify 
a subset of common genes. One approach is to match the 
UniGene IDs among genes. Each UniGene ID 
corresponds to a cluster containing sequences that 
represent a unique gene and its related information [19]. 
However, different UniGene Builds are used for the three 
Affy generations. Some UniGene IDs can not be exactly 
tracked between two Builds. An alternative method 
considers LocusLink (currently implemented as Entrez 
Gene [16]), and it does not suffer from the same problem 
as much. Another popular method uses matching tables 
provided by Affymetrix. The matching between two 
generations of arrays is based on the similarity of 
sequence information of probe sets 
(http://www.affymetrix.com/support/technical/comparis
on_spreadsheets.affx). According to different 
constructions, there are two mappings called “Good 
Match” and “Best Match.” The latter, obtained under a 
more stringent criterion than the former, chooses probe 
sets with the greatest likelihood of representing the same 
gene across generations [1]. 

Hwang et al. [10] test methods of UniGene IDs, 
LocusLink IDs and Best Match to match genes between 
HG-U95Av2 and HG-U133A arrays. They experimented 
with 14 samples on both generations of arrays. 
Correlation coefficients indicate that Best Match 
demonstrates higher reproducibility than the other two 
methods. We thus adopt the method of Best Match in the 
study. Since Best Match is not available between 
HuGeneFL and HG-U95Av2, to generate matched probe 
sets, we follow similar procedures in previous studies [3, 
12, 18]. Most probe sets between HG-U95Av2 and 
HG-U133A have one-to-one correspondence. For few 
multiple (HG-U95Av2)-to-one (HG-U133A) mappings, 
we select the first-cited probe set on HG-U95Av2 to 
make them one-to-one. The situation for HuGeneFL and 
HG-U95Av2 is more complicated as 
multiple-to-multiple relations occur. For any given 
HuGeneFL probe set, from its corresponding ones in 
HG-U95Av2, we select the one with the highest overlap. 
This procedure leads to multiple (HuGeneFL)-to-one 
(HGU95Av2) matchings. We then apply the same 
process for HG-U95Av2 and HG-U133A to obtain 
one-to-one relationships. Finally, we get a list of 5,979 
common probe sets between HuGeneFL and 

HG-U95Av2, and a list of 9,530 probe sets between 
HG-U95Av2 and HG-U133A. The intersection of the 
above two lists gives 5,045 probe sets, which are shared 
across three generations. 
 
2.3: RANK-BASED NORMALIZATION 

Previous work has shown that considering a gene’s 
rank within a chip instead of using its expression value 
better eliminates systematic biases and thus improves the 
classification accuracy [25, 31, 33]. There are some 
variants of the rank-based normalization. The simplest 
one replaces the expression value of a gene by its rank 
among expression values of a single chip [24, 27]. 
Quantile normalization is another rank-based approach 
[5, 20]. It calculates a value for each rank level by taking 
the average of the expression values of that particular 
rank in available arrays, and then replaces the expression 
value of each gene by the associated reference value of 
its rank. Median rank scores is also a rank-based 
approach. This variant derives the median of each gene 
among the available arrays and sorts those medians as the 
reference value of a particular rank [25, 31]. Tsodikov et 
al. [27] show that replacing expression values by ranks 
performs well in terms of selecting differentially 
expressed genes. Qiu et al. [20] also reveal that this 
simple scheme outperforms the quantile normalization 
method in reduction of between-gene dependence and 
identification of differential genes. Thus in this work we 
investigate if a direct replacement of expressions by 
ranks is effective in cross-generation and 
cross-laboratory comparisons. Below we provide details 
of the adopted procedure. 

