

逢甲大學學生報告 ePaper

報告題名:變量流下偏心圓柱型橋墩局部沖刷之研究

- 作者:吳慧萍、紀雯婷、陳世帆
- 系級:水利工程學系
- 學號: D9257298、D9257326、D9257390
- 開課老師:王傳益 副教授
- 課程名稱:專題實驗
- 開課系所:水利工程學系
- 開課學年: 95 學年度 第 一 學期

謝 誌

本專題能夠順利完成,首先我們要感謝的第一位是我們的指導教授 授王傳益老師,在專題研究製作期間,承蒙恩師不吝指導,惠賜卓 見,尤其對專題的寫作方向及觀念,給予我們許多寶貴的意見及指 導,讓我們受益良多,在此謹致萬分的謝意及感激。

於學習過程期間,感激系上許多教授的教導,不只讓我們學習到 課本上的內容,還分享了許多他們的實際經驗,讓我們了解到以後出 了社會可能會遇到的難題,而對於我們不懂的問題,也都一一的爲我 們解答,提攜我們向上,在此深表感激,謝謝您們。

接著,我們要感謝人豪學長熱心的協助我們做實驗,在我們什麼 都不懂的情況下,不斷的督導我們,給予我們寶貴的意見及各方面的 知識,我們才能順利的完成本專題,真的是很謝謝您。

最後,我們要感謝支持我們的家人以及好友們,有筱婷、雅純、 小雞…等,不管我們遇到什麼困難,你們始終陪伴著我們渡過這些難 關,謝謝你們一路上對我們的支持、鼓勵與照顧,謝謝您們!

摘要

本研究主要利用水工模型試驗,模擬近似天然流況之變量流歷線 (前峰型、中峰型及後峰型)作用下,偏心圓柱型橋墩墩墩徑比 (D/D^{*}=0.4 及 0.7)於不同的覆土高度(Y=30mm、15mm、0mm、-15mm) 時,橋墩局部沖刷深度及歷程之變化。

研究結果顯示,於不同型式變量流歷線作用下,沖刷深度會隨水 流強度的增加而增加,同時最大沖刷深度於變量流歷線之上升段完 成。中峰型歷線及後峰型歷線之沖刷歷程類似,其最大沖刷深度相當 且均高於前峰型,兩者僅有時間稽延之差異。

在各種不同流量歷線作用下,當橋基未裸露(0≤Y/D*≤0.6)時, 由於不均勻面能夠有效阻擋刷深情況,使得所產生之沖刷深度較小, 而橋基裸露(Y/D*<0)時則反之。而在不均勻橋墩墩徑比(D/D*)不同 時,D/D*=0.4 之局部沖刷深度皆低於D/D*=0.7。在考量橋墩水理安 全之情況下,D/D*=0.4 為較理想之不均勻橋墩型式。

關鍵字:變量流歷線、偏心圓柱型橋墩、局部沖刷深度

Π

	目 錄	
		頁次
謝誌		Ι
摘要		II
目錄		III
圖目錄		VII
表目錄		Х
照片目錄		XI
符號表 壹、前言		XII
1.1 研究動機	· AR (1) ···	1-1
1.2 研究目的		1-2
1.3 內容架構		1-2
貳、文獻回顧		
2.1 均匀橋墩沖	户刷	2-2
2.2 不均匀橋墩	炎沖刷	2-6
2.3 等效橋墩(H	Equivalent Piers)	2-10
2.4 橋墩周圍局	为部沖刷特性	2-13

III

2.5	橋墩沖刷因子	2-14
2.5.1	橋墩沖刷因子之分類	2-15
2.5.2	橋墩沖刷因子之探討	2-15
參、	理論分析	
3.1	圓柱型橋墩周圍水流之流況	3-1
3.1.1	墩前壅水(bow wave)	3-2
3.1.2	墩前向下射流(downflow in front of pier)	3-2
3.1.3	3.1.3 馬蹄型渦流(horseshoe vortex)	3-2
3.1.4	消散渦流及尾跡渦流(cast-off vortices and wake)	3-3
3.2	橋墩周圍局部沖刷之過程	3-3
3.2.1	沖刷初期	3-4
3.2.2	沖刷中期	3-4
3.2.3	平衡沖刷	3-4
3.3	因次分析	3-5
3.3.1	影響因素	3-5
3.3.2	因次分析	3-6
3.4	渦流理論	3-8
3.5	沖刷坑理論分析	3-11
3.6	沿壁沖射流理論	3-13

3.7	不均勻橋墩沖刷坑體積及其變化	3-19
3.8	不均匀矩型橋墩沖刷理論	3-20
肆、	水工試驗	
4.1	模型與原型之比例關係	4-1
4.2	試驗設備與佈置	4-2
4.2.1	試驗渠槽	4-2
4.2.2	試驗橋墩模型	4-3
4.2.3	試驗佈置	4-5
4.2.4	試驗儀器	4-5
4.3	試驗河床質	4-7
4.4	試驗流量	4-8
4.5	完全發展段	4-9
4.6	渠槽試驗條件	4-10
4.7	試驗步驟	4-12
4.7.1	試驗橋墩安置與底床質鋪設	4-12
4.7.2	試驗流量控制	4-12
4.7.3	沖刷深度與河床剖面量測	4-12
4.7.4	試驗操作程序	4-12

伍、結果分析與討論

5.1	一般沖刷、束縮沖刷與局部沖刷之分離	5-1
5.2	沖刷坑與淤積堆之縱斷面變化	5-2
5.3	沖刷坑之長度 (L_s) 與寬度 (W_s) 探討	5-7
5.4	流量歷線對沖刷深度之影響	5-9
5.5	橋墩不均勻面位置對沖刷深度之影響	5-11
5.6	本研究與 Melville(1996)沖刷深度之比較	5-13

陸、結論與建議

 6.1 結論
 6-1

 6.2 建議
 6-2

 参考文獻
 6-3

圖目錄

圖 2-1	橋樑一般沖刷、束縮沖刷與局部沖刷示意圖	2-2
圖 2-2	不均勻橋墩沖刷深度與覆土高度示意圖	2-8
圖 2-3	不均匀矩形橋墩幾何配置圖	2-9
圖 2-4	等效橋墩權重分佈圖	2-13
圖 2-5	沖刷深度隨流速與時間之變化圖	2-16
圖 2-6	沖刷深度(ds/De)與覆土高度(Y/D)關係圖	2-23
圖 2-7	不同水流攻角下橋墩周圍無因次化等深線示意圖	2-28
圖 2-8	水流攻角與修正因子關係圖	2-29
圖 3-1	圓柱型橋墩周圍水流形態示意圖	3-1
圖 3-2	橋墩周圍泥砂顆粒運移示意圖	3-5
圖 3-3	沖刷坑內泥砂顆粒受力平衡示意圖	3-9
圖 3-4	橋墩周圍三維流場示意圖	3-11
圖 3-5	橋墩上游水流結構示意圖	3-14
圖 3-6	單一股水流造成之向下射流流速分佈圖	3-14
圖 3-7	多股水流造成之向下射流流速分佈圖	3-15
圖 3-8	橋墩上游沿壁射流造成之沖刷坑示意圖	3-18
圖 3-9	不均勻圓柱型橋墩沖刷坑示意圖	3-19
圖 3-1) 不均勻矩形橋墩幾何配置圖	3-21

VII

圖 4-1	試驗渠槽配置圖	4-3
圖 4-2	研究試驗之不均勻橋墩規格	4-4
圖 4-3	試驗河床質粒徑分佈曲線	4-7
圖 4-4	V型堰流量率定曲線	4-8
圖 4-5	變量流三角形流量歷線型式	4-9
圖 4-6	完全發展區段選定範圍	4-10
圖 4-7	試驗流程圖	4-14
圖 5-1	前峰型 A 歷線於不同覆土高度下之河床縱斷面變化	5-3
圖 5-2	中峰型 B 歷線於不同覆土高度下之河床縱斷面變化	5-3
圖 5-3	後峰型 C 歷線於不同覆土高度下之河床縱斷面變化	5-4
圖 5-4	不同變量流流況下橋墩上下游之縱斷面變化	5-5
圖 5-5	不均勻橋墩於變量流不同覆土高度之縱斷面(D/D [*] =0.4)	5-6
圖 5-6	不均勻橋墩於變量流不同覆土高度之縱斷面(D/D [*] =0.7)	5-6
圖 5-7	無因次橋墩沖刷坑長度 L_s/D^* 與無因次覆土高度 Y/D^*	5-8
	之關係	5 0
圖 5-8	無因次橋墩沖刷坑寬度 W_s/D^* 與無因次覆土高度 Y/D^*	5-9
	之關係	. ,
圖 5-9	不同流量歷線下沖刷深度隨時間變化之比較圖	5,10
		5-10

 $(D/D^*=0.7 \cdot Y=-15mm)$

VIII 逢甲大學學生報告 ePaper(2005 年)

圖 5-11 不均勻面位置與沖刷深度之比較

5-13

(D/D^{*}=0.7,中峰型歷線)

圖 5-12 Melville(1996)沖刷深度推估值與本研究實測值比較圖 5-15

表目錄

表 2-1 均勻橋墩最大沖刷深度推估公式	2-5
表 2-1(續) 均勻橋墩最大沖刷深度推估公式	2-6
表 2-2 不同長寬比橋墩幾何形狀校正因子	2-26
表 2-3 橋墩幾何形狀校正因子與橋台幾何校正因子	2-27
表 2-4 橋墩幾何形狀因子修正係數	2-27
表 2-5 水流攻角修正因子	2-29
表 4-1 台灣西部主要河川跨河橋樑資料及其相關橋墩形式	4-4
表 4-2 渠槽試驗條件	4-11
表 5-1 本研究與 Melville(1996)研究試驗條件比較表	5-14

目	錄
	目

照片	4-1	光纖視鏡	4-5
照片	4-2	超音波剖面量測儀	4-5
照片	4-3	電磁流速計	4-6
照片	4-4	顯示式管路手動矩形閘閥	4-6

符號表

符號	符號說明	因次
a_1	係數	【一】
a_2	係數	【一】
<i>a</i> ₃	係數	【一】
a_{f}	矩型橋基迎水面寬度	[L]
a_p	矩型橋墩迎水面寬度	[L]
A_1	係數	【一】
В	渠道寬度	[L]
B_1	係數	【一】
С	係數	【一】
С	係數	【一】
C_1	係數	【一】
C_2	係數	【一】
C_{D}	拖曳力係數	【一】
C_L	上升力係數	【一】
d	顆粒粒徑	$\begin{bmatrix} L \end{bmatrix}$
d_{50}	中值粒徑	$\begin{bmatrix} L \end{bmatrix}$
d_s	最大沖刷深度	

d_{se}	平衡沖刷深度	[L]
$d_{s\min}$	最小沖刷深度	
D	橋墩迎水面寬度或墩徑	
D^{*}	橋基迎水面寬度或橋基直徑	
D_e	等效橋墩寬度	
D_p	橋墩寬度	[L]
f_D	橋墩所佔權重	【一】
f_{D^*}	橋基所佔權重	【一】
F_D	平行沖刷坑斜面之拖曳力	$[MLT^2]$
F_L	垂直於沖刷坑斜面之上升力	$[MLT^2]$
Fr	福祿數(Froude number)	[—]
Fr_m	模型之福祿數	[—]
Fr_p	原型之福祿數	[—]
g	重力加速度	LT^2
<i>g</i> _{<i>m</i>}	模型之重力加速度	LT^2
<i>g</i> _{<i>p</i>}	原型之重力加速度	LT^2
<i>g</i> ₂	橋墩形狀參數	[—]
<i>g</i> ₃	流況參數	[—]
G	泥砂顆粒於水中之自重	$\left(MLT^2\right)$

h	平衡沖刷深度與水深之和	[L]
h^{*}	長度特性參數	[L]
Н	V型堰溢流水深	[L]
Ι	橋墩長	[L]
k_1	係數	[—]
<i>k</i> ₂	係數	[—]
<i>k</i> ₃	係數	[—]
k_4	底床粒徑函數	[—]
<i>k</i> ₅	底床粒徑函數	[—]
K_1	斜率	[—]
K_2	截距	[—]
K _d	底床質相對糙度修正因子	[—]
K _I	相對水流強度修正因子	[—]
K_n	河床之粗糙度	$\begin{bmatrix} L^{-1/3}T \end{bmatrix}$
K_{sh}	橋墩形狀因子修正係數	【一】
K _{sh.D}	橋墩形狀因子	[—]
K _{sh.D*}	橋基形狀因子	[—]
K_{y}	相對水流與水深修正因子	[—]
K_{yb}	相對水深修正因子	[—]

K_{θ}	水流攻角修正因子	[—]
K_{σ}	標準偏差修正係數	[—]
l_m	模型之特性長度	[L]
l_p	原型之特性長度	[L]
L	渠道長度	[L]
L_{f}	矩型橋基長度	[L]
L_p	矩型橋墩長度	[L]
L_s	沖刷坑長度	[L]
L_u	矩型橋基向上游延伸之距離	[L]
m_1	係數	[—]
n_1	係數	[—]
р	水壓力強度	$\left(ML^{-1}T^{2}\right)$
p_1	係數	[—]
Р	變量流參數	【一】
Q	流量	$\begin{bmatrix} L^3T^1 \end{bmatrix}$
Q_{si}	進入沖刷區域之沉滓輸送率	$\begin{bmatrix} L^3T^1 \end{bmatrix}$
Q_{so}	沖刷區域輸出之沉滓輸送率	$\begin{bmatrix} L^3T^1 \end{bmatrix}$
r	沖刷過程中之渦流半徑	[L]
<i>r</i> ₀	沖刷前之渦流半徑	[L]

XV

r_1	係數	[—]
Re [*]	觀測點雷諾數(Reynold's number)	【一】
S	坡度	【一】
t	三角歷線之總延時	[T]
t _i	流量歷線延時	$\begin{bmatrix} T \end{bmatrix}$
t_p	三角歷線達洪峰流量之延時	$\begin{bmatrix} T \end{bmatrix}$
Т	沖刷時間	$\begin{bmatrix} T \end{bmatrix}$
T_{e}	沖刷達平衡所需時間	$\begin{bmatrix} T \end{bmatrix}$
и	x方向之速度	LT^{1}
u'	無因次之x方向速度分量	[—]
${\cal U}_*$	顆粒剪力速度	$\begin{bmatrix} LT^1 \end{bmatrix}$
<i>u</i> _{*c}	為顆粒臨界剪力速度	
U_c^*	底床臨界速度	$\begin{bmatrix} LT^1 \end{bmatrix}$
v	y方向之速度	$\begin{bmatrix} LT^1 \end{bmatrix}$
V_h	馬蹄型渦流之切線速度	$\begin{bmatrix} LT^1 \end{bmatrix}$
v_{he}	平衡沖刷時馬蹄型渦流之切線速度	$\begin{bmatrix} LT^1 \end{bmatrix}$
V _m	模型之水流速度	$\begin{bmatrix} LT^1 \end{bmatrix}$
V _p	原型之水流速度	$\begin{bmatrix} LT^1 \end{bmatrix}$
<i>v</i> '	無因次之 y 方向速度分量	【一】

v [*]	速度特性参數	$\begin{bmatrix} LT^1 \end{bmatrix}$
V	接近流平均速度	LT^{1}
V_{c}	泥砂臨界啟動流速	$\begin{bmatrix} LT^1 \end{bmatrix}$
V_p	歷線尖峰流量時上游接近速度	$\begin{bmatrix} LT^{1} \end{bmatrix}$
W _s	沖刷坑寬度	[L]
<i>x</i> '	無因次 x 座標	[-]
x^{*}	觀測點x座標	[L]
X	橋墩沖刷修正因子	【一】
У	接近流水流深度	$\begin{bmatrix} L \end{bmatrix}$
y_p	歷線尖峰流量時上游接近水深	$\begin{bmatrix} L \end{bmatrix}$
<i>y</i> '	無因次 y 座標	[—]
<i>y</i> *	觀測點y座標	$\begin{bmatrix} L \end{bmatrix}$
Y	橋基頂部距底床之高程,即覆土高度	$\begin{bmatrix} L \end{bmatrix}$
Y_{e}	等效橋基高度	$\begin{bmatrix} L \end{bmatrix}$
Y_{\min}	最小沖刷深度時橋基頂部距底床之高度	$\begin{bmatrix} L \end{bmatrix}$
Z.	河床高程	$\begin{bmatrix} L \end{bmatrix}$
¥	沖刷坑之體積	$\begin{bmatrix} L^3 \end{bmatrix}$
$V_{Y(i)}$	不同覆土高度Y之沖刷坑體積	$\begin{bmatrix} L^3 \end{bmatrix}$
α	水流攻角	[—]

沖刷坑體積減緩率	[—]
沖刷坑坡度與水平渠底之夾角,即安息角	[—]
流體密度	ML^{-3}
底床質密度	$\left(ML^{-3} \right)$
運動黏滯係數	$\begin{bmatrix} L^2 T^1 \end{bmatrix}$
動力黏滯係數	$\left(ML^{-1}T^{1}\right)$
底床質幾何標準偏差	【一】
環流量	$\begin{bmatrix} L^3T^1 \end{bmatrix}$
單一馬蹄型渦流產生之環流量	$\left(L^3T^1\right)$
	 沖刷坑體積減緩率 沖刷坑坡度與水平渠底之夾角,即安息角 流體密度 運動黏滯係數 動力黏滯係數 底床質幾何標準偏差 環流量 單一馬蹄型渦流產生之環流量

壹、前言

1.1 研究動機

台灣為一海島,其河川主要以中央山脈為分水嶺,受地形因素影響河川坡陡流急,且受氣候因素影響豐枯水期懸殊,每當發生洪水歷 程時都相當急促,其造成河川主要的侵蝕作用。由於河床未能在急促 的洪水消漲中進行調節與維持輸砂平衡,造成整個河川自然演變過程 中搖擺不定,且難於短期間內達到穩定平衡的狀態。

在天然河道中建造水工結構物,如橋墩、防砂壩、丁壩、護岸等, 由於結構物會阻滯河道而造成水流流況的改變,常會造成局部沖淤現 象。橋樑橫跨河流,故橋墩的存在導致水流通水斷面積縮小,當水流 通過橋墩時因通水斷面積縮小產生束縮作用造成流況產生變化,因此 橋墩周圍河床發生較為劇烈之沖淤變化。其變化主要於橋墩上游處發 生墩前壅水現象,產生向下射流造成橋墩沖刷。臨近橋墩周圍,由於 橋墩之阻滯造成河道寬度縮小,河槽中單寬流量增加、流速加大,而 造成馬蹄型渦流加劇對橋墩周圍之局部沖刷作用。當通過橋墩之馬蹄 型渦流,在橋墩下游處形成消散及尾跡渦流,因流速減小,致使水流 攜砂能力下降,泥砂便於墩後發生落淤,形成淤積堆。