First of all, we obtain common genes from data of 
each cancer type. The rank-based normalization method 
then replaces the value of each probe set with its rank in 
the set of common genes. Next, gene selection is 
performed with SAM (Significance Analysis of 
Microarrays) [28] to identify the list of differentially 
expressed genes based on the training data set of each 
experiment. The FDR (false discovery rate) is set as 5%. 
As far as the testing data is concerned, the same 
procedure of replacing expression values with ranks is 
applied. After that, the list of differential probe sets 
selected based on the training data set filters out 
unwanted probe sets in the testing data set 
 
2.4: PREDICTIONS 

In each experiment, one data set is for training and 
another data set (across generations or laboratories) is for 
testing. The k-Nearest Neighbors (KNN) [6] is employed 
in the prediction task. For any instance in the test set, 
KNN predicts its class by the majority class of its k 
closest neighbors in the training set. The distance 
between any two data instances is by the Euclidean 
metric. Since the performance of KNN depends on the 
parameter k, in data classification one usually 
implements a validation procedure to select it. Here we 
consider leave-one-out cross-validation (LOO CV). For 
any given k, LOO CV sequentially singles one training 
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instance out for validation. That is, KNN predicts this 
instance by checking its neighbors in the remaining set. 
The value k with the best LOO CV accuracy is then 
applied to predict the independent testing data. In our 
experiments, we consider odd integers from 1 to 17 to 
search for the best k. Values beyond this range do not 
give better LOO CV. 
 
3: RESULTS AND DISCUSSION 
 

This section first compares prediction results under 
two ways of processing arrays: one directly uses gene 
expression values, and the other transforms expression 
values to rank levels. The experimental procedure has 
several variants of normalization, so subsequently we 
check their respective effects. 
 
3.1: A COMPARISON BETWEEN USING 
EXPRESSION VALUES AND RANK 
INFORMATION 

To perform cross-generation/laboratory predictions, 
one can prepare training and testing data by directly 
using expression values of significant genes. However, 
the scale of each gene may vary due to different chip 
generations or experimental environments. We can 
instead use each gene’s rank in the same subset of 
significant genes. Experiments below compare which 
method is better. 

For any cancer type, each experiment considers one 
subtype as the target prediction label. A data set of this 
cancer type is used as the training data of two classes: 
whether an array is associated with the specified subtype 
or not. For each array in another set (called testing data), 
we then predict its class label and calculate the accuracy. 
This procedure is repeated for every two sets of the same 
cancer type. One exception is that AML-3 has no t(8:21) 
arrays, so for this subtype AML-3 is not used as the 
testing set. 

Except the difference on using expression values or 
rank levels, all other settings follow the procedure in 
Figure 1. Table 1 gives results of the comparison. Table 1 
clearly shows that using the ranks of the selected genes 
within an array consistently produces better results than 
using the original expression values. For ALL and AML, 
the prediction by using rank levels is excellent. One 
exception is to predict inv(16) by using AML-3 as the 
training set. Since AML-3 contains only four inv(16) 
arrays, there is no enough information to discriminate 
this subtype from others. 

Both methods give worse accuracy in predicting 
breast cancer subtypes. As indicated earlier, three data 
sets of this cancer type are the most heterogeneous. They 
are cross-generation as well as cross-laboratory, but ALL 
sets are cross-generation only and AML sets are 
cross-laboratory only. Training Breast-95 to classify the 
other two sets gives much lower accuracy than other 
cases. We suspect the reason is that Breast-95 is the most 
unbalanced (74 ER+ and 15 ER− arrays) among the three 
breast cancer sets. 

Table 1. A comparison of cross-generation(or 
laboratory) predictions: using rank levels and 
expression values (Exp. val.). In each row, we 
boldface the value which gives higher accuracy. 

Accuracy (%) Training→Testing Cancer 
subtype Rank Exp. val.

Acute lymphoblastic leukemia (ALL) 
 t(12;21) 96.2 68.1 
ALL-95→ALL-133 HD>50 91.6 92.4 
 t(1;19) 100 97.7 
 t(12;21) 97 93.1 
ALL-133→ALL-95 HD>50 95 87.1 
 t(1;19) 99.5 98.5 
Acute myeloid leukemia (AML) 

t(15;17) 99.2 99.2 
t(8;21) 100 99.6 AML-1→AML-2 
inv(16) 97.8 91.2 
t(15;17) 100 95.3 AML-1→AML-3 inv(16) 97.6 88.3 
t(15;17) 100 100 
t(8;21) 99.2 96.9 AML-2→AML-1 
inv(16) 99.2 90.7 
t(15;17) 97.6 93 AML-2→AML-3 inv(16) 97.6 95.3 
t(15;17) 99.2 100 AML-3→AML-1 inv(16) 90 89.2 
t(15;17) 99.6 97.1 AML-3→AML-2 inv(16) 98.2 93.3 