就水利工程觀點而言,水流所造成的局部沖刷是研究探討的重點 之一。台灣坡陡流急之河川特性,湍急的洪水劇烈地沖刷橋墩基礎, 局部沖刷情形益形嚴重,致使橋墩基礎掏空裸露甚至導致敦體傾倒毀 壞,若不加以防範及保護,將危及橋樑安全。因此橋基裸露是目前台 灣跨河橋樑設計及其安全維護所面臨最急迫的問題之一。

1.2 研究目的

本研究之主要目的,在於變量流流況下,探討非同心圓柱型橋墩 之局部沖刷機制與流況。有關橋墩沖刷方面之研究甚多,大都侷限於 定量流的流況下進行,且絕大多數針對均勻橋墩與同心圓不均勻橋墩 之局部沖刷影響做探討,對於變量流流況、非同心圓柱型橋墩之相關 研究則付諸闕如。

非均匀橋墩主要利用不均匀面來減緩橋墩所產生向下射流的強度,所以不均匀面面積之大小、設置位置(覆土高度Y)為橋樑安全 與否之重要指標。因此本研究模擬橋墩在變量流歷線(前峰型、中峰 型和後峰型)下對不同墩徑比 (D/D*=0.4 及 0.7)與不同覆土高度 (Y=30mm、15mm、0mm、-15mm)之沖刷機制進行瞭解。其實驗數據 將討論橋墩的不均勻面面積之大小、設置位置(覆土高度Y)對局部 沖刷深度與沖刷體積減緩效果,最終將探討不同橋墩型式局部沖刷現 象及其水理安全,以獲致最理想之不均勻橋墩型式,以供國內橋樑及 其保護工設計時之參考。

1.3 內容架構

本文共分為六個章節,並將其章節內容大略分述如下:

第壹章 前言:概略說明本研究之研究動機、研究目的及內容組織。

第貳章 文獻回顧:簡述以往相關研究,並針對其文獻加以探討。

第參章 理論分析:包括探討流經圓柱型橋墩之流場,並針對前人所 做之沖刷坑與不均勻橋墩沖刷相關理論加以評析。

第肆章 水工模型試驗:說明本研究之試驗設備、試驗儀器及試驗前

1-2 逢甲大學學生報告 ePaper(2005 年)

準備工作,並進一步描述試驗條件、試驗步驟與試驗資料之 量測方法。

- 第伍章 結果分析與討論:針對各種不同地文(覆土高度)及水文(變量流)條件下,不同型式非均勻橋墩之沖刷歷程、沖刷範圍及局部沖刷深度進行討論與分析,並得廣泛而深入之成果。
- 第陸章 結論與建議:將本研究之理論分析與實驗結果加以歸納,提 出最終之結論與建議,以供後續研究者明確之方向及相關工 程於不均勻橋墩工程設計之參採。

貳、文獻回顧

河床沖刷行為大致可分為一般沖刷、局部沖刷與束縮沖刷。無論 河道中是否有結構物存在,河床泥砂均會受水流作用產生一般沖刷。 而水流流經橋墩之間時,因水工結構物阻礙通水斷面積產生束縮沖 刷。當水流至橋墩前緣時,則產生向下射流而造成橋墩前緣及周圍的 局部沖刷。此橋端前緣及周圍的局部沖刷對橋樑之安全影響甚大。

根據 Raudkivi(1986)^[39]及陸浩、高冬光(1991)^[6]曾針對橋墩附近的 沖刷情形做探討,其認為橋墩的沖刷現象可分為一般沖刷、束縮沖刷 與局部沖刷等三個部分。

- 一般沖刷(general scour):係指河道在未設置任何結構物時,水流對 渠床沖刷造成高程下降的情形。河床中的水流驅使泥砂運移,而泥 砂影響水流結構,所以兩者是相互依存,河床型態永遠處於發展變 化中。
- 2. 束縮沖刷(constriction scour):係指橋墩或橋台興建之後,以致佔據 部分河寬,形成阻水效應,造成水流之通水斷面束縮,導致迴水 效應(backwater),而通過橋墩附近的水流流速增加,進而對橋墩附 近的河床造成沖刷。
- 3. 局部沖刷(local scour):係指河道由於因橋墩或水工結構物的存在,對於水流產生局部阻礙與干擾的現象,迫使水流在橋墩前緣 壅水、繞流,流速與流向的劇烈變化,引起渦流和極強的河床面 剪應力,進而造成河床局部的沖刷與高程的下降。

Melville & Coleman(2000)^[34]則認為一般橋樑所造成之沖刷,亦有 可能為兩種沖刷類別之加總。因此,李俊穎(2005)^[3]將橋墩沖刷現象 以圖 2-1 展示,以利釐清各種沖刷之意涵。

2-1

圖 2-1 橋樑一般沖刷、束縮沖刷與局部沖刷示意圖

2.1 均匀橋墩沖刷

Dargahi(1990)^[20]在均勻橋墩沖刷試驗中提出馬蹄型渦流為造成 沖刷的主要原因,並將沖刷歷程分為三個階段:

1. 開始時期: 無沖刷產生。

2. 主要沖刷:沖刷較劇烈,並產生週期性波動。

3. 沖刷後期: 輸砂率及沖刷深度隨時間遞減。

Dey(1999)^[21]曾針對均勻橋墩之局部沖刷深度與時間變化做相關研究比較,提出下列主要概念:

1. 沖刷情況主要是由馬蹄型渦流造成。

- 2. 底床顆粒從沖刷坑底部被帶起並產生最大沖刷深度。
- 沖刷坑中底床質之重量變化率等於從沖刷坑被帶出之底床質重量
 變化率與被帶入沖刷坑之底床質重量變化率之差。

由上述觀念推論出均勻與不均勻之底床質粒徑在清水流動床情 況沖刷下,圓形橋墩周圍局部沖刷變化隨時間影響。均勻粒徑泥砂在 清水沖刷情況下之實驗結果與模式推估結果相當接近,而在動床條件 下則有高估的趨勢,主要是由於受實驗底床會產生沙丘之影響。此 外,對於不均勻粒徑還提供一些安全係數,可提供工程設計時計算最 大沖刷深度之用。

由於橋墩之沖刷行為乃複雜之三維流場,雖國內外對於相關研究 與室內水工模型試驗持續進行,然而目前尚無適用於現場之沖刷公 式,除天然河川流量歷線難以模擬外,橋墩型式不一亦為主要因素。 此外,如:水流攻角、底床質、河川坡度等影響因子尚未明確,因此 僅能以較簡化之條件來探討其對沖刷深度之影響。

關於橋墩前緣局部沖刷深度相關室內水工模型試驗,前人大多採 用均勻橋墩(單一墩徑)進行試驗,且由於變量流流況較難控制,大多 以定量流作為試驗水流條件。國內亦有相關室內水工模型試驗,如:

林景輝(1993)^[7]運用多組定量清水流對均勻橋墩模型,進行室內 沖刷試驗,將各項影響橋墩局部沖刷因子分項討論,並收集前人相關 試驗與成果進行迴歸分析比較。其迴歸式如下:

$$\frac{d_{se} + y}{D} = 1.378 \cdot \left(\frac{y}{D}\right)^{0.83} \cdot \left(\frac{D}{d_{50}}\right)^{0.045} \cdot \left(\frac{V}{V_c}\right)^{0.24} \cdot (1 - S)^{-1.47}$$
(2.1-1)

上式中, d_{se}為平衡沖刷深度、y 為水深、D 為橋墩迎水面寬、d₅₀ 為 底床中值粒徑、V 為來流平均流速、V_c 為底床質臨界啟動速度、S 為 河床坡度。當上式中參數條件不足時,可將式(2.1-1)轉換成式(2.1-2)、 (2.1-3)與(2.1-4):

$$\frac{d_{se} + y}{D} = 1.385 \cdot \left(\frac{y}{D}\right)^{0.83} \cdot \left(\frac{D}{d_{50}}\right)^{0.045} \cdot \left(\frac{V}{V_c}\right)^{0.24}$$
(2.1-2)

逢甲大學學生報告 ePaper(2005 年)

2-3

$$\frac{d_{se} + y}{D} = 1.336 \cdot \left(\frac{y}{D}\right)^{0.83} \cdot \left(\frac{D}{d_{50}}\right)^{0.045}$$
(2.1-3)

$$\frac{d_{se} + y}{D} = 1.523 \cdot \left(\frac{y}{D}\right)^{0.83} \tag{2.1-4}$$

經分析顯示水流特性參數(y/D)為影響橋墩局部沖刷之主要因子,而沉滓特性參數(D/d₅₀)為影響橋墩局部沖刷之次要因子。而沉滓 啟動特性參數(V/V_c)及渠床特性參數(1-S)之影響則不明顯。

由於定量流與天然流量歷線不同,因此賴昱彰(1995)^[11]遂利用單 一圓柱做為橋墩模型,並將相對水流強度*V/V*。控制於 0.8~1.1 之間, 且採階梯式流量歷線型態,模擬變量流流量歷線進行室內試驗,其歷 線型態除採用尖峰流量到達時間發生於沖刷總延時之前約 1/3 與 1/2 外,並考慮雙洪峰之歷線型態。

賴昱彰(1995)^[11]收集前人相關試驗條件與結果,發現在一次洪峰 流峰流量歷線,沖刷深度可運用下列迴歸式計算:

$$\frac{d_{se} + y}{D} = 0.54 \cdot \left(\frac{y}{D}\right)^{1.2} \cdot \left(\frac{D}{D_{50}}\right)^{0.48} \cdot \left(\frac{V}{V_c}\right)^{0.57} \cdot (P)^{0.05}$$
(2.1-5)

上式中, y_p 為尖峰流量所對應之水深,P為變量流參數, $P = (y_p - y_b)/t_p u_{*0}$, y_b 為起始流量所對應之水深, t_p 為尖峰流量發生 時間, u_{*0} 為起始流量所對應之上游剪力速度。

以往學者對於影響橋墩沖刷因素之觀點各有不同,論調各異,並 相繼推導出許多沖刷公式,做為橋墩設計之準則,如下表 2-1。

學者	公式	標準化形式	備註
Laursen (1962)	$\frac{D}{y} = 5.5 \frac{d_s}{y} \left[\left(\frac{d_s}{11.5y} + 1 \right)^{1.7} - 1 \right]$	$d_s / D \approx 1.11 (y / D)^{0.5}$	<i>d_s</i> :沖刷深度 D:橋墩直徑 y:水深
吳建民 (1965)	$1 + 0.116 \left(\frac{d_s}{y}\right) = 0.98 \left[1 + \frac{(D/2y)}{1.3(d_s/y)}\right]^{2/3}$		
Breusers (1965)	$d_s = 1.4D$	$d_{s} / D = 1.4$	
王燦汶 (1968)	$\frac{d_s}{y} = 2Fr^{2/5} \left(\frac{2D}{y}\right)^{3/5} \left(1 - e^{-0.026B^2 e^{2.932y}}\right)$		F _r :福祿數 B:渠寬
Shen et al (1969)	$d_s = 0.000223 \left(\frac{VD}{v}\right)^{0.619}$	$ v = 10^{-6} m/s d_s / D = 2.34 (y/D)^{0.381} Fr^{0.619} y^{-0.06} $	V:來流平均速度 U:運動黏滯係數
Chitale (1988)	$d_{s} = 2.5D$	$d_{s} / D = 2.5$	
Melville and Sutherland (1988)	$d_s / D = K_y K_I K_d K_s K_\alpha$	臨界條件下 $d_s / D = 2.4 K_y K_d K_s K_o$	 K_y:相對水流與水深修正 因子 K_I:相對水流強度修正因 子 Kd:底床質相對粗糙度修正 因子 Kα:水流攻角修正係數
CSU公式 (1990)	$d_s / y = 2.0 K_{sh} K_{\alpha} (D/y)^{0.65} Fr^{0.43}$		 K_{sh}:橋墩形狀因子修正係 數(0.9~1.1) K_α:水流攻角修正係數 (1.0~5.0)
Breusers and Raudkivi (1991)	$d_s = 2.3DK_y K_d K_s K_\theta K_\sigma$	$d_{s} / D = 2.3K_{y}K_{d}K_{s}$ $K_{\theta}K_{\sigma}$	K_{σ} :標準偏差修正係數

表 2-1 均匀橋墩最大沖刷深度推估公式

學者	公式	標準化形式	備註
林景輝 (1993)	$\frac{d_{sc} + y}{D} = 1.378 \cdot \left(\frac{y}{D}\right)^{0.83} \cdot \left(\frac{D}{d_{50}}\right)^{0.045} \cdot \left(\frac{V}{V_c}\right)^{0.24} \cdot \left(\frac{y}{V_c}\right)^{0.24} \cdot \left(\frac{y}{V_c}\right)^$		dse:平衡沖刷深度, y:水深, D:橋墩迎水面寬, d50:底床中值粒徑, V:來流平均流速, Vc:底床質臨界啟動速度, S:河床坡度
蘇重光 (1995)	$\frac{d_s + y}{D} = 0.54 p \left(\frac{y}{D}\right)^{1.2} \left(\frac{D}{d_{50}}\right)^{0.48} \left(\frac{V_p}{V_c}\right)^{0.57}$		V_c :顆粒啟動速度 V_p :尖峰流量時接近速度 P:變量流參數
Parola (1996)	$2.25 \sim 2.5 a_p$		L _f :矩形橋墩基礎長度 L _p :矩形橋墩長度 L _u :向上游延伸之長度 a _p :矩形橋墩迎水面寬度
Melville (1997)	$d_s = K_{yb} K_I K_d K_s K_{\theta}$	臨界條件下 $d_s / D = K_{yb} K_d K_s K_{\theta}$	K _{yb} :相對水深修正因子

表 2-1(續) 均勻橋墩最大沖刷深度推估公式

2.2 不均匀橋墩沖刷

不均勻橋墩係指橋墩迎水面寬度(D)與橋基迎水面寬度(D*)不相等,而兩者之比值即為不均勻橋墩墩徑比 D/D*(ratio of nonuniform piers diameter)。

Melville & Raudkivi(1996)^[31]分析了三種不均勻橋墩之基礎佈 置,主要是由橋墩基礎頂部(不均勻面)位置的不同來做區分,可分為 三種(如圖 2-2):

1. 橋墩基礎頂部位於沖刷坑之下(Zonel)

2. 橋墩基礎頂部位於沖刷坑之中(Zone2)

3. 橋墩基礎頂部位於河床之上(Zone3)

將三種情況加以分析,得到最小沖刷深度d_{smin}與橋基位置如下:

$$\frac{d_{\rm s\,min}}{\rm D} = 2.4 \left(\frac{\rm D}{\rm D^*}\right)^{0.4+0.5(\rm D/D^*)}$$
(2.2-1)

$$\frac{Y_{\min}}{D} = 2.4 \left(\frac{D}{D^*}\right)^{0.4+0.5(D/D^*)} - 0.65 \left(\frac{D}{D^*}\right)^4$$
(2.2-2)

式中, d_{smin} 為最小沖刷深度; D 為橋墩直徑; D*為橋墩基礎直徑; Y_{min} 為最小沖刷深度時橋基頂部距底床之高度。

而在-3≤Y/D≤0.7的情況下,沖刷公式可以修正如下:

$$\frac{d_{\rm s}}{\rm D} = 2.4 \left(\frac{\rm D}{\rm D^*}\right)^{\rm X} \tag{2.2-3}$$

$$X = \left(\frac{D}{D^*}\right)^3 + 0.1 - 0.47\sqrt{0.75 - \frac{Y}{D}}$$
(2.2-4)

其中, d_s為沖刷深度; Y 為橋基頂部距底床之高度, 即覆土高度; X 為沖刷公式之修正因子。

利用實驗所得資料分析,發現下列現象:

- 1. Y和 D/D*為不均勻橋墩之主要沖刷因子。
- (Zone1) Y/D > 2.4, d_s=2.4D。其沖刷深度與均勻橋墩(D)所形成的
 一致,而且與基礎的大小和位置無關。
- (Zone2)0≤Y/D≤2.4時,d_s<2.4D(Y/D<0.7,D/D*<0.6除外), 並且隨著覆土高度增加而降低。由於不均匀面較能減少向下射流之 能量,因此沖刷深度較低於第一區(Zone1)。
- 4. (Zone3)Y/D < 0時,2.4D < d_s < 2.4D*。覆土高度位於不均勻面下, 初期由於不均勻面減低向下射流強度,最終因橋墩基礎之迎水面寬 度(D*)較大,以致沖刷深度較大於均勻橋墩(D)所形成之沖刷。
- 5. 在 Zone2 與 Zone3 情況下,沖刷深度與 D/D*及 Y/D 有關。

(A) Zone1 (Y/D > 2.4 , $d_s = 2.4$ D)

(except Y/D < 0.7, $D/D^* < 0.6$)

(C) Zone3 (Y/D < 0 , 2.4D < d_s < 2.4D^{*}) 圖 2-2 不均勻橋墩沖刷深度與覆土高度示意圖^[30]

Imamoto & Ohtoshi(1987)^[24]利用沖刷坑幾何相似特性,並導入馬 蹄型渦流與利用沖刷坑輸砂平衡之方法,來模擬不均勻橋墩之沖刷, 結果發現沖刷深度與橋墩基礎頂部與底床之距離有關。當橋墩基礎直 徑較大且其頂部與底床齊平時,可有效降低橋墩沖刷深度,一旦橋墩 基礎有裸露情況時,沖刷會急遽增加,並可能產生更嚴重之沖刷。 Parola et al.(1996)^[36]也曾對不均勻矩形橋墩之沖刷進行探討,並 提出矩形橋墩基礎之長度 L_f須較橋墩長度 L_p向上游延伸 L_u,其向上 游延伸長度約為 2.25~2.5*a_p*(矩型橋墩迎水面寬度)時,能有效減少 橋墩前緣沖刷深度。詳如圖 2-3,圖中 *a_f*為矩型橋基迎水面寬度,Y為 覆土高度。

圖 2-3 不均匀矩形橋墩幾何配置圖^[34]

Melville & Sutherland(1988)^[29]提出一般河流底床運動的均匀泥砂,在矩形或圓形橋墩與微小速度下水流方向成直線時。

$$\frac{d_s}{a_p} = 1.872 K_{sh} \left(\frac{d_s}{a_p}\right)^{0.255}$$
 if $\frac{y}{a_p} < 2.6$ (2.2-5)

$$\frac{Y_s}{a_p} = 2.4K_{sh}$$
 if $\frac{Y_a}{a_p} > 2.6$ (2.2-6)

其中, d_s為沖刷深度; y 為水流深度; a_p為橋墩寬度, K_{sh}為橋墩形狀 修正係數(圓形橋墩 K_{sh}=1.0、矩形橋墩 K_{sh}=1.11)。

李俊穎(2005)^[3]曾以變量流歷線對兩種墩徑比(D/D*=0.4&0.7)同 心圓不均勻橋墩局部沖刷進行探討,在不同覆土高度下進行沖刷試 驗,並提出同心圓不均勻橋墩之局部沖刷坑體積減緩率,在隨著橋基 (不均勻面)覆土高度之增加而有增加之現象。其中墩徑比(D/D*=0.4) 之減緩效果優於墩徑比(D/D*=0.7)。

2-9

鄭暐曦(2005)^[12]以階梯式流量歷線,對非均勻圓柱型橋墩墩徑比 (D/D*=0.7)於不同歷線與覆土高度下,針對橋墩周圍局部沖刷深進行 探討,發現當覆土面位於不均勻面之上(橋墩基礎未裸露),則有明顯 降低沖刷深度之效果(約22.6%),其中又以中峰型流量歷線所降低之 沖刷深度最大,反之後峰型流量歷線所產生之沖刷深最深。

2.3 等效橋墩(Equivalent Piers)

對於均勻橋墩的沖刷特性研究已相當完整,並提出許多均勻橋墩 之最大局部沖刷深度預估公式以供參考,但對於不均勻橋墩局部沖刷 深度之研究,則較為缺乏。由於不均勻橋墩型式不一,甚至有樁帽之 形式,為了將不均勻橋墩問題簡化,因此即有學者提出等效橋墩之概 念,藉以推求沖刷深度。目前較廣泛之評估方式為利用寬度或長度權 重法決定橋墩基礎裸露時等值之橋墩寬度後,並代入所選定的均勻橋 墩沖刷公式,以計算不均勻橋墩之沖刷深度。

Jones et al.(1992)^[26]提出當橋墩基礎位置高出水深之 0.1 倍 (Y>0.1y)時,等效橋墩寬度可視為橋基迎水面寬度;反之則以橋墩迎 水面寬度為等效橋墩寬度。

$$D_e = D^*$$
 $Y \ge 0.1y$ (2.3-1)

$$D_e = D$$
 $Y < 0.1y$ (2.3-2)

式中,D。為等效橋墩寬度。此公式計算相當方便,不需考慮平衡沖刷 深度未知的問題。不過在橋墩基礎高度小於0.1倍水深時,其沖刷深 度仍然會受橋墩基礎影響,若僅考慮橋墩寬度則會有低估沖刷深度的 情況。 Melville & Raudkivi(1996)^[31]利用橋墩及橋墩基礎長度在水中所 佔的比例來決定等效橋墩寬度,其公式如下:

$$D_{e} = \frac{D(y+Y) + D^{*}(d_{s} - Y)}{d_{s} + y}$$
(2.3-3)

使用上式時需先假設沖刷深度,才可以決定等效橋墩寬度,於運用上較為不便,經整理試驗數據簡化後可表示如下。

$$D_{e} = D\left(\frac{y+Y}{y+D^{*}}\right) + D^{*}\left(\frac{D^{*}-Y}{y+D^{*}}\right)$$
(2.3-4)

但因不同實驗條件所得之公式有所差異,故需考慮現場實際情況,選 擇較適用的公式。

Parola et al.(1996)^[36]利用橋墩及橋基長度權重法決定水深,並應 用 Melville & Sutherland(1988)^[29]提出的均勻橋墩局部沖刷深度預估 公式,其公式可表示為:

$$\frac{d_s}{D^*} = 1.872 K_{sh} \left(\frac{Y_e}{D}\right)^{0.225} \qquad \frac{Y_e}{D} \le 2.6$$
(2.3-5)

$$\frac{d_s}{D^*} = 2.4$$
 $\frac{Y_e}{D} > 2.6$ (2.3-6)

其中,Ye為等效橋基高度,其公式為:

$$Y_{e} = Y + \frac{K_{sh.D}}{K_{sh.D^{*}}} (y - Y) \left(\frac{D}{D^{*}}\right)$$
(2.3-7)

式中,K_{shD}為橋墩形狀因子;K_{shD*}為橋基形狀因子。

張藝馨(2000)^[8]針對單一圓柱型橋墩、非均勻圓柱型橋墩與雙樁 橫向排列型橋墩,進行定量流室內試驗,發現若橋墩型式為單一圓柱 型時,沖刷深度約為橋墩直徑之1.4倍。 張藝馨(2000)^[8]認為橋墩基礎裸露時由於橋墩基礎寬度較大,對 於沖刷深度有較大的影響,因此將橋墩基礎與橋墩寬度之權重表示成 類似靜水壓力分佈之三角形(如圖 2-4),藉以計算不均勻橋墩之等效 橋墩寬度。其中三角形之面積為1,而高為水深y,其底為2/y。等效 橋墩寬度可表示:

$$D_{e} = f_{D}D^{*} + f_{D^{*}}D$$
 (2.3-8)

其中 $f_{\rm D} = \left(\frac{y-Y}{y}\right)^2$,代表橋墩所佔權重的面積,而 $f_{\rm D*} = 1 - f_{\rm D}$ 代表橋 墩基礎所佔權重面積。

在非均勻圓柱型橋墩條件下,因考慮覆土相對於橋墩基礎面之高 度,發現若覆土高度高於圓柱型基礎面(不均勻面)時,沖刷深度會隨 著覆土高度降低而增加,此為圓柱型橋墩基礎之迎水面較圓柱型橋墩 上部墩柱迎水面寬大,因此所形成向下射流沖刷能力較強之緣故。若 覆土高度位於圓柱型基礎面之上,且覆土高度遠高於水流對圓柱型橋 墩所形成的最大沖刷深度,當最大沖刷深並未到達圓柱型基礎面時, 其最大沖刷深度與上部墩柱均勻橋墩之最大沖刷深度相等。

若覆土高度位於圓柱型橋墩與圓柱型基礎之交界面某一範圍內時,在 沖刷時期會因不均勻面的產生而對沖刷深度造成影響。當圓柱型橋墩 基礎裸露時,因迎水面較大相對所產生的向下射流能力較大,導致圓 柱型橋墩基礎部分沖刷深度較深而對橋樑安全產生危害。

圖 2-4 等效橋墩權重分佈圖

2.4 橋墩周圍局部沖刷特性

橋墩沖刷為局部沖刷(local scour)之一種。局部沖刷現象,即是指 沖刷區域之泥砂出流量與入流量間發生不平衡現象。

Laursen(1962)^[27]利用長距離束縮渠道研究水流流經橋墩時之流 場及泥砂顆粒沖刷之情況,對於局部沖刷提出四點結論:

1. 沖刷速率等於進出沖刷區域之沉滓輸送率差值。

2. 沖刷開始後,沖刷區域之通水斷面積增加,而沖刷速率隨之減小。
 3. 每一起始條件必有一沖刷極限之範圍。

4. 沖刷範圍隨著時間之增加而漸趨近於極限。

然而有關於沖刷速率等於進出沖刷區域之沉滓輸送率差值,沖刷 坑體積隨時間之變化率可由輸砂連續方程式來表示:

$$\frac{d\Psi}{dt} = Q_{\rm so} - Q_{\rm si} \tag{2.4-1}$$

式中, F為沖刷坑之體積; t為沖刷時間; Q_{so}為由沖刷區域輸出之沉 滓輸送率,與橋墩之幾何形式無關, 而與來流流速有關; Q_{si}為進入

2-13

逢甲大學學生報告 ePaper(2005 年)

沖刷區域之沉滓輸送率,與橋墩幾何形式、各水流參數及時間有關; Q_{si}為河道單位寬度沉滓輸送率與沖刷區域寬度之乘積。故Q_{si}不僅為 水流輸運能力之函數,同時與沖刷區域之寬度有關。由上述方程式可 知,當進入沖刷區域之沉滓輸送率為零時(Q_{si}=0),即為清水沖刷 (clear-water scour);反之則為含滓沖刷(live-bed scour)。

Breusers et al.(1991)^[17]根據剪力速度比值 u_{*}/u_{*c} (u_{*} 為顆粒剪力 速度, u_{*c} 為顆粒臨界剪力速度),將水流型態區分成下列三類: 1. u_{*}/u_{*c} < 0.5 時,為不沖刷情況。

2. 0.5≤u_{*}/u_{*} ≤1,為清水沖刷條件。

3. u_{*}/u_{*c} >1時,為含滓水流的情況。

Chabert & Engeldinger(1956)^[18]證明當水流屬於清水流流況 $(0.5 \le u_*/u_{*c} \le 1)$ 時,最大平衡沖刷深度隨著 u_*/u_{*c} 呈線性增加,一直到 $u_*/u_{*c} \ge 1$,平衡沖刷深度才會達到最大值。

Melville & Raudkivi(1977)^[28]、Melville & Chiew(1999)^[33]曾詳細分 析流體之水流強度即平均流速V與泥砂顆粒臨界啟動流速 V_c 之比 (V/V_c) 對沖刷的影響,獲得以下結論:

1. V/V_c < 0.5 時,不產生沖刷。

 $2.0.5 \leq V/V_c \leq 1$,為清水流況,即為清水沖刷。

 $3.1 < V/V_c \leq 4$,為含滓流況,即挾沙沖刷。

 $4. V/V_c > 4$ 時,為挾砂沖刷並產生逆沙丘(anti-dune)。

2.5 橋墩沖刷因子

由於橋墩周圍局部沖刷為三維分離流場,若純粹以理論分析方式
推求橋墩周圍局部沖刷深度較為困難與複雜,故過去大多運用試驗方 法量測橋墩周圍局部沖刷深度,並藉以推導出影響橋墩沖刷因子之權 重及相關沖刷深度公式。

2.5.1 橋墩沖刷因子之分類

影響橋墩沖刷之因子可分為,橋墩性質、水流性質、底床質特性、 沖刷時間等,而這些因子又與下列條件有關:

- 橋墩性質:橋墩迎水面寬度(D)、橋墩基礎寬度(D*)、水流攻角 (alignment)(α)、橋墩形狀因子修正係數(K_{sh})、不均匀面面積(A)、 橋墩迎水面面積(a)。
- 水流性質:流體密度(ρ)、運動黏滞係數(ν)、平均流速(V)、水流深 度(y)、重力加速度(g)。
- 3. 底床質特性:中值粒徑(d₅₀)、底床質幾何標準偏差(σ_g)、底床質密 度(ρ_s)、泥砂臨界啟動流速(V_c)。
- 4. 時間:沖刷時間(t)、沖刷達平衡所需時間(t_e)。

2.5.2 橋墩沖刷因子之探討

以下就各無因次參數之物理意義及其對橋墩局部沖刷之影響分 別加以討論:

1. 相對水流強度(Flow Intensity), V/V_c

橋墩局部沖刷依上游來流速度大小的不同,可以分為清水沖刷 (clear-water scour)及含滓沖刷(live-bed scour)兩種情況。清水沖刷為流 速小於底床質臨界啟動速度(V < V_c),因此沖刷坑中未有上游底床質泥 砂補充時之情況。含滓沖刷為流速大於底床質臨界啟動速度(V>V_c), 因而上游底床質受水流作用, 達臨界啟動流速補充至沖刷坑中之情 況。當清水沖刷隨著沖刷時間的增長而到達臨界狀況時,此時的沖刷 坑會因向下射流的速度減緩而無法再對底床進行淘刷而趨於平衡; 含 滓沖刷的平衡沖刷深度則會因為上游有底床質的補充, 而作不規則的 振盪,且其振盪的幅度會因流速的增快而變為較平緩; 橋墩在清水沖 刷時其最大沖刷深度會比含滓沖刷大, 而且清水沖刷達到平衡所需的 時間要比含滓沖刷來的長, 詳如圖 2-5。

圖 2-5 沖刷深度隨流速與時間之變化圖^[8]

Melville & Coleman(2000)^[34]指出在泥砂臨界啟動流速(V_c)時有最 大之沖刷深度。含滓沖刷之平均沖刷深度會小於清水沖刷深度,因此 橋墩沖刷問題仍以最大清水沖刷深度為主要考量。

2. 相對水流深度(Flow Depth), y/D

y/D 定義為水深和橋墩迎水面寬度的比值,當比值越小,水深改變會影響沖刷深度。當比值越大,則橋墩迎水面寬度會影響沖刷深

度,而與水深較無關係。

Jain & Fischer(1981)^[25]整理前人試驗研究結果,發現大多數沖刷 公式表示如下式:

$$\frac{d_s}{\mathbf{D}} = \mathbf{A}_1 \left(\frac{\mathbf{y}}{\mathbf{D}}\right)^{ml} \left(F_r\right)^{nl} + \mathbf{B}_1 \left(\frac{\mathbf{y}}{\mathbf{D}}\right)^{rl-pl}$$
(2.5-1)

式中, $A_1 \times B_1 \times m_1 \times n_1 \times p_1 \times r_1$ 等係數分別與橋墩形狀、水流攻 角及底床質特性有關,而 F_r 則為福祿數。Melville & Sutherland(1988)^[29] 指出,當 y/D>1.43 時橋墩局部沖刷深度只與橋墩迎水面寬度有關; 當 y/D<0.2 時,水深會影響橋墩沖刷深度;而當 $0.2 \leq y/D \leq 1.43$,水 深及橋墩迎水面寬度皆會影響局部沖刷深度。

Raudkivi & Ettema(1983)^[38]認為 y/D>3~4,而 Melville(1997)^[32]則指出 y/D>1.5~2 時,水深變化對沖刷的影響可以忽略,此為深水狀態;反 之則為淺水狀態。

3. 底床質相對粗糙度(Sediment Coarseness), d50/D

當底床質粒徑越大,其抵抗水流沖刷的能力越強,使得最大局部 沖刷深度越小。反之底床粒徑越小,最大沖刷深度會增加。當中值粒 徑 d₅₀<0.6mm 時,會在底床產生沙漣現象,進而影響沖刷深度。

然而底床質粗糙度及水流條件會影響底床質臨界啟動流速。 Raudkivi & Ettema(1977)^[37]提出當 d₅₀/D<0.02 時為細顆粒,沖刷深度 與粒徑無關;而當 d₅₀/D>0.02 時,沖刷深度為 d₅₀/D 的函數,且沖刷 深度隨 d₅₀/D 之增大而變小。

Melville & Sutherland(1988)^[29]整理前人相關研究成果,認為當底 床相對粗糙度小於 0.02 時,底床質粒徑對於橋墩沖刷深度影響可以 忽略。同時提出若以設計為目的,可採用下式計算 d₅₀/D 之底床質相

2-17

逢甲大學學生報告 ePaper(2005 年)

對粗糙度修正因子 K_d。

$$K_{d} = 0.57 \log \left[2.24 \left(\frac{D}{d_{50}} \right) \right] \qquad \begin{array}{c} d_{50} \\ D \ge 0.04 \end{array}$$

$$K_{d} = 1 \qquad \qquad \begin{array}{c} d_{50} \\ D \ge 0.04 \end{array}$$

$$(2.5-2)$$

4. 底床質密度與水流密度比(Specific Gravity), ρ_s/ρ

此影響因子即為比重,一般天然石英砂密度約為 2.65(Gilbert 1914),並認為水流密度為定值,故此影響因子可視為常數。

5. 底床質粒徑參數(Sediment Number), $V^2/[(\rho_s/\rho-1)gd_{50}]$

本參數定義為 V²/[(p_s/p-1)g d₅₀],由 Shields diagram 可得知,若 已知底床中質粒徑 d₅₀,即可推求底床粒徑為 d₅₀時之底床質臨界剪力 速度(critical shear velocity)u_{*c},而由已知之水深亦可推求底床質臨界 啟動速度,故此參數隱藏相對水流強度之參數。

張文鎰(2002)^[7]運用兩種不同底床質與三種底床質幾何標準偏 差,進行10組定量流與13組變量流室內水工模型試驗,並隨時間記 錄其沖刷深度。此外,其並運用床型模式來模擬橋墩沖刷歷程,再與 定量流與變量流之室內水工模型試驗沖刷深度實測值進行比較,發現 兩者相當接近。其研究成果,在分析變量流橋墩沖刷的試驗結果資料 時,發現變量流沖刷過程具有疊加的特性,並推導出一個變量流沖刷 參數,其值若介於0.05與0.35之範圍內時,變量流沖刷深度與變量 流參數會呈線性變化。

6. 底床質幾何標準偏差(Sediment Geometric Standard Deviation), σ_g

底床質均勻性可由其標準偏差 σ_g 來判定, $\sigma_g = \sqrt{d_{84}/d_{16}}$ 意即過篩 84%之底床質粒徑與過篩 16%之底床質粒徑比值之平方根。該值愈小 代表底床質粒徑愈均匀,反之則均勻度較差。河床質的粒徑分配不均 勻時,會在底床質表面形成護甲現象(armoring),使得底床質的臨界 啟動速度必須增加。因此,橋墩局部沖刷深度會比均勻粒徑分佈時小。

Raudkivi & Ettema(1977)^[37]收集相關最大沖刷深度與底床質相關 數據,可知在底床質幾何標準偏差極小之條件下,若底床中值粒徑大 於 0.7~0.9mm, 無因次化最大沖刷深度約為橋墩迎水面寬 2.1~2.3 倍; 而若底床中值粒徑於 0.7~0.9mm 範圍內, 無因次化最大沖刷深度約為 橋墩迎水面寬 1.4~1.5 倍。隨著底床質幾何標準偏差的改變, 無因次 化最大沖刷深度約為橋墩迎水面寬 0.3~2.3 倍。且指出在清水沖刷 時,橋墩周圍局部沖刷深度隨底床標準偏差 σ_g 增大而降低,沖刷深 度約為橋墩迎水面寬度之 0.3~2.3 倍,且在 $\sigma_g>1.3$ 時有護甲現象產生, 此時沖刷深度會隨之變小。