Breast cancer    
Breast-FL→Breast-95 86.5 83.1 
Breast-FL→Breast-133 89.2 81.1 
Breast-95→Breast-FL 87.8 53.1 
Breast-95→Breast-133 86.4 75.2 
Breast-133→Breast-FL 85.7 75.5 
Breast-133→Breast-95

ER(+/−) 

86.5 83.1 
 
3.2: ADDITIONAL NORMALIZATION FOR 
EXPRESSION VALUES AND RANK LEVELS 

While Table 1 indicates that rank levels are better 
than expression values, we investigate if the same 
conclusion stands after slight changes of the 
experimental procedure. One issue we intend to study is 
the effect of gene-wise normalization. That is, after 
selecting significant genes, for each gene we normalize 
ranks or expression values in all training arrays to have 
mean zero and standard deviation one. In data 
classification such a procedure is called feature scaling 
(normalization). The purpose is to avoid the possible 
dominance of genes having large values. The same 
scaling factors are then employed to normalize the 
testing data. Table 2 lists accuracy with and without 
gene-wise normalization. Using expression values, the 
accuracy with normalization is slightly improved for 
ALL and AML, but is worse for some cases of breast 
cancer. Thus one cannot conclude that this normalization 
is always helpful. For rank levels, the accuracy 
with/without gene-wise normalization is very similar. It 
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consistently outperforms expression values no matter the 
gene-wise normalization is performed or not. Overall this 
normalization has a bigger effect on using expression 
values than rank levels. 
 
4: CONCLUSIONS 
 

We conduct a detailed study on cross-generation and 
cross-laboratory predictions of Affy microarray data. A 
focus is on investigating if using expression values is 
suitable. Experiments show that an alternative way of 
using simple rank levels gives more stable prediction 
results. 

The framework proposed in this paper is rather 
simple. As more studies involve such cross-generation 
and cross-laboratory predictions, we expect our approach 
to be very useful. For example, existing data can be 
trained to predict arrays from a new generation of 
Affymetrix human oligonucleotide array, Plus 2.0. 
Future work includes experiments on more cancer types 
or future Affy generations. 
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Table 2. A comparison showing the effect of 
genewise normalization. In each row, we boldface 
the value which gives the highest accuracy. 

Genewise normalization Y Y 
Training→Testing Subtype Rank Exp. val.
Acute lymphoblastic leukemia(ALL) 
 t(12;21) 96.9 96.2 98.4 68.1
ALL-95→ALL-133 HD>50 93.1 91.6 97.7 92.4
 t(1;19) 100 100 99.2 97.7
 t(12;21) 97.5 97 97.5 93.1
ALL-133→ALL-95 HD>50 94.5 95 78.3 87.1
 t(1;19) 99.5 99.5 99.5 98.5
Acute myeloid leukemia (AML) 
 t(15;17) 99.6 99.2 98.9 99.2
AML-1→AML-2 t(8;21) 100 100 100 99.6
 inv(16) 98.2 97.8 98.5 91.2
AML-1→AML-3 t(15;17) 97.6 100 95.3 95.3
 inv(16) 97.6 97.6 100 88.3
 t(15;17) 100 100 100 100
AML-2→AML-1 t(8;21) 99.2 99.2 98.4 96.9
 inv(16) 96.9 99.2 98.4 90.7
AML-2→AML-3 t(15;17) 97.6 97.6 95.3 93
 inv(16) 97.6 97.6 100 95.3
Breast cancer, subtype: ER(+/−) 
Breast-FL→Breast-95 84.3 86.5 84.3 83.1
Breast-FL→Breast-133 85.7 89.2 85 81.1
Breast-95->Breast-FL 81.6 87.8 51 53.1
Breast-95→Breast-133 80.1 86.4 72.7 75.2
Breast-133→Breast-FL 87.8 85.7 53.1 75.5
Breast-133→Breast-95 82 86.5 82 83.1
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