Baker(1980)^[14]認為在含滓沖刷時, σ_g 對於橋墩周圍局部沖刷深度的影響較清水沖刷小。

Raudkivi & Ettema(1983)^[38]提出當底床質的標準偏差σ_s為1時, 沖刷深度約為橋墩直徑的 1.4~1.5 倍,同時隨著標準偏差的變大,沖 刷深度會相對變小。並用迴歸得到無因次沖刷深度之計算公式:

$$\frac{d_s}{D} = K_1 \left[\left(\frac{d_{50}}{D} \right) \left(\frac{u_* T}{D} \right) \left(\frac{V}{u_* D} \right) \right] + \ln K_2$$
(2.5-3)

其中 K₁為斜率,K₂為截距。並訂定底床質幾何標準偏差校正因子, 並認為平衡沖刷深度與沖刷率,會由於底床質幾何標準偏差過大的關 係降低,其分界值約為1.5。

Raudkivi(1986)^[39]指出當底床質幾何標準偏差約為 3.5 時,所造成

之沖刷深度約為均勻底床時之20%,而所謂均勻底床即為底床質幾何 標準偏差小於1.5,此亦為護甲效應之臨界值。

Melville & Sutherland(1988)^[29]亦提出,前人研究結果顯示在清水 沖刷條件下,沖刷深度會隨著底床質幾何標準偏差的加而降低,而在 含滓沖刷條件時,若相對水流強度愈大,沖刷深度與底床質幾何標準 偏差關係愈趨不明顯。並認為底床質幾何標準偏差若小於 1.3,則可 視其為均勻床質。

Yanmaz & Altinbilek(1991)^[47]亦採用前人研究結果,認為當底床 質幾何標準偏差增加時,底床可能會產生護甲效應而降低沖刷深度。

7. 雷諾數(Reynolds Number), ρVD/μ

Shen et al.(1969)^[40]收集前人所做相關研究數據並加以分析,先假 設運動黏滯性係數 v=1×10⁻⁵ ft²/s,另外,流速則以來流平均流速,再 加入前人沖刷深度資料加以分析比較(包含非圓柱型橋墩、實驗程序 描述不完全,或資料中部份使用的方法不準確,及基本資料無法完全 獲得者),並假設紊流層的影響可以忽略,則包含所有已知資料的包 絡線之平衡沖刷深度方程式為:

$$d_{se} = 0.00073 \times \mathrm{R}_{e}^{0.619} \tag{2.5-4}$$

上式中,R_e為雷諾數,R_e=VD/v。根據比較分析的結果,得知在給定 的底床質以及橋墩幾何情況之下,沖刷深度會隨著雷諾數的增加而增 加,但是加至某一特定值時,沖刷深度反而會降低,此一特定值為最 大平衡沖刷深度d_{se}。

Francis et al(2001)^[29]利用三種黏性土壤進行室內沖刷試驗,得知 在低雷諾數時,橋墩周圍的沖刷深度幾乎相同;但是在高雷諾數時, 橋墩後方及兩側的沖刷深度較大,與砂質土壤之最大沖刷深度,通常

2-20

逢甲大學學生報告 ePaper(2005 年)

在橋墩前緣有很大的不同。整體而言,黏性土壤的沖刷速率比砂質土 壤的沖刷速率小,但平衡沖刷深度大致相同;黏性土壤的緊密度越 高,沖刷深度就越小。換言之,黏性土壤的沖刷深度除了與水流特性 有關之外,亦與水分子多寡及土壤緊密度有關;另外,黏性土壤所產 生的沖刷坑傾斜面坡度也較陡。

8. 福祿數(Froude Number), V/√gy

福祿數 *F*,為慣性力(inertia force)與重力(gravity)之比值。一般而 言,沖刷深度會隨著水流的速度增加而增大,只有在流速 *V*大於臨界 流速 *V*_c時,沖刷深度會降低。由於上游若仍有底床質進入沖刷坑中, 因此當流速大於臨界值之後的沖刷深度並非維持一定值,此一現象詳 如本節中相對水流強度 *V*/*V*_c之說明。

Shen et al.(1969)^[40]提出在均匀流條件之下,平衡沖刷深度可以表 示為水深之函數,並將前人研究數據加以分析獲得上下兩個包絡直 線,分別為:

$$\frac{d_{se}}{D} = 11F_r^2$$
 and $\frac{d_{se}}{D} = 3.4F_r^{0.67}$ (2.5-5)

式中dse為平衡沖刷深度。

Jain & Fisher(1980)^[25]指出在高流速時,靠近橋墩底部的流場強度 大小足夠將沖刷坑斜邊上的底床質沖刷出,甚至會使得斜邊角度大於 原本的底床質安息角(repose angle),此狀況並不會維持太久,兩側會 定期的崩落與倒塌,當受沙丘影響或當流場力量使的兩側不穩定時, 最大沖刷深度變的不穩定且不易量測或觀察。

一般而言,沖刷深度會隨平均流速的增加而增加,但是當大於底 床質臨界啟動速度時,沖刷深度會降低。以往認為降低為定值,但基 於仍有部分底床質會進入沖刷坑之中,因此認為大於臨界值之後的沖 刷深度非維持定值。

Jain(1981)^[25]將前人研究試驗之墩徑、水深、流速、底床粒徑等 四個影響沖刷深度因子分成五類,分別代表沖刷公式中所包含之不同 參數,跟據已知沖刷深度資料以及數據,與前人所做研究公式比較, 可得無因次化沖刷深度與臨界福祿數之關係式為:

$$\frac{d_s}{D} \propto \left(F_c\right)^{0.25} \tag{2.5-6}$$

式中臨界水流福祿數(F_c)亦為影響沖刷深度之參數。

9. 覆土高度(Initial Bed Elevation)與橋墩迎水面寬度比, Y/D

此因子定義為覆土高度與橋墩迎水面寬之比值,覆土高度定義為 起始河床面高程與橋墩基礎頂部(不均勻面)高程之距離,因此覆土高 度於不均勻面以上(橋墩基礎未裸露),此比值大於零;反之則小於零。

Melville & Raudkivi(1996)^[31]將覆土高度區分為三區,其沖刷深度 之計算與物理現象及特性已於 2.2 節中闡述。

圖 2-6 為覆土高度與沖刷深度之關係,圖中 D_e為等效橋墩之墩 徑。大致上,沖刷深度會隨著覆土高程與橋墩迎水面寬度之比值減小 而增加,在不均勻橋墩墩徑比小於 0.4 時,其變化更為明顯。

圖 2-6 沖刷深度 (d_s/D_e) 與覆土高度(Y/D)關係圖^[27]

吴沛倫(2001)^[4]針對不同橋墩幾何形狀以及群樁進行相關試驗與 研究發現,不均勻橋墩之橋墩基礎頂部位置不同時,會隨著橋墩基礎 頂部裸露高度之增加,造成迎水面積增加,進而導致沖刷深度加深。

關於群樁基礎之試驗研究,吳沛倫(2001)^[4]發現若樁帽之底部與 底床面切齊時,水流主要受到樁帽之影響,由於其迎水面積最大,且 往下游延伸部分較長,造成其沖刷範圍最大,而無樁帽時沖刷範圍較 小。若覆土於樁帽底部則主要受群樁影響,群樁之迎水面積為最小, 所造成之沖刷範圍亦為最小。換言之,最大沖刷深度及沖刷範圍與樁 帽距離底床高程呈現反比。

10. 不均勻橋墩墩徑比(Pier Ratio), D/D^{*}

此因子定義為橋墩迎水面寬與橋墩基礎迎水面寬之比值, Jones et al.(1992)^[26]運用 HEC-18(1991)沖刷深度公式計算橋墩沖刷深度,該公式如下:

$$\frac{d_s}{y} = 2.1 K_{sh} K_{\alpha} \left(\frac{D}{y}\right)^{0.65} \left(\frac{V}{\sqrt{gy}}\right)^{0.43}$$
(2.5-7)

上式中, *d*_s為沖刷深度, y 為來流水深, K_{sh}為橋墩形狀校正係數, K_a 為水流攻角校正係數, D 為橋墩迎水面寬, *V* 為來流平均流速。並比 較以下三種將不均勻橋墩單純化之分析方法:

- (1)若基礎迎水面寬大於 10%的水深時,使用基礎迎水面寬來當作特 性長度,但若基礎迎水面寬小於 10%的水深時,則使用橋墩迎水 面寬作為特性長度。
- (2)使用加權過後之橋墩迎水面寬。
- (3)運用適當水流參數將橋墩分量與基礎分量分別計算後,取較大值作為計算依據。

結果發現之間差異約為 1.10~3.48 之間,大致上後兩種分析方法 較第一種來得準確。

根據 Melville & Raudkivi(1996)^[31]以不均勻橋墩所做之試驗結果 顯示,當不均勻橋墩墩徑比比值越大時,所產生之沖刷深度也越大。

且由於不均勻橋墩型式不一,亦可能有樁帽形式,因此運用等效 橋墩概念將不均勻橋墩等效化,於圓柱型橋墩試驗之等效橋墩迎水面 寬 De計算方式如下:

$$D_{e} = \frac{D \cdot (y + Y) + D^{*} \cdot (D^{*} - Y)}{D^{*} + y}$$
(2.5-8)

上式中,D為圓柱型橋墩直徑,D^{*}為圓柱型基礎直徑,Y為覆土高度, y為來流水深,d_s為沖刷深度。此計算公式需先假設沖刷深度,在運 上頗為不方便,因此經過數據整理後得到一較簡便之計算式如下:

$$D_{e} = D\left(\frac{y+Y}{y+D^{*}}\right) + D^{*}\left(\frac{D^{*}-Y}{D^{*}+y}\right)$$
(2.5-9)

Melville & Raudkivi(1996)^[31]運用試驗結果將圓柱型不均勻橋墩 等效化,不均勻圓柱型橋墩經等效計算後,可明顯看出在第一區及第 三區(圖 2-2),沖刷深度約等於等效橋墩迎水面寬之 2.4 倍,但在第二 區中由於不均勻面的影響,使得沖刷深度小於 2.4 倍之等效橋墩迎水 面寬。

Melville(1997)^[32]除了將不均勻橋墩影響橋墩沖刷深度之因子量 化外,並將橋台的影響也列入考慮,同樣將橋台對於沖刷的影響量 化,以方便估算沖刷深度。

張藝馨(2000)^[8]與吳沛倫(2001)^[4]將水流沖擊橋墩與橋墩基礎之 權重表為類似靜水壓力分佈之三角形型態,以計算不均勻橋墩之等效 橋墩迎水面寬。

周憲德(2002)^[16]亦發展出等效橋墩迎水面寬之計算公式,表示為:

$$D_{e} = a_{0} + (D^{*} - a_{0}) \cdot \left(\frac{Y}{y}\right)^{x_{0}}$$
(2.5-10)

上式中, a₀ 為橋基頂面貼齊底床時之等效寬度,可運用式(2.5-11)求 解, x₀為待定常數, x₀若愈小,則裸露高度之變化對墩前局部沖刷深 度影響愈顯著,可運用式(2.5-12)求出,若於深水狀況時,則可表示 為式(2.5-13)

$$a_0 = D + 0.14(D^* - D) \qquad D^*/D < 2.65$$
 (2.5-11)

$$x_0 = 0.50$$
 $D^*/D < 2.65$
 $x_0 = 0.50$ $D^*/D \ge 2.65$ (2.5-12)

$$\frac{d_{sf}}{d_{sp}} = \frac{D_e}{D} = \frac{a_0}{D} + \left(\frac{D^*}{D} - \frac{a_0}{D}\right) \cdot \left(\frac{Y}{y}\right)^{x_0}$$
(2.5-13)

2-25 逢甲大學學生報告 ePaper(2005 年)

上式中, d_{sf} 為橋墩基礎裸露之平衡沖刷深度, d_{sp} 為均勻橋墩之平衡 沖刷深度。

11. 橋墩幾何形狀(Shape), K_{sh}

前人大多採用圓形橋墩進行橋墩沖刷之實驗研究,其他不同形狀 的橋墩局部沖刷深度,則可利用圓形橋墩之局部沖刷公式再加入形狀 因子修正係數。Raudkivi(1986)^[39]提出橋墩沖刷之形狀因子修正係數 約在 0.7~1.2 之間,而幾何形狀對橋墩沖刷之影響遠較水流攻角為小。

Melville & Sutherland(1988)^[29]收集前人相關資料,並整理出橋墩幾何形狀校正因子,如表 2-2 所示。

	Length/ Width	References					
Shape in Plan		Tison (1940)	Laursen and Toch (1956)	Chabert and Engeldinger (1956)	Venkatadri et al. (1965)		
圓型 Circular	1.0	1.0	1.0 1.0 1		1.0		
	2.0	-	0.97 -		-		
Lontiqular	3.0	-	0.76 -		-		
Lenticular	4.0	0.67	- 0.73		-		
	7.0	0.41	-	-	-		
三角形 nosed,60°	-	-	-	-	0.75		
三角形 nosed,90°	-	-	-	-	1.25		
橢圓型	2.0	-	0.91	-	-		
Elliptic	3.0	-	0.83	-	-		
Ogival	4.0	0.86	-	0.92	-		
Joukowski	4.0	-	-	0.86	-		
	4.1	0.76	-	-	-		
矩形 Rectangular	2.0	-	1.11	-	-		
	4.0	1.40	- 1.11		-		
	6.0	-	1.11	-	_		

表 2-2 不同長寬比橋墩幾何形狀校正因子[36]

Melville(1997)^[32]將橋墩幾何形狀校正因子加入橋台幾何校正因子,如表 2-3 所示,由於該因子加入,對於鄰近橋台之橋墩局部沖刷 深度的計算與實際物理現象更為一致。

K _s	Circular	cyl	inder	1.0		
	Round	no	osed	1.0	For nior	
	Square	no	osed	1.1	roi pier	
	Sharp	no	osed	0.9		
$\mathbf{K}_{\mathbf{s}}$	Vertical	V	vall	1.0		
	Wing	V	vall	0.75		
	Spill	through	0.5:1(H:V)	0.6	For abutment	
	Spill	through	1:1	0.5		
	Spill	through	1.5:1	0.45		

表 2-3 橋墩幾何形狀校正因子與橋台幾何校正因子

Parola et al.(1996)^[36]指出圓柱型橋墩其修正係數為 1.0, 矩型橋墩 則約為 1.1。有關其他形狀因子之修正係數詳如表 2-4。

橋墩 形狀	Rectangular	Round
K _{sh}	1.1	1.0
橋墩 形狀	Cylinder	Sharp
K _{sh}	1.0	0.9

表 2-4 橋墩幾何形狀因子修正係數

12. 水流攻角(Alignment), α

對於各種形狀的橋墩而言(圓形橋墩除外),橋墩縱軸和水流方向 所夾的角度定義為水流攻角(a)。水流攻角改變,橋墩寬度與水流在 垂直方向的投影面積(橋墩迎水面寬度)會隨之改變。當水流攻角變大 時,局部最大沖刷深度會增加,且沖刷坑之形狀與最大沖刷位置亦產 生改變,此現象可由圖 2-7 獲得印證,其中 D 為水流攻角零度時之橋 墩迎水面寬度,圖中所標示之數字乘以 D 值即為沖刷深度。

圖 2-7 不同水流攻角下橋墩周圍無因次化等深線示意圖 (a)攻角 0 度;(b)攻角 15 度^[6]

Raudkivi(1986)^[39]提出沖刷深度與橋墩迎水面寬度有關,而橋墩 迎水面寬亦會隨著水流攻角的增加而急遽增加,所以要避免水流攻角 大於 5~10 度。此外,隨著水流攻角的增加,橋墩前緣最大局部沖刷 深度亦會增加的更明顯,且會沿著橋墩兩側以及未受橋墩遮蔽地區移 動,因此會加大沖刷坑之範圍。 Melville & Sutherland(1988)^[29]採用前人所做研究,提出水流攻角 運用圖形表示為其對水流公角修正因子(K_α)之關係式如圖 2-8。當橋 墩為圓柱型時,則修正因子為1。

Melville(1997)^[32]亦將水流攻角修正因子整理如表 2-5,以利橋墩 沖刷深度之計算,其中 l 為橋台順水流方向之長度,b 為橋台寬度。

基礎形式		\mathbf{K}_{a}							
		α=0°	15	30	45	60	90	120	150
橋墩	l/b=4	1.0	1.5	2.0	2.3	-	2.5	-	-
	l/b=8	1.0	2.0	.75	3.3	-	3.9	-	-
	<i>l</i> /b=12	1.0	2.5	3.5	4.3	-	5.0	-	-
橋台		-	-	0.97	-		1.0	1.06	1.08

表 2-5 水流攻角修正因子[38]

13. 沖刷時間與平衡沖刷時間之比(Ratio of Time), t/t_e

Yanmaz & Attinbilek(1991)^[47]以輸砂連續方程式為理論基礎來推 導沖刷坑體積大小,圓柱型橋墩所造成的沖刷坑體積∀大小為:

$$\forall = \frac{\pi}{3\tan\phi} \times \left(\frac{d_s^3}{\tan\phi} + \frac{3d_s^2 D}{2}\right)$$
(2.5-14)

上式中, ψ 為底床質安息角、D 為橋墩直徑、 d_s 為沖刷坑深度、 t_e 為平衡沖刷時間。另運用 $d'_s=d_s/D$ 及 $t_e=t$ $d_{50} [(\rho_s/\rho-1)gd_{50}]^{0.5}/D^2$ 無因次化後, 圓柱型橋墩所造成的無因次化沖刷深度與時間相關之一 階非線性微分方程(a first-order nonlineear differential equation)為:

$$\frac{d(d'_s)}{dt_e} = \frac{30000F_r}{\pi (N_s)^{5.55} \cdot (C_D)^{2.8} \cdot (\tan\phi)^{5.4} \cdot (t_e)^{0.75}} \cdot \left(\frac{d_{50}}{D}\right)^{1.5} \cdot \left(\frac{2d'_s + \tan\phi}{d'_s^2 + d'_s \cdot \tan\phi}\right) (2.5-15)$$

上式中,N_s為底床質粒徑參數、C_D為阻力係數、t_e為平衡沖刷時 間、F_r為福祿數。並將橋墩處之局部沖刷深度表示為與時間相關之函 數,將函數中所需係數、底床質安息角、底床中值粒徑、橋墩迎水面 寬等變數之數值代入,即可得知沖刷深度與時間之關係。

Melville & Chiew(1999)^[33]首先定義平衡沖刷,認為在 24 小時 內,沖刷深度的變化未達橋墩迎水面寬的 5%,即為到達平衡沖刷, 此時的沖刷深度即為平衡沖刷深度,沖刷時間即為平衡沖刷時間。亦 定義到達沖刷平衡時間之關係式,此平衡時間關係式表為相對水流強 度、相對水流深度以及底床質相對粗糙度之函數,並分別探討對橋墩 沖刷深度之關係式。結合上述關係,可得平衡沖刷時間 t_e之計算式:

$$t_e(days) = 48.26 \frac{D}{V} \left(\frac{V}{V_c} - 0.4 \right) \qquad \frac{y}{D} > 6 , \frac{V}{V_c} > 0.4$$
 (2.5-16)

$$t_e(days) = 30.89 \frac{D}{V} \left(\frac{V}{V_c} - 0.4\right) \left(\frac{y}{D}\right)^{0.25} \qquad \frac{y}{D} \le 6, \frac{V}{V_c} > 0.4$$
 (2.5-17)

2-30

運用此平衡沖刷時間可計算到達平衡沖衡沖刷深度的百分比即:

$$\frac{d_s}{d_{se}} = \exp\left[-0.03 \left| \frac{V_c}{V} \ln\left(\frac{t}{t_e}\right) \right|^{1.6}\right]$$
(2-5-18)

根據張文鎰(2002)^[7]所做有關變量流室內相關試驗發現,沖刷深度在 尖峰流量時與流量歷線結束後之比值為92.8%~98.6%,在流量歷線上 升過程中至少完成90%以上的沖刷深度。此外,在沖刷延時增加一倍 之情況下,沖刷深度僅增加6%,顯示時間因子對於沖刷深度之影響 近乎指數函數之型態,亦即時間因子在沖刷初期之影響較大,但其影 響沖刷深度之比重會隨著時間的增加而逐漸降低,直至沖刷深度已經 接近平衡狀態。

参、理論分析

當水流經過橋墩時,由於受三維作用力之影響如:重力、拖曳力 及上升力等力作用,在橋墩附近受到水流三維作用力的影響,造成橋 墩周圍水流流況非常複雜,而其複雜的程度隨著橋墩周圍沖刷坑的發 展而改變其三維作用力複雜程度。學者 Melville 曾對橋墩周圍水流的 型態做一系列之研究。Parola(1996)^[36]、Melville & Raudkivi(1977)^[28] 曾對水流型態作詳細的探討,而 Ettema(1980)^[22]之研究使整個水流型 態認知更為完整。

3.1 圓柱型橋墩周圍水流之流況

河川水流受橋墩之阻擋,其結構產生變化,而破壞底床泥砂原有 之平衡狀態,並在橋墩周圍造成局部沖刷。在局部沖刷發展期間,水 流結構的複雜性隨著沖刷坑之變化而增加。流經圓柱型橋墩周圍的水 流形態,大致分為四部份,詳如圖 3-1 所示。其中以向下射流與馬蹄 型渦流亦是造成橋墩周圍局部沖刷之主要原因。

圖 3-1 圓柱型橋墩周圍水流形態示意圖

3.1.1 墩前壅水(bow wave):

水流通過橋孔時,因橋墩的存在而增加阻水面積,導致橋孔間單 寬流量增大、流速加快遂阻礙了水流運動,致使水流動能轉化成位 能,造成橋墩上游斷面水位抬升,此為墩前壅水形成之原因。

3.1.2 墩前向下射流(downflow in front of pier):

沿圓柱型橋墩垂直方向分佈之水平接近流速,因河床邊界之影響 而由水面向下遞減,此等水平速度,形成一速度梯度,而到達橋墩鼻 端時會產生停滯現象。當水流於橋墩面上產生停滯壓力(stagnation pressure)時,此壓力強度與水流流速之平方成正比,其變化趨勢為愈 接近河床面處,其壓力強度愈小,形成一垂直向下的促進壓力梯度 (favorable pressure gradient),此為墩前向下射流形成之主因,亦是造 成局部沖刷主要作用力之一。

3.1.3 馬蹄型渦流(horseshoe vortex):

向下射流與二次橫向水流相結合後,沿著橋墩周圍形成螺旋運動 的三維性渦流,外型類似馬蹄形狀,故稱為馬蹄型渦流。由橋墩迎水 面分離線處開始發生,沿著結構物邊緣向下游傳遞,對沖刷坑中河床 質的攜離運移扮演著重要的角色。渦流強度與橋墩之相對寬度成正 比。此馬蹄型渦流向下游延伸通過橋墩兩側,強度開始減弱,漸漸消 散破壞掉,而變成一般的亂流。

在沖刷坑中,馬蹄型渦流會使沿壁向下射流的最大速度貼近於橋 墩,且將射流之影響範圍推向橋墩上游,因而擴張沖刷坑規模。隨著 沖刷坑的逐漸擴大,由於墩前沖刷坑水深增加,使得向下射流強度受 到墊床作用(cushion effect)影響,造成沖刷坑內水流局部加速的現象

3-2

減緩,造成馬蹄型渦流及向下射流強度衰減,沖刷能力降低。當水流 沖刷能力小於底床質起動所需條件時,沖刷坑即達到平衡狀態。

3.1.4 消散渦流及尾跡渦流(cast-off vortices and wake):

水流流經橋墩後,在其下游側之壁面產生水流分離(separation point),使得速度剖面產生不連續面而導致消散渦流(cast-offvortices) 的產生。在靠近底床處,消散渦流與馬蹄型渦流產生交互作用,致使 水流尾跡向下游傳遞時做橫向與垂向的運動。由於消散渦流具有垂直 方向的壓力梯度,其所形成之升力可將泥砂從河床面挑起帶至下游處 而產生淤積。

沖刷坑於橋墩兩側開始發展,其次由橋墩周圍迅速向上游延伸, 而後會合於墩前,遭沖蝕之河床泥砂受馬蹄型渦流帶動而移至下游, 因此橋墩周圍上游面形成一半圓形沖刷坑。

3.2 橋墩周圍局部沖刷之過程

橋墩周圍沖刷坑的發展開始於橋墩的兩側,接著迅速地沿著圓柱 型橋墩周圍向上游挺進,直到墩前交會於圓柱型橋墩前端處,最大沖 刷深度發生於橋墩前緣。受擾動的河床質,則因向下射流加速馬蹄型 渦流的螺旋作用,沿著橋墩流出沖刷坑至下游處。沖刷坑內的水流呈 現翻滾之現象,沖刷坑前半部較為陡峭,兩側之崩落則較不規則。達 沖刷平衡後,沖刷坑前半部近似一倒置之截頭直角圓錐體,其斜面之 傾斜角則約等於泥砂在水中之安息角(repose angle)30°~34°之間;而後 半部及淤積堆之型態,則受水流及河床形態影響較難掌握。

3-3

整個河床沖淤變化過程中,因橋墩周圍水流狀態相當紊亂,導致 砂石顆粒運移十分複雜。泥砂顆粒運移之情況,大致可分為沖刷初 期、沖刷中期、平衡沖刷三個時期。

3.2.1 沖刷初期:

此時沿水流流動方向,橋墩兩側受到水流較大剪力作用影響,故 橋墩兩側處之泥砂顆粒首先被淘刷至橋墩後端,繼而受到消散及尾跡 渦流之上舉力而向上漂移,直至渦流強度減弱,而在橋墩後方落淤形 成淤積堆。

3.2.2 沖刷中期:

此時墩前受到接近水流、向下射流及馬蹄型渦流之作用,在沖刷 坑中斜坡面產生一稍微鼓起之環形小坵。墩前泥砂顆粒之運移方式可 分為下列(a)、(b)、(c)三種方式,如圖 3-2 所示。

(a) 墩前較上游之泥砂顆粒,因受接近水流及重力影響而向下移動。

(b) 墩前較下游處,則受馬蹄型渦流之影響,泥砂顆粒沿著沖刷坑斜面向上移動。

(c)橋墩前端受向下射流之作用,顆粒繞經橋墩周圍而移至橋墩後方。

3.2.3 平衡沖刷:

當沖刷達動態平衡時,沖刷坑表面已形成護甲層(armoring layer),沖刷坑之外觀型態已然底定,雖然沖刷坑中仍有部分泥砂顆 粒因水流紊動之影響,而在斜面上滾動搖擺,但不會被水流攜離出沖 刷坑外。

(b) 側視圖(side view) 圖 3-2 橋墩周圍泥砂顆粒運移示意圖

3.3 因次分析

3.3.1 影響因素:

橋墩前緣局部沖刷深度主要與下列四種因素有關: 1. 流體與水流特性:來流平均流速(V)、來流水深(y)、水流密度(ρ)、 重力加速度(g)、動力黏滯性係數(μ)。

3-5

- 底床特性:底床中值粒徑(d₅₀)、底床質臨界啟動速度(V_c)、底床質 幾何標準偏差(σ_g)、底床質密度(ρ_s)、覆土高度(Y)、渠床之粗糙度 (K_n)、渠床之坡度(S)、底床質分佈形態、底床質之黏聚性、底床質 粒徑參數(N_s)。
- 3. 橋墩幾何特性:橋墩迎水面寬(D)、橋墩基礎迎水面(D^{*})、橋墩形狀
 因子修正係數(K_{sh})、水流攻角(α)。
- 4. 時間:沖刷時間(t)、平衡沖刷時間(t_e)。

而本研究利用因次分析,由上述參數可將橋墩附近局部沖刷深度 表示為:

$$d_{s} = f_{1}(\rho, \rho_{s}, \mu, d_{50}, g, \sigma_{g}, \alpha, K_{sh}, D, D^{*}, t, t_{e}, V, V_{c}, y, Y)$$
(3.3-1)

若假設水流及底床質密度為常數且於沖刷過程中黏滯效應可以 忽略,依照白金漢π定理(Buckingham π theorem),以ρ、V、D^{*}為重 複變數找出下列無因次參數,經因次分析後可得:

$$\frac{d_s}{D^*} = f_2 \left(\frac{V}{V_c}, \frac{y}{D}, \frac{\rho_s}{\rho}, \frac{D}{d_{50}}, \frac{D}{D^*}, \frac{Y}{D}, \frac{t}{t_e}, \frac{V^2}{\left[\left(\frac{\rho_s}{\rho} - 1 \right) g d_{50} \right]}, \frac{\rho V D}{\mu}, \frac{V}{\sqrt{gy}}, \sigma_g, K_{sh}, \alpha \right)$$
(3.3-2)

$$\frac{d_s}{D^*} = f_3\left(\frac{V}{V_c}, \frac{y}{D}, S, \frac{D^*}{d_{50}}, \frac{D}{D^*}, \frac{Y}{D^*}, \frac{t}{t_e}, N_s, \text{Re}, F_r, \sigma_g, K_{sh}, \alpha\right)$$
(3.3-3)

3.3.2 因次分析:

由於上述許多變數皆無法加以量化,為配合此研究之分析,乃作 以下之假設,以便簡化分析:

1. 試驗渠床之底床質為無黏聚性。

2. 試驗渠床平直且寬度足夠,不致因橋墩之存在而產生束縮效應。

3-6

逢甲大學學生報告 ePaper(2005 年)

- 很設沖刷時渠床無沙丘或沙漣形成(底床質分佈均匀狀態),則渠 床糙度僅與底床質粒徑、流速及渠床坡度有關,故在此不予考慮渠 床糙度。
- 4. 研究只考慮渠床坡度為水平的情況下,即不考慮渠床坡度的變化。
- 橋墩採用表面平滑之非同心圓不均勻圓柱型橋墩,而橋墩周圍無任 何保護措施。
- 6. 圓柱型橋墩之形狀因子修正係數為 K_{sh}=1, 且無水流攻角問題(即 α=0°)。

藉由上述之假設,可將局部沖刷之最大沖刷深度(d_s)表為下式:

$$d_{s} = f_{l}(\rho, \rho_{s}, d_{50}, g, \sigma_{g}, D, D^{*}, t, t_{e}, V, V_{c}, y, Y)$$
(3.3-4)

在明渠流中, 雷諾數($\rho VD/\mu$)之影響可忽略不計。本研究為定量 流沖刷試驗,因此在定型渠道內水流深度固定,且試驗中相對水流強 度 $V/V_c=0.95$ 為定值。河床質之密度一般採用定值 $\rho_s = 2.65g/cm^3$,試 驗過程於常溫下進行,溫度變化甚小,水之密度 ρ 可視為定值,故 ρ_s/ρ 可不考慮。本研究採均勻顆粒 $\sigma_g = 1.29$ 進行試驗,故(3.3-2)與(3.3-3) 式可改寫成:

$$\frac{d_s}{D^*} = f_2 \left(\frac{D^*}{d_{50}}, \frac{D}{D^*}, \frac{y}{D^*}, \frac{Y}{D^*}, \frac{V^2}{\left[\left(\frac{\rho_s}{\rho} - 1 \right) g d_{50} \right]}, \frac{V}{\sqrt{gy}} \right)$$
(3.3-5)

$$\frac{d_{s}}{D^{*}} = f_{3}\left(\frac{D^{*}}{d_{50}}, \frac{D}{D^{*}}, \frac{Y}{D^{*}}, \frac{Y}{D^{*}}\right)$$
(3.3-6)

3.4 渦流理論

Baker(1980)^[14]曾利用馬蹄型渦流理論推導圓柱型橋墩周圍的最 大平衡沖刷深度。其假設河床面未沖刷前為定床,且圓柱型橋墩前只 有一個馬蹄型渦流產生,而在沖刷過程中環流量(circulation volume) 為常數,其環流量 Γ_0 為:

$$\Gamma_0 = \mathbf{k}_1 (2\pi \mathbf{r}_0 \mathbf{V}) \tag{3.4-1}$$

式中,r₀為沖刷前之渦流半徑,V為上游平均接近流速,k₁為常數。 在沖刷過程中,假設r為沖刷過程中之渦流半徑,V_h為馬蹄型渦流之 切線速度,則環流量Γ為:

$$\Gamma = 2\pi r v_{\rm h} \tag{3.4-2}$$

假設
$$\Gamma=\Gamma_0+k_2 d_s$$
 (3.4-3)

其中 d_s 為橋墩周圍局部沖刷深度, k_2 為常數。假設 $\Gamma = \Gamma_0$, 由(3.4-1) ~(3.4-3)式可得沖刷過程中渦流之切線速度為:

$$\mathbf{v}_{h} = \mathbf{k}_{1} \mathbf{r}_{0} \mathbf{V} / (\mathbf{r}_{0} + \mathbf{k}_{2} d_{s})$$
(3.4-4)

泥砂顆粒在馬蹄型渦流系統中受制於平行沖刷坑斜面之拖曳力 (F_D)、垂直於沖刷坑斜面之上升力(F_L)及泥砂顆粒於水中之自重(G), 詳如圖 3-3 所示,由力矩平衡關係可得:

$$\mathbf{G} \cdot \mathbf{x}_1 = \mathbf{F}_{\mathbf{D}} \cdot \mathbf{x}_3 + \mathbf{F}_{\mathbf{L}} \cdot \mathbf{x}_2 \tag{3.4-5}$$

$$G = \frac{\pi d}{6} (\rho_s - \rho) g \qquad (3.4-6)$$

$$F_{\rm D} = C_{\rm D} \left(\frac{1}{2} \rho v_{\rm he}^2 \right) \left(\frac{\pi d^2}{4} \right)$$
(3.4-7)

$$F_{\rm L} = C_{\rm L} \left(\frac{1}{2} \rho v_{\rm he}^2 \right) \left(\frac{\pi d^2}{4} \right)$$
(3.4-8)

其中, v_{he}為達平衡沖刷時馬蹄型渦流之切線速度、d 為泥砂顆粒之直徑、C_D為拖曳力係數(drag force coefficient)、C_L為上升力係數(uplift 3-8 ^{逢甲大學學生報告 ePaper(2005 年)}

force coefficient), x₁、x₂、x₃為係數。

圖 3-3 沖刷坑內泥砂顆粒受力平衡示意圖

由(3.4-5)~(3.4-8)式可得:

$$v_{he}^{2} = \frac{8}{3} \frac{\cos(60^{\circ} - \theta)}{(\sqrt{3}C_{D} + C_{L})} \left(\frac{\rho_{s}}{\rho} - 1\right) gd$$
(3.4-9)

其中, θ為沖刷坑坡度與水平渠底之夾角,介於 30~40 度間。因此 cos(60°-θ)可視為常數,則(3.4-9)式可改寫成為:

$$\mathbf{v}_{he}^2 = \mathbf{k}_3 \left(\frac{\rho_s}{\rho} - 1\right) \mathbf{g} d \tag{3.4-10}$$

$$k_{3} = \frac{8}{3} \frac{\cos(60^{\circ} - \theta)}{\left(\sqrt{3}C_{\rm D} + C_{\rm L}\right)}$$
(3.4-11)

依據 (3.4-4)、(3.4-10)及(3.4-11) 式,當v_h = v_{he}、 *d_s* = *d_{se}*時,則 可導出平衡沖刷深度公式, k₁、k₂、k₃均為常數:

3-9

$$\frac{d_{50}}{D} = C_1 N_s - C_2 \tag{3.4-12}$$

$$N_{s} = V / \left[\left(\frac{\rho_{s}}{\rho} - 1 \right) g d \right]$$
(3.4-13)

$$C_1 = \frac{k_1}{ck_3^{0.5}k_2} \frac{r_0}{D}$$
(3.4-14)

$$C_2 = \frac{r_0}{D} \frac{1}{k_2}$$
(3.4-15)

Baker 指出 $\frac{r_0}{D}$ 和 $\frac{y}{D}$ 有關,當 $\frac{y}{D}$ 值很大時, $\frac{r_0}{D}$ 可視為常數;而 $\frac{y}{D}$ 值 很小時, $\frac{r_0}{D}$ 和 $\frac{y}{D}$ 成比例關係,如此一來, $\frac{r_0}{D}$ 可表示為: $\frac{r_0}{D} = k_4 \tan y \left(k_5 \frac{y}{D}\right)$ (3.4-16)

其中 k₄、k₅為底床質粒徑之函數,可視為常數。將(3.4-16)式代入(3.4-12) 式,則:

$$\frac{\mathbf{d}_{se}}{\mathbf{D}} = (a_1 \mathbf{N}_s - a_2) \tan \mathbf{y} \left(\frac{a_3 \mathbf{y}}{\mathbf{D}}\right)$$
(3.4.17)

其中 $a_1 = \frac{k_4 k_1}{c k_2 k_3^{0.5}}$ 、 $a_2 = \frac{k_4}{k_5}$ 及 $a_3 = k_5$ 。利用以上理論式,即可推估橋 墩局部沖刷深度。Baker 以 Chabert & Engeldinger(1956)^[18]之試驗結果 修正(3.4-17)式得:

$$\frac{d_{se}}{D} = \left[g_1 \frac{V}{V_c} \right] \left[a_1 \tanh\left(a_2 \frac{y}{D}\right) \right] \left(g_2 g_3\right)$$
(3.4.18)

上式當 $0 < V/V_c \le 0.5$ 時, $g_1 = 0$;當 $0.5 < V/V_c < 1.0$ 時, $g_1 = 2(V/V_c) - 1$; 當 $V/V_c \ge 1.0$ 時, $g_{1=1}$ 。而 $g_2 \not \subset g_3$ 為橋墩形狀及流況參數。由(3.4-18) 式可知影響橋墩局部沖刷深度之主要參數為 $V/V_c \not \subset y/D$ 。

3.5 沖刷坑理論分析

圖 3-4 橋墩周圍三維流場示意圖

根據 Shen et al.(1969)^[40]及參考圖 3-4,取圓柱型橋墩前緣停滯平 面(Stagnation plane)控制體積 ABCD,假設 AD 與 CD 為無滑動邊界, 根據定義可知 ABCD 上之環流量(circulation)Γ:

 $\Gamma = \oint \vec{V} \cdot \vec{ds} = \iint_{ABCD} \overline{\Omega} \, d\overline{A} \qquad \overline{\Omega} = \nabla \times \vec{V}$ (3.5-1) 其中 \vec{ds} 為控制體 ABCD 路徑距離,而 \vec{dA} 為控制體 ABCD 面積, V 為 來流平均流速。在 r 方向之分量:

$$\int_{B}^{C} V_{r} \cdot dr = \iint_{ABCD} \overline{\Omega} \cdot d\overline{A}$$
(3.5-2)

Vr為水深之函數,若距自由液面夠深處可適用於勢流理論,再根據勢流理論,流經平徑為 a 之圓柱型橋墩之流速可表示為:

$$V_{\rm r} = V_{\infty} \left[1 - \frac{a^2}{(a+{\rm r})^2} \right]$$
 (3.5-3)

其中為 V_{∞} 為圖 3-4 中 B 點之流速,將(3.5-3)式代入(3.5-2)式,經過積 $\Im(0 \rightarrow R_0)$ 計算之後:

$$\int_{\text{ABCD}} \overline{\Omega} \cdot d\overline{\mathbf{A}} = V_{\infty} \mathbf{R}_{0} - \frac{a\mathbf{R}_{0}}{a + \mathbf{R}_{0}} V_{\infty}$$
(3.5-4)

其中 R_0 為橋墩至AB 面之距離,上式中 $-aR_0V_{\infty}/(a+R_0)$,為橋墩所 造成之新增環流量。當橋墩迎水面寬小至可以忽略 $(a+R_0)$ 時,橋墩 所造成之新增環流量極限值為 $-aV_{\infty}$,再合理地假設渦流強度為環流 量的函數:

$$(\omega A)_{\rm core} = f(aV_{\infty}) \tag{3.5-5}$$

上式中, (u) 為角速度、A 為 ABCD 之面積。根據前人的研究, 馬蹄形渦流系統的產生是由於上游分離的關係, 也是由於黏性流的特性。因此, 黏滯係數就相當重要, 經由運動黏滯性係數的無因次化之後得:

$$\left(\frac{\omega A}{\nu}\right)_{\text{core}} = f\left(\frac{2aV_{\infty}}{\nu}\right) = f(\text{Re})$$
 (3.5-6)

上式中,Re為雷諾數,R_e=VD/v。又橋墩的局部沖刷主要是由於橋墩 處的馬蹄形渦流所產生,因此,亦可以說橋墩的局部平衡沖刷深度為 橋墩雷諾數的函數,則平衡沖刷深度 d_{se}=g(R_e)。

假設沖刷坑可以表示成高度為 ds 之倒三角錐的關係式:

$$\frac{d\forall}{d(d_s)} = \frac{\pi(1-\lambda)}{\tan\varphi} \left(\frac{d_s^2}{\tan\varphi} + \mathrm{D}d_s\right)$$
(3.5-7)

上式中,∀為沖刷坑中被移出的底床質體積,λ為底床質孔隙率,φ 為底床質安息角,利用鏈鎖律(Chain rule):

$$\frac{d\forall}{dt} = \frac{\pi(1-\lambda)}{\tan\varphi} \left(\frac{d_s^2}{\tan\varphi} + \mathrm{D}d_s\right) \frac{d(d_s)}{dt}$$
(3.5-8)

上式中, d∀/dt 為沖刷坑變大的過程中所被移出的底床質體積對時間 變化率。

$$\frac{d\forall}{dt} = Q_{\rm so} - Q_{\rm si} \tag{3.5-9}$$

上式中, Q_{so} 為單位時間移出沖刷坑內底床質體積,其與橋墩幾何形 狀無關,而與來流平均流速有關; Q_{si} 為單位時間進入沖刷坑內底床 質體積,在已知底床質條件之下與橋墩幾何形狀、不受擾動各水流參 數及時間有關,經對時間積分後得:

$$\frac{\pi(1-\lambda)}{\tan\varphi} \left(\frac{d_{se}^3}{3\tan\varphi} + \frac{1}{2} Dd_{se}^2 \right) = \int_0^\infty (Q_{so} - Q_{si}) \cdot dt$$
(3.5-10)

或

$$\int_{0}^{\infty} (Q_{so} - Q_{si}) \cdot dt = f(vortex \ properties, sediment)$$
(3.5-11)
亦即沖刷坑底床質體積變化率為渦流與底床質特性之參數。

3.6 沿壁沖射流理論

根據學者 Raudkivi & Ettema(1983)^[38]、嚴榮甫(1986)^[12]等人之研究,當橋墩上未加設任何裝置時,粗質河床上的橋墩局部沖刷,其最 大平衡沖刷深度發生於橋墩兩側,主要沖刷機制為兩側的加速水流及 墩後的尾跡渦流;而於緩坡、細質河床之橋墩局部沖刷,其最大平衡 沖刷深度發生在墩前,主要沖刷機構為向下射流及馬蹄形渦流。

自上游而來之水流,流經橋墩時因橋墩之阻滯,而產生向下射 流,如圖 3-5 所示。若以能量消減之觀點來討論單一股向下射流(圖 3-6),射流經由碰撞、摩擦、混合等作用後,損失了能量。然而若干 股水流則具有疊加之關係,其疊加後之能量大於射流經由碰撞、摩 擦、混合等作用所造成之能量損失,此可說明向下射流之主流速度隨 著入水流深度之增加而逐漸遞增,詳如圖 3-7 所示。當水流進入沖刷 坑後,因無疊加之水流,射流之主流速度乃隨著水深之增加而衰減。 文中所指之水流限制條件為層流(laminar flow)並非指紊流(turbulent flow)。

圖 3-6 單一股水流造成之向下射流流速分佈圖

圖 3-7 多股水流造成之向下射流流速分佈圖

一般二維層流(laminar flow)流場,可以根據連續方程式(equation of continuity)以及納威爾一史拓克斯方程式 (Navier-Stokes equations) 來描述:

$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}}{\partial \mathbf{y}} = \mathbf{0} \tag{3.6-1}$$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = g_x - \frac{1}{\rho}\frac{\partial p}{\partial x} + \upsilon \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right]$$
(3.6-2)

$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = g_y - \frac{1}{\rho}\frac{\partial p}{\partial y} + v\left[\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right]$$
(3.6-3)

式中,u為x方向之速度;v為y方向之速度;u為運動黏滯(kinematic viscosity)係數;g為重力加速度;p為水壓力,。

橋墩前沿壁向下射流之主流速度隨入水深度之變化,可藉沿壁沖 射流垂直進入靜止的相同流體模擬之。即假設各橫斷面之流速為穩定 並呈常態分布,且其流速隨著入水深度之增加逐漸衰減而分布愈均 匀。沖射流所進入之靜止水體,其壓力呈靜水壓力分布,即垂直於水 面之壓力梯度 $\partial p/\partial y = \rho g$ 。又壓力不隨橫向變化,故 $\partial p/\partial x = 0$ 。因此 納威爾-史拓克斯方程式可簡化為:

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = v\left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right]$$
(3.6-4)

$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = v\left[\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right]$$
(3.6-5)

於流場中取某一觀測點 yobs(x^{*}, y^{*})作為參考位置,並取下列特性 參數與無因次參數:

$$y_{obs}(x^*, y^*), w = \sqrt{(u^*)^2 + (v^*)^2}$$

 $u' = u/u', v' = v/v'$
 $x' = x/x', y' = y/y'$
 $Re^* = wy^*/v$

式中,u'為無因次之 x 方向速度分量;v'為無因次之 y 方向速度分量; x'為無因次之 x 座標;y'為無因次之 y 座標;R_e*為觀測點雷諾數。

將上述參數代入(3.6-1)、(3.6-4)及(3.6-5)式中,可得穩定之無因 次連續方程式及納威爾-史拓克斯方程式:

3-16

$$\frac{\partial u'}{\partial x'} + \frac{\partial v'}{\partial y'} = 0 \tag{3.6-6}$$

$$\mathbf{u'}\frac{\partial \mathbf{u'}}{\partial \mathbf{x'}} + \mathbf{v'}\frac{\partial \mathbf{u'}}{\partial \mathbf{y'}} = \frac{1}{\mathrm{Re}^*} \left[\frac{\partial^2 \mathbf{u'}}{\partial \mathbf{x'}^2} + \frac{\partial^2 \mathbf{u'}}{\partial \mathbf{y'}^2} \right]$$
(3.6-7)

$$\mathbf{u'}\frac{\partial \mathbf{v'}}{\partial \mathbf{x'}} + \mathbf{v'}\frac{\partial \mathbf{v'}}{\partial \mathbf{y'}} = \frac{1}{\mathrm{Re}^*} \left[\frac{\partial^2 \mathbf{v'}}{\partial \mathbf{x'}^2} + \frac{\partial^2 \mathbf{v'}}{\partial \mathbf{y'}^2} \right]$$
(3.6-8)

流場之邊界條件如下:

- (1)當 y'>0和 x'>0時, v'>0
- (2)當 y'>0和 x'=0時, u'>0
- (3)當 y'>0和 x'= ∞ 時, v'=0

根據數量級(order of magnitude)之觀念,在高雷諾數流動時,主 流與周遭原靜止流體間所形成之邊界層,其厚度及橫向速度與1/√Re 屬於同一數量級。因此:

$$\mathbf{x'} \approx \left(\mathbf{l} / \sqrt{\mathrm{Re}} \right) \ , \ \mathbf{u'} \approx \left(\mathbf{l} / \sqrt{\mathrm{Re}} \right)$$

同時可令:

$$x'' \approx \sqrt{Re}x'$$
, $u'' \approx \sqrt{Re}u'$

則(3.6-6)至(3.6-8)式可表為

$$\frac{\partial \mathbf{u}^{\prime\prime}}{\partial \mathbf{x}^{\prime\prime}} + \frac{\partial \mathbf{v}^{\prime}}{\partial \mathbf{y}^{\prime}} = 0 \tag{3.6-9}$$

$$\mathbf{v}'\frac{\partial\mathbf{v}'}{\partial\mathbf{y}'} + \mathbf{u}''\frac{\partial\mathbf{v}'}{\partial\mathbf{x}''} = \frac{\partial^2\mathbf{v}'}{\partial\mathbf{x}''^2}$$
(3.6-10)

其邊界條件可表為:

- (1)當 y'>0和 x''=0時, v'=0
- (2)當 y'>0和 x''=0時, u''>0
- (3)當 y'>0和 x'=∞時, v'=0
- (4)除了(1)、(2)及(3)所提及之邊界條件外, v'≠0

沿壁沖射流之主流速度方程式,經過上述之假設、簡化、無因次 化及轉換後,可得到與水平薄射流(thin jet)方程式相同之型式。再根 據水平薄射流以相似解之方法(method of similarity solutions)求解,可 得沿壁射流主流速度之解為:

$$\mathbf{v'} = \frac{df / d\eta}{\sqrt{\mathbf{y'}}} \tag{3.6-11}$$

上式中
$$\eta = \mathbf{x}''/\sqrt[4]{\mathbf{y}^3}$$
, $f = 2\beta f\left(\frac{\beta\eta}{2}\right) = 2\beta f(\xi)$, β 為常數, $\xi = \beta\eta/2$ 。而

根據 Pau-Chang Lu 之研究,沿壁沖射流主流最大速度處之 df/dη為一 常數。若取 h*為長度特性參數、v*為速度特性如下:

$$h' = h/h^* = h/D$$
 \oplus $v' = v/v^* = V_c/V$

在沿壁射流所形成之沖刷坑,式中h為沖刷坑橋墩鼻頭點平衡沖刷深度(dse)與向下射流自水表面至原始河床面之水深(y)之和,即 (dse + y),詳如圖 3-8 所示。

圖 3-8 橋墩上游沿壁射流造成之沖刷坑示意圖

假設沿壁射流衝擊河床後轉為水平方向,在顆粒啟動之臨界狀況下,沖刷坑達穩定時,流速V可以底床質臨界啟動流速V_c表之,同時 將h及V代入(3.6-11)式中整理可得:

$$\frac{d_{se} + y}{D} = C^2 (V/V_c)^2$$
(3.6-12)

式中C為係數。若以函數型態表示,上式可表為

$$\frac{d_{se} + y}{D} = f(V/V_c) \qquad (3.6-13)$$

(3.6-13)式即為橋墩鼻頭點相對平衡沖刷深度方程式之一般型式。

根據若干研究結果顯示,(3.6-13)式中之泥砂臨界啟動速度(V_c)其 大小與底床質顆粒粒徑有關,而此關係正可藉由水流拖曳力(drag force)與上升力(lift force)之力學觀念予以建立。然而一般泥砂運移問 題中,底床泥砂顆粒並非均勻,且因顆粒之連續運動常使速度變化無常,因此本研究中泥砂臨界啟動速度 V_c ,乃藉由 Melville(1997)^[32]所 提出之公式求得:

$$V_c = 5.75 u_{*c} \log \left(5.53 \frac{y}{d_{50}} \right)$$
(3.6-14)

其中

$$u_{*c} = 0.0115 + 0.012d_{50}^{1.4}$$
, $0.1mm < d_{50} < 1mm$
 $u_{*c} = 0.0305d_{50}^{0.5} - 0.0065d_{50}^{-1}$, $1mm < d_{50} < 100mm$

3.7 不均勻橋墩沖刷坑體積及其變化

圖 3-9 不均勻圓柱型橋墩沖刷坑示意圖

根據 Yanmaz & Attinbilek(1991)^[47]參考圖 3-9 中,取不均勻圓柱 型橋墩前方沖刷坑控制體 abcd,可知當水流受到圓柱型橋墩的影響, 沖刷深度為覆土部分時,沖刷坑體積為:

$$\forall_1 = \frac{\pi}{3\tan\varphi} \left(\frac{Y^3}{\tan\varphi} + \frac{3Y^2D}{2} \right)$$
(3.7-1)
若水流持續作用,將會使得沖刷坑變大(enlarge),假設於此過程 中,沖刷深度並未隨著體積改變而增加,此時沖刷坑體積則為:

$$\forall_2 = \frac{\pi}{3\tan\varphi} \left(\frac{Y^3}{\tan\varphi} + \frac{3Y^2D^*}{2} \right)$$
(3.7-2)

式中,D為圓柱型橋墩直徑,D^{*}為圓柱型基礎直徑, *φ*為底床質安息 角,Y 為覆土高度。根據式(3.7-1)與式(3.7-2)可得知沖刷坑在不均勻 面處變大的過程中,體積變化為:

$$\forall_2 - \forall_1 = \frac{\pi}{2\tan\varphi} \Big[Y^2 \Big(D^* - D \Big) \Big]$$
(3.7-3)

上式適用條件為覆土高度於橋墩不均勻面之上時,根據理論所推導之 沖刷坑體積變化。

3.8 不均匀矩型橋墩沖刷理論

Parola et al.(1996)^[36]利用橋墩及橋墩基礎長度權重法決定水深, 並應用 Melville & Sutherland(1988)^[29]提出的均勻橋墩局部沖刷深度 預估公式,其公式可表示為:

$$\frac{d_{\rm s}}{{\rm D}^*} = 1.872 \left(\frac{{\rm Y}_{\rm e}}{{\rm D}}\right)^{0.225} \qquad \frac{{\rm Y}_{\rm e}}{{\rm D}^*} \le 2.6$$
(3.8-1)

$$\frac{d_s}{D^*} = 2.4$$
 $\frac{Y_e}{D^*} > 2.6$ (3.8-2)

其中,Y_e為等效橋墩基礎高度,其公式為:

$$Y_{e} = Y + \frac{K_{shD}}{K_{shD^{*}}} (y - Y) \left(\frac{D}{D^{*}}\right)$$
(3.8-3)

式中,K_{shD}為橋墩形狀因子; K_{shD}*為橋墩基礎形狀因子。

Parola et al.(1996)^[36]也提出矩形橋墩基礎之長度 Lf須較橋墩長度

Lp向上游延伸Lu,其向上游延伸長度約為2.25~2.5ap(矩型橋墩迎水面寬度)時,能有效減少橋墩前緣局部沖刷深度,橋墩型式如圖3-10 所示。

圖 3-10 不均匀矩形橋墩幾何配置圖^[34]

肆、水工試驗

由於不均勻橋墩之局部沖刷屬於三維問題,且因橋墩干擾而使水 流流況變得十分複雜,若純粹由理論方面對沖刷行為作描述相當困 難,故須利用水工模型試驗加以分析及驗證。

本研究針對三種不同型態之變量流流量歷線(前峰、中峰及後峰型)、四種不同之覆土高度(Y=30mm、15mm、0mm、-15mm)及二種 不均勻橋墩型式(D/D*=0.4 及 0.7),進行室內水工模型試驗,藉以瞭 解不均勻橋墩周圍流場變化與沖刷機制。

4.1 模型與原型之比例關係

進行水工模型試驗時,模型與原型須滿足幾何相似外,尚須滿足 運動相似及動力相似。在慣性座標系統中,動力相似必須滿足牛頓第 二運動定律,運用於流體中時即為納威爾-史拓克斯(Navier-Stokes) 方程式。

將納威爾-史拓克斯方程式無因次化後,可知動力相似條件為福 祿數、雷諾數相等,而橋墩沖刷之流況係為紊流之狀態,粘滯力與重 力相較之下,因前者影響甚微,故相似條件僅採福祿數相等。

以福祿數(Fr)必須相等為條件,作為原型和模型間尺度之轉換: $Fr_m = Fr_p$ (4.1-1)

而上式可改寫如下:

$$\frac{v_m}{\sqrt{g_m l_m}} = \frac{v_p}{\sqrt{g_p l_p}} \tag{4.1-2}$$

式中v、l、g分別表示為水流速度、特性長度與重力加速度,而下標 m、p分別表示模型(model)與原型(prototype)。

4.2 試驗設備與佈置

4.2.1 試驗渠槽

本試驗於逢甲大學水工試驗室進行,試驗渠槽為中型循環玻璃渠 槽,渠槽整體配置詳如圖 4-1,詳細規格如下:

- 試驗渠槽:渠槽全長13.6m、寬0.5m、深0.75m,渠槽側壁之材質 為強化透明玻璃,以利於實驗進行時之觀測。渠槽尾端有一尾水閘 門(tailwater gate),用以控制試驗水深,渠槽下方有一馬達可抬升前 後渠槽之高程,進而控制坡度。
- 2. 供水系統:以15HP(Horse Power)之抽水馬達從蓄水池中抽水,經 由給水管送至定水頭水箱,再供應水量至渠槽中,水流經渠槽後流 入尾水池,再經由排水道流進蓄水池,形成一供水循環系統;而定 水頭水箱上緣有一溢流管,可將多餘之水量輸送至尾水池。
- 流量控制:定水頭水箱至渠槽間設有一控制閘閥(gage value)及流量 控制器,可控制流量流至渠槽中。流槽前端有一 60 度之 V 型堰 (V-type weir),以供量測試驗時之流量。

4.2.2 試驗橋墩模型

本試驗之橋墩形式為非均勻圓柱型橋墩,其橋墩與基礎均為圓柱 型狀,而材質則為中空透明壓克力(acrylic)管所製成,以利光纖視鏡 置入觀測橋墩周圍沖刷現象。由於台灣西部主要河川之橋樑,不均勻 橋墩之設計其 D/D*大多為 0.4 至 0.7 的範圍(詳如表 4-1),因此本研 究之試驗採不均勻橋墩墩徑比例(D/D*)分別為 0.4 及 0.7,規格詳如圖 4-2 所示。

1. 基礎直徑(D^{*})為 5cm,橋墩直徑(D)為 2cm,D/D^{*}=0.4。

2. 基礎直徑(D^{*})為 5cm,橋墩直徑(D)為 3.5cm, D/D^{*}=0.7。

橋名	河川段	橋墩直徑	基礎直徑	覆土高度	D/D^*	
		$D(\mathbf{m})$	$D^*(\mathbf{m})$	<i>Y</i> (m)		
中山高大橋	頭前溪	1.7	4	3.8	0.43	
中正大橋	頭前溪	2.5	5.5	5.3	0.45	
新山線鐵路橋	大甲溪	2.4	5	-8	0.48	
大度橋	烏溪	2.0	2.6	-2.8	0.77	
名竹大橋	濁水溪	2.2	5.6	-	0.39	
西螺大橋	濁水溪	2.4	2.5	-9.7	0.96	
高美大橋	高屏溪	1.6	2.2	-1.3	0.73	
里嶺大橋	高屏溪	2.8	7.5	-5.3	0.37	
里港大橋	高屏溪	2	5	-1.3	0.4	

表 4-1 台灣西部主要河川跨河橋樑資料及其相關橋墩形式[2]

(A) $D/D^*=0.4$

(B) $D/D^*=0.7$

圖 4-2 研究試驗之不均勻橋墩規格

4.2.3 試驗佈置

為使水流進入試驗區段時能保持平順穩定,本試驗於三角形缺口 堰下游處擺設消波塊消能,同時設置整流板以減低水位波動,再以吸 管製成之蜂巢式(honey comb)整流器,以減緩水流紊亂程度,使水流 平順進入試驗區段。動床試驗區段全長為 12.7m,試驗區段尾端設置 一壓克力尾水板,以防止泥砂流入尾水池。

4.2.4 試驗儀器

本研究主要使用量測儀器為光纖視鏡(videoscope)、超音波剖面 量測儀(ultrasonic profiler)、電磁流速計(electromagnetic velocimeter)、 筆記型電腦及攝影機(照相機)、顯示式管路手動矩形閘閥等,茲將 其規格及用途等分述如下:

4-5

1. 光纖視鏡(照片 4-1)

照片 4-1 光纖視鏡 用途:量測不均勻橋墩於變量流沖刷 時之沖刷深度與觀測沖刷情 況,可配合 V8 攝影機拍攝。

2. 超音波剖面量測儀(照片 4-2)

照片 4-2 超音波剖面量測儀 規格:日本 MASATAYO、E.P.I-2 型。 用途:用以量測不均勻橋墩附近沖刷 坑深度和範圍,了解橋墩周圍 沖刷及淤積之分佈狀況。 3. 電磁流速計(照片 4-3)

- 照片 4-3 電磁流速計
- 規格:東京計測、SF-5511型。
- 用途:量測試驗橋墩上游之接近

流速度,放置位置約為橋

墩上游 lm 處,採單點量測

(0.6 倍水深)。

4. 筆記型電腦

規格: IBM Intel Pentium 4 1.80G

用途:儲存試驗資料,以利分析並減少人為錯誤。

攝影機、照相機
 規格:SONY DSC-1、SONY W1。
 用途:錄影或拍攝沖刷試驗之結果,藉以探討橋墩周圍流場之流
 況與泥砂運移之情形。

4-6

6. 顯示式管路手動矩形閘閥

照片 4-4 顯示式管路手動矩形閘閥 用途:可以使試驗流量控制為變量流,優點 為流量可由數字顯示閥來控制,而數 字顯示閥上下開度 0~12000 數字,無 間隙誤差,可確實達到實驗條件的設 定與實際狀況之需求。

4.3 試驗河床質

為充分瞭解不均勻橋墩沖刷之機制,減少因護甲作用所造成沖刷 深度的不準確性,於渠槽中鋪設 35cm 厚之越南細砂,其河床質粒徑 為利用#20、#30、#40號篩所篩出之三種泥砂粒徑加以混和,中值粒 徑 d₅₀為 0.62mm,標準偏差σ_g約為 1.24,屬於均勻泥砂,粒徑分佈 如圖 4-3 所示。

圖 4-3 試驗河床質粒徑分佈曲線

4.4 試驗流量

本試驗之流量,由流量控制儀所控制,水流從定水頭水箱經精給水管輸送到渠槽中,再流至V型堰處。V型堰之流量率定曲線如圖 4-4,經迴歸得式 4-1。

$$Q = 0.00004H^2 - 0.0003H + 0.001 \tag{4.4-1}$$

式中, Q=流量(cms)

圖 4-4 V 型堰流量率定曲線

由於本研究主要是模擬自然河川變量流的情況下橋墩沖刷歷程 與各參數之間的關係,故以階梯式變量流(stepped unsteady flow)作為 試驗條件,將每一組變量流三角形流量歷線分為 14 個階段,探討不 同形式之流量歷線對於橋墩沖刷之影響。由於張文鎰(2002)^[6]提出沖 刷時間 7 小時與 19 小時之局部沖刷深度相近,因此本研究採每階段 歷時約 30 分鐘,全程計 7 小時進行試驗。變量流形式分為前峰型 (advanced peak)、中峰型(central peak)及後峰型(delayed peak)歷線,其 洪峰到達時間 t_p分別約為歷線全部延時 t 之 1/3、1/2 及 2/3,藉以模 擬不同之天然降雨形式,詳如圖 4-5 所示。

4-8

逢甲大學學生報告 ePaper(2005 年)

4.5 完全發展段(Fully Development Zone)

速度分佈方程式之基本假設為均勻流,而在流況尚未完全發展的 情況下所量測的資料,並不適用於分析。故在選定試驗段位置之前, 須先確認試驗區段之流況為完全發展流況。然而對於完全發展流況之 檢驗,常用的方法有:(1)渠寬決定量測點位置;(2)邊界層理論決定 量測點位置;(3)水深決定量測位置及(4)速度剖面近似等四種方法。

由於本研究之試驗水深較低,如果以流速剖面決定完全發展段較為困難,故利用試驗區各段水深來決定完全發展段。完全發展段選定 之範圍是利用平均流速 V 與泥砂臨界啟動速度 V。之比值,即 V/V。

分別為 0.5 及 1.0 的情況下量測水深。經試驗分析結果,本試驗之完 全發展區段位於距入流口約 6.25m~9.07m 之間,因此本研究設計橋墩 落墩於距入流口 8.0m 處之動床區段,詳如圖 4-6。

4.6 渠槽試驗條件

本試驗於水平渠床坡度(S ≅ 0%)、泥砂中值粒徑 d₅₀=0.62mm 之均 匀底床質的條件下,分別改變不同的覆土高度Y,進行不同型式變量 流的不均勻橋墩清水沖刷試驗,試驗條件詳如表 4-2 所示。

D/D*	u_{*_c}	Y		V_c	V	У
D/D	(m/s)	(mm)	<i>V</i> / <i>V</i> _c	(m/s)	(m/s)	(mm)
0.4 0.7	0.0179	-15 0 15 30	0.5	0.242	0.121	25
			0.55	0.243	0.134	26
			0.6	0.247	0.148	28
			0.65	0.250	0.163	30
			0.7	0.251	0.176	31
			0.75	0.253	0.190	32
			0.8	0.255	0.204	34
			0.85	0.258	0.219	36
			0.9	0.259	0.233	37
			0.95	0.264	0.251	42

表 4-2 渠槽試驗條件

註:u*c 為泥砂臨界剪力速度;Y 為覆土高度,正值代表不均勻橋墩面位於河床 之下,負值則代表不均勻橋墩面位於河床之上。

上表中,覆土高度Y為30mm、0mm及-15mm等分別屬於Melville & Raudkivi(1996)^[31]所提之第一區(zone1)、第二區(zone2)及第三區 (zone3),詳如2.2節說明。水流接近速度V即為橋墩上游處接近橋墩 未受橋墩影響之水流流速,並以該值做為水流平均流速。依據前人 (Melville & Raudkivi, 1996)^[31]研究可知其範圍約為橋墩10倍直徑 (0.5m)以外之範圍。因本試驗橋基直徑5cm,而未受影響處為上游 0.5m 以上,故量測橋墩上游1m處之平均流速,並將其視為接近流 速。由福祿數可知本試驗均屬於亞臨界流(subcritical flow)流況。此 外,相對水流強度V/Vc之比值分別為0.5、0.55、0.6、0.65、0.7、0.75、 0.8、0.85、0.9、0.95,均介於0.5~1.0之間。

4.7 試驗步驟

4.7.1 試驗橋墩安置與底床質鋪設

在進行沖刷試驗前,先將試驗用橋墩置於渠槽動床試驗段,使其與 渠槽兩側邊壁等距離,並確定試驗用橋墩保持鉛垂。試驗所選用之底床 質主要為越南細砂,屬於均勻粒徑。為確保實驗的準確性,在每一次試 驗前均將底床質充分攪拌並均勻鋪設於渠槽中,再以木板整平。整平完 成後,再利用超音波剖面量測儀量測底床剖面,確定底床平整性。

4.7.2 試驗流量控制

利用閘閥控制,於三角歷線每一時段流量歷時結束後,改變閘閥角度,將 V/V。控制在研究範圍(0.5~1.0)內,直到三角歷線之 14 組流量沖刷完成為止。試驗區段尾端設置 0.5cm 高之壓克力尾水板,藉以抬升水位與防止泥砂流入尾水池。

4.7.3 沖刷深度與河床剖面量測

本試驗主要是在三角歷線全程延時T內,利用光纖視鏡於每5分鐘 觀測一次沖刷深度,並於歷時結束後,關閉尾水閘門壅水。再利用超音 波剖面量測儀,以 1cm*1cm 之格點方式進行橋墩周圍沖刷坑之剖面量 測,並利用 Golden Software 公司製作之繪圖軟體 Surfer 8.0(Surface Mapping System)繪製橋墩沖淤變化之等高線圖,而後計算沖刷坑範圍與 沖刷體積,藉以瞭解沖刷坑與淤積堆之變化趨勢。

4-12

4.7.4 試驗操作程序

本研究試驗程序如下,而流程示如圖 4-7。

1. 裝置試驗儀器;

2. 安置橋墩模型於渠槽內;

- 3. 鋪設試驗河床質於渠槽內並均勻整平夯實;
- 開啟定水頭水箱之進水閘閥至試驗所需流量Q₁,於每隔5分鐘量 測一次沖刷深度;
- 5. 歷時t₁後,改變流量為Q2至Q14並重複步驟4;
- 6. 待三角形流量歷線沖刷歷程結束後,關閉尾水閘門壅水,使渠道 達到試驗起始流量所需水深以上,並量測河床剖面;
- 7. 改變流量歷線型態,重複3~6;
- 8. 改變覆土高度,並重複3~6;
- 9. 改變不均勻橋墩墩徑比,並重複3~6。

圖 4-7 試驗流程圖

伍、結果分析與討論

本研究主要利用水工試驗模擬非同心圓柱型橋墩於變量流歷線 (前峰型、中峰型及後峰型)作用下,橋墩局部沖刷之現象與機制。 以瞭解不同型式橋墩(墩徑比 D/D*=0.4 或 0.7)在不同覆土高度 (Y=30mm、15mm、0mm、-15mm)其周圍局部沖刷及流場之影響。

5.1 一般沖刷、束縮沖刷與局部沖刷之分離

一般而言,河道之沖刷型態可分為一般沖刷、束縮沖刷與局部沖刷三種型態。而在本研究中,由於只考慮局部沖刷所產生之沖刷深度,故須將一般沖刷與束縮沖刷分離出來。

束縮沖刷之產生,主要是由於通水斷面積突然減小,造成單位寬 度流量增加,進而產生之沖刷。Melville(1996)^[31]指出,若橋墩迎水面 寬度(D)與試驗渠槽寬度(B)之比 D/B≦0.1 以上時,則可忽略束縮沖刷 所產生之效應。在本研究所使用之橋墩基礎最大墩徑為5cm,而試驗 渠槽寬度為50cm,符合上述條件,故可以忽略束縮效應所產生之沖 刷深度。

一般沖刷是指河道在未設置任何結構物時,水流對渠床沖刷造成 高程下降的情況。一般沖刷產生時,底床之泥沙顆粒為全面啟動狀 態,亦即當水流強度 V/V_c≧1.0 時,一般沖刷才會產生。而本試驗之 相對水流強度範圍為 0.5~0.95,均屬於清水沖刷情況。在整個試驗過 程中,除了在橋墩周圍之泥沙運移較明顯外,上、下游之泥沙幾乎呈 現不運動的情況,本研究中之一般沖刷並不顯著,因此本研究所測得 之沖刷深度皆可視為局部沖刷所造成之沖刷深度。

5.2 沖刷坑與淤積堆之縱斷面變化

水流通過橋墩時,主要因向下射流及馬蹄形渦流的交互作用,使 得橋墩周圍產生沖刷坑,同時於墩前產生一最大沖刷深度。而在橋墩 下游處,由於馬蹄形渦流的消散與尾跡渦流的產生,導致渦流效應減 弱,水流攜運泥沙之能力不足,泥沙因此落淤而形成淤積堆。

圖 5-1~圖 5-3 分別為在不同覆土高度非均勻橋墩 D/D^{*}=0.7 於前 峰型、中峰型及後峰型流量歷線作用下之沖刷坑與淤積堆中心線變化 情形。圖中係以橋墩迎水面寬度(D)為 x、z 軸之尺度無因次化,其中 x=0 時為橋墩中心,z=0 為原始河床高程。結果顯示,在橋基裸露的 情況下(Y 為負值),所造成之沖刷深度較大,且最大沖刷深度均發 生於橋基前緣,又沖刷坑影響範圍約自橋墩中心向上游 3D 之距離; 而其淤積堆向下游延伸較長之距離,最大約達 11.5D 之長度。此乃由 於橋基裸露時,橋基之阻水面積增加,加大向下射流之強度所致。由 水工實驗沖刷過程可知,淤積堆是由沖刷坑中之泥沙所帶出而形成, 並一層一層的漸漸往下游延伸,其延伸之速率與水流強度成正比,一 直到整場流量歷線達到最大值之後才漸漸趨於穩定。

換言之,覆土高度低於橋基時,沖刷行為由橋基兩側開始,而後 漸次轉移至橋基前緣。由於向下射流造成橋基前緣之局部沖刷,雖然 有不均勻面之阻擋效應,初期略有減緩沖刷之趨勢,惟因橋基阻水面 積加大,導致最終沖刷深度仍漸次加大,以達到最大沖刷深度而趨於 穩定。同時也從試驗中發現,無論何種變量流歷線,當覆土高度在不 均勻面之上時(Y為正值),即橋基未裸露時,由於向下射流於沖刷 過程中遭遇不均勻面之阻擋,因此橋基前緣最大沖刷深度低於橋基裸 露之情況。

圖 5-1 前峰型歷線於不同覆土高度下之河床縱斷面變化(D/D*=0.7)

圖 5-2 中峰型歷線於不同覆土高度下之河床縱斷面變化(D/D*=0.7)

圖 5-3 後峰型歷線於不同覆土高度下之河床縱斷面變(D/D^{*}=0.7)

圖 5-4 為 Y=-15mm、0mm、15mm 及 30mm 時於不同流量歷線 沖刷作用下之縱斷面變化情形。圖中發現雖然 3 種流量歷線其最大水 流強度 V/Vc 皆為 0.95,不過由於到達洪峰之延時不同,使得沖刷深 度有些許差異。在覆土高度相同之條件下,整體而言,以中峰型及後 峰型流量歷線流況下之沖刷深度為最大,研判其因可能係中峰型及後 峰型歷線作用於底床質啟動水流強度之時間較長,且墊床效應未較前 峰型等明顯所致。

當橋基未裸露(覆土高度位於不均勻面之上Y=15mm及30mm) 時所產生之沖刷深度較小,同時其沖刷坑與淤積堆範圍皆較小,此乃 為沖刷過程中因向下射流遭遇不均勻面而減緩水流強度,以致所造成 之沖刷深度與範圍均變小。因此可知不均勻面具有減緩沖刷深度之功 效。

Y=15mm, D/D^{*}=0.7(橋基未裸露) Y=30mm, D/D^{*}=0.7(橋基未裸露)

圖 5-4 不同變量流流況下橋墩上下游之縱斷面變化

圖 5-5 及圖 5-6 顯示不均勻圓形橋墩之最大沖刷深度皆發生在橋 基前方(橋基的迎水面),此乃為水流受到橋墩與橋基的阻擋而產生 向下射流所造成。由圖 5-5、5-6 可看出墩徑比(D/D*)固定時,在不同

覆土高度及不同流量歷線作用下,沖刷坑之幾何形狀均相似,並未隨 著覆土高度改變而有太大的變化。墩前之沖刷坑邊坡坡度大致相同, 即近似於水中底床質之安息角(約為30~34度)。

圖 5-5 不均勻橋墩於變量流不同覆土高度之縱斷面變化(D/D^{*}=0.4)

圖 5-6 不均勻橋墩於變量流不同覆土高度之縱斷面變化(D/D^{*}=0.7)

比較圖 5-5 及圖 5-6 之沖刷坑深度與範圍,發現 D/D*=0.7 時之沖 刷深度與沖刷坑範圍均高於 D/D*=0.4,其原因可能係前者之橋墩迎水 面寬度較大,導致阻水面積所產生之向下射流強度較強。當沖刷達到 不均勻面後,由於 D/D*=0.7 之不均勻面面積小於 D/D*=0.4 之面積, 對於向下射流強度削減效果較低,再加上阻水面積的增加,其沖刷速 率高於 0.4 之情況,以致有較大之沖刷深度及範圍。最終造成 D/D*=0.4 之沖刷坑為窄而淺,而 D/D*=0.7 之沖刷坑為寬而深型式。橋墩沖刷 後之淤積堆在 D/D*=0.7 情況下大部份較 D/D*=0.4 之延伸距離為長, 此亦反應出 D/D*=0.7 之沖刷坑體積大於 0.4 之情況。

5.3 沖刷坑之長度(Ls)與寬度(Ws)探討

圖 5-7 為無因次橋基覆土高度(Y/D^{*})與無因次沖刷坑縱向長度 (L_s/D^{*})之關係圖。當 D/D^{*}分別為 0.4 及 0.7,而橋基裸露(Y/D^{*}=-0.3) 時,沖刷坑縱向長度隨著橋墩裸露高度之增加而增長,此乃因橋基裸 露時阻水面積變大,導致向下射流強度增加並向橋墩兩側擴大,造成 沖刷坑縱向長度有增長之趨勢。

圖 5-7 無因次橋墩沖刷坑長度 L。/D^{*}與無因次覆土高度 Y/D^{*}之關係

當河床高度高於不均勻面或與不均勻面齊平時,不管墩徑比為 0.4或0.7,其沖刷坑之縱向長度均有減小之現象。換言之,沖刷坑縱 向長度隨覆土高度之增加而減小,此乃因向下射流受不均勻面之阻 擋,其強度因而減弱所致。

圖 5-8 所示為無因次橋基覆土高度(Y/D^{*})與無因次沖刷坑橫向寬 度(W_s/D^{*})之關係,圖中顯示 D/D^{*}為 0.4 時,沖刷坑橫向寬度隨覆土 高度之增加而減小,此結果與沖刷坑長度(圖 5-7)一致,惟最大沖 刷坑寬度與最大沖刷坑長度相當。同樣地,當 D/D^{*}=0.7 時之沖刷坑 寬度與沖刷坑長度之物理現象雷同,詳對照圖 5-7 與圖 5-8。

由沖刷坑長度與寬度分析結果可知不均勻面距底床高度,即覆土 高度 Y 為影響橋墩沖刷之重要因素之一。

圖 5-8 無因次橋墩沖刷坑寬度 W。/D^{*}與無因次覆土高度 Y/D^{*} 之關係

5.4 流量歷線對沖刷深度之影響

圖 5-9 為不同流量歷線下與其沖刷深度隨時間變化之比較圖,其 中 x 軸為流量歷線延時(t_i)與流量歷線歷程(t)之無因次化值, y 軸為沖 刷深度(d_s)對橋墩迎水面寬度(D)之無因次化值。從圖中可看出任一流 量歷線型態下之沖刷深度隨水流強度的增加而增加,同時最大沖刷深 度大致於流量歷線之上升段完成。由於本試驗在 V/V_c 小於 0.6 時, 墩側有沖刷形成,但在該時段沖刷並未延伸至墩前,故墩前底床質並 無明顯沖刷,直到 V/V_c=0.8 墩前才產生沖刷現象。

當基礎裸露時(覆土高度位於不均勻面之下,Y=-15mm),第一 階段前峰型歷線由於水流強度 V/V。較大,因此沖刷深度稍大,且沖 刷速率亦較快。當流量達尖峰流量時,沖刷深度亦達到最大沖刷深 度,其後因沖刷坑內水深增加,水流強度雖高達 0.95,然而沖刷深度

因受墊床效應(cushion effect)影響而趨於緩和。圖顯示中峰型歷線及 後峰型歷線之最大沖刷深度均高於前峰型,且有時間稽延現象。研判 可能係因中峰型及後峰型歷線之漲水歷時較長,影響底床質啟動的水 流強度時間較久,加上前峰型歷線因墊床效應較明顯,以致前峰型歷 線沖刷深度較低。

圖 5-9 不同流量歷線下沖刷深度隨時間變化之比較圖

 $(D/D^*=0.7 \cdot Y=-15mm)$

在整個沖刷歷線型態中,可以看出墩前沖刷深度皆發生於變量流 歷線之上升段,且最大沖刷深度均產生於洪峰流量,而在退水段時, 由於試驗之水流條件為清水流,因此墩前沖刷深度並無回淤現象。當 流量改變時,初期產生向下急速刷深,此時之沖刷深度已達該沖刷歷 時之總沖刷深度的70~80%,而後漸趨於平緩,直至穩定狀態。此可 說明時間因子在沖刷初期的影響很大,惟其影響會隨著沖刷時間的增 加而逐漸變小。

5.5 橋墩不均勻面對沖刷深度之影響

橋墩與橋基交界之不均勻面位置為一重要的沖刷參數,不均勻面 對於橋墩之沖刷型態深具影響,若設置得宜對於減緩橋墩沖刷深度之 功效助益甚大,因此本節對於不均勻面之位置作一探討。

圖 5-10 為三種不同流量歷線下沖刷深度與歷程之變化情形。圖 中顯示不均勻面對於沖刷深度的減緩有很大的功效,尤以中峰型及後 峰型歷線較為顯著。在中峰型歷線中可發現當階梯式水流強度 V/Vc=0.7 上升至 0.8,而後峰型歷線從 V/Vc=0.8 上升至 0.95 時,其沖 刷深度均無變化,此乃因橋墩與橋基交界之不均勻面能夠有效的削減 向下射流的強度,同時減少馬蹄型渦流對沖刷坑底部泥沙顆粒之沖 刷。

實驗過程中發現,在相同覆土高度(Y=15mm)、不同 D/D*的情況 下,D/D*=0.4 時,其最大沖刷深度大約只能刷深到不均勻面,並無法 再繼續刷深至橋基部分,而相較於 D/D*=0.7 時,卻可以繼續向下刷 深。此乃因為於 D/D*=0.4 時,其不均勻面面積為 D/D*=0.7 的 1.65 倍, 對於減低向下射流強度助益甚大;同時又由於橋墩迎水面面積較小, 因此對於沖刷深度的減緩更具成效。

從橋墩不均勻面距底床高程,即覆土高度(Y)的角度來做比較, 圖 5-11 為中峰型 B 歷線與橋墩墩徑比 D/D^{*}=0.7 時,不同橋墩均勻面 位置之沖刷深度。圖中顯示於試驗過程中發現當覆土高度在不均勻面 上時,即 Y=15 mm 及 30mm 沖刷均受不均勻面之影響,前者之沖刷 深度最小,而後者僅沖刷至不均勻面,這是因為不均勻面阻擋向下射 流,有效防止沖刷深度繼續刷深。而在 Y=-25mm 時,由於橋基屬於 裸露狀態,其迎水面寬度變大,水流受橋基影響所產生之向下射流變

圖 5-10 不同流量歷線下沖刷深度與歷程之比較圖

5-12

當 Y=0mm, V/Vc=0.85 時,沖刷深度未見向下刷深之情況,此乃

因橋墩之阻水面為橋墩 D,然而底床之泥沙顆粒分佈於橋基 D*之周 圍,橋墩所產生之馬蹄形渦流只有少部分作用在橋基周圍之泥沙上, 故必須花較多的時間才能將橋基周圍之泥沙顆粒沖刷帶走,以致產生 沖刷時間延遲的現象。

圖 5-11 不均匀面位置與沖刷深度之比較

(D/D*=0.7,中峰型歷線)

5.6 本研究與 Melville(1996)沖刷深度之比較

本研究之主要係以 Melville(1996)^[31]為基礎,改變試驗水流流況 等條件,進行相關試驗,試驗條件比較詳如表 5-1 所示。

	Melville(1996)	本研究		
 野	均勻泥砂	均勻泥砂		
积松至忍	d ₅₀ =0.8mm	d ₅₀ =0.62mm		
渠槽尺寸	長 11.4m、寬 0.44m	長 13.6m、寬 0.5m		
不均勻橋墩墩	$D/D^* = \frac{3.0cm}{8.1cm} \approx 0.4$	$D/D^* = \frac{2.0cm}{5.0cm} = 0.4$		
徑比	$D/D^* = \frac{4.5cm}{6.3cm} \rightleftharpoons 0.7$	$D/D^* = \frac{3.5cm}{5.0cm} = 0.7$		
水深(cm)	20	2.5~4.2		
沖刷時間(hr)	20~30	7		
流 況	清水定量流	清水變量流		
	$(V/V_c=1)$	$(V/V_c = 0.5 \sim 0.95)$		

表 5-1 本研究與 Melville(1996)研究試驗條件比較表

以 Melville(1996)研究所得之等效墩徑推估公式(2-8)式及 d_s=2.4D_e推求得本試驗之沖刷深度,將該等沖刷深度推估值與本試驗 結果進行比較分析,發現 Melville(1996)公式之推估值均普遍高估, 尤以 D/D^{*}=0.4、Y=15mm 時高估近三倍為最大,詳如圖 5-12 所示。 探究其可能原因如下:

- 水深之差異:由於 Melville 之研究於沖刷初期水深較深且墊床效 應較不明顯時,且因其水深較深,故橋墩迎水面之阻水面積較大, 使得所產生之向下射流強度較強,以致形成之沖刷深度較大。
- 2. 壞徑與渠寬比 D/B 之差異:在前人 Melville(1996)之試驗條件中, D/B 之最大值 大於 0.1,此情況可能因束縮沖刷效應尚未排除, 因此所得之沖刷深度包含局部沖刷與束縮沖刷,而本研究已將束 縮效應排除,以致 Melville 推估所得之沖刷深度較大。
- 水流強度與流況不同:Melville(1996)之研究主要探討定量流流況
 下不均勻橋墩之最大沖刷深度,其水流強度均約以 V/V。=1 的情況

下進行沖刷,同時試驗沖刷時間均必須達到沖刷平衡為止。而本研究之試驗水流強度(V/V_c)為 0.5~0.95,於沖刷時間內水流強度均低於 Melville 之情況;加上 Melville 為在定量流持續作用達平衡沖刷時所得沖刷深度,因此所得沖刷深度高於本研究。

圖 5-12Melville(1996)沖刷深度推估值與本試驗實測值之比較圖

陸、結論與建議

6.1 結論

本研究以水工試驗模擬在變量流(前峰型、中峰型及後峰型流量 歷線)流況下非同心圓柱型橋墩(墩徑比 D/D^{*}=0.4 和 0.7)於不同覆土 高度,而覆土高度(Y)位於橋墩不均勻面之上(橋基未裸露, Y=-15mm)、恰位於不均勻面處(Y=0mm)及不均勻面之下(橋基裸 露,Y=30mm和15mm)等條件下,橋墩處局部沖刷深度之變化與歷 程。本研究獲致結論如下:

- 在覆土高度相同之條件下,以中峰型及後峰型流量歷線流況下之沖 刷深度為最大,研判其因可能係中峰型及後峰型歷線作用於底床質 啟動水流強度之時間較長,且墊床效應(cushion effect)較前峰型不 明顯所致。
- 2.水流通過橋墩時,主要因向下射流及馬蹄形渦流的交互作用,使得 橋墩周圍之泥砂顆粒被帶往下游,同時上部顆粒因重力作用而漸次 崩落,其崩落型態沿著橋墩兩側向墩前延伸,終至於墩前形成沖刷 深度。
- 3. 在不同覆土高度於不同流量歷線作用下,當沖刷深度達最大時,沖 刷坑之幾何型態相近,墩前之沖刷坑邊坡坡度亦大致相同,即近似 於水中底床質之安息角(repose angle),約為 30~34 度。
- 在各種流量歷線流況下,沖刷坑縱向長度(L_s)與橫向寬度(W_s)隨覆
 土高度增加而減小。由此可知覆土高度為影響橋墩沖刷之重要因素。
- 5. 於變流量歷線作用下,沖刷深度會隨水流強度(V/V,=0.5~0.95)增加

而增加,同時最大沖刷深度於變量流歷線之上升段完成。中峰型歷線及後峰型歷線之沖刷歷程類似,其最大沖刷深度相當且均高於前 峰型,兩者僅有時間稽延之差異。

- 6. 若水流強度達底床質臨界啟動流速時,則短時間內即可完成大部分 沖刷歷程。隨著水流強度的增加,其達成沖刷平衡的時間越晚。而 在流量歷線上升過程中,可看出時間因子在沖刷初期影響很大,惟 其影響會隨著沖刷時間的增加而逐漸變小。
- 在各種不同流量歷線作用下,當橋基未裸露(0≤Y/D^{*}≤0.6)時,由 於不均勻面能夠有效阻擋刷深情況,使得所產生之沖刷深度較小, 而橋基裸露(Y/D^{*}<0)時則反之。
- 8. 以 Melville(1996)公式推估所得之沖刷深度均較本研究實測沖刷深 度為大,探究其因可能係水深、墩徑與渠寬比(D/B)、河床質粒徑、 粒徑分佈及水流強度等試驗條件不同所致。

6.2 建議

- 本研究為均勻泥沙(砂質渠床)水平坡床之橋墩沖刷型態,此與台灣下游地區之河川較為接近。然而對於不均勻礫石渠床(護甲層型態)及陡坡之情況,未來可加以深入研究探討。
- 天然河川中屬於含滓流,由於上游來流含砂有回淤補助沖刷坑之效
 果,因此含滓流之沖刷深度大小與歷程變化不同於清水流,未來可 針對此方面深入研究。

- 4. 根據前人研究指出,橋墩之沖刷深度約為其迎水面寬度或墩徑的 2.4 倍,由於本試驗為不均勻橋墩型式,覆土高度與不均勻面對沖 刷深度的影響尚無法完全量化,建議日後可改變不均勻墩徑比 D/D^* 及覆土高度Y進行相關研究。
- 5. 橋基裸露現象會造成底床局部沖淤變化,未來可針對橋墩沖刷之保 護工作一深入探討。此外,在不影響橋樑結構安全下,可考慮於橋 墩上鑽孔(slot),以減少水流因橋墩阻擋所造成之渦流作用力。或於 橋墩支撐橋台重量之結構安全無虞前提下,將橋墩與橋基施設成非 同心圓之型態,增加迎水面之不均勻面面積,以減緩向下射流之沖 刷作用。

參考文獻

- 王燦汶,1968,「橋墩周圍之沖刷研究」,水利復刊第五期,第 30 頁至第 37 頁。
- 交通部公路總局委託研究計畫,2003,「河川橋樑沖刷並補強後之 安全評估」。
- 李俊穎,2005,「歷線型流況下同心圓橋墩局部沖刷之研究」,逢甲 大學水利工程研究所碩士論文。
- 4. 吴建民,1968,「橋墩沖刷之試驗研究」,水利復刊第五期,第38 頁至第69頁。
- 5. 林呈,李秉融,2003,「台中市旱溪東門橋桃芝颱洪橋基塌陷之成 因探討」,臺灣公路工程,第29卷,第8期,第1頁至第34頁。
- 6. 陸浩、高冬光,1991,「橋樑水力學」,人民交通出版社,第167頁
 至第184頁。
- 7. 張文鎰,2002,「圓形橋墩局部沖刷之模擬與試驗驗證」,國立台灣 大學土木工程研究所博士論文。
- 張藝馨,2000,「不均勻圓形橋墩之局部沖刷研究」,國立中央大學 土木工程研究所碩士論文,第2頁至第5頁。
- 9. 蔡坤霖,2006,「定量流流況下非同心圓柱型橋墩局部沖刷之研究」,逢甲大學水利工程研究所碩士論文。
- 10.蔡岳臻,2006,「變量流歷線作用下非均匀同心圓柱型橋墩局部沖刷之研究」,逢甲大學水利工程研究所碩士論文。
- 11.盧昭堯等,2004,「河道深槽沖淤量測及預測模擬變化潛勢評估
 (2/3)」,經濟部水利署水利規劃試驗所報告。
- 12. 嚴榮甫, 1986, 「粗質渠床上橋墩周圍之沖刷試驗研究」, 國立台

灣大學土木工程研究所碩士論文,第33頁。

- 13.蘇重光,1995,「橋墩及橋台周圍局部沖刷之研究(I)」,行政院國家科學委員會專題研究計畫成果報告,第16頁至第21頁。
- Baker, C. J., 1980, "Theoretical Approach to Predication of Local Scour around Bridge Piers", Journal of Hydraulic Research, Vol.18, No.1, pp.1-12.
- Batuca, D. & B. Dargahi, 1986, "Some Experimental Results on Local Scour around Cylindrical Piers for Open and Covered Flows", 3rd International Symposium on River Sedimentation, April, pp.1095-1104.
- Breusers, H. N. C., G. Nicollet & H. W. Shen, 1965, "Local Scour around Cylindrical Piers", Journal of Hydraulic Research, Vol.15, pp.211-252.
- Breusers, H. N. C. & A. J. Raudkivi, 1991, "Scouring", IAHR, Hydraulic Structure Design Manual, Vol.2, Belkema.
- Chabert, J., & Engeldinger P., 1956, "Etude des afouillements author des piles des ponts", Laboratoire National d'Hydraulique, Chatou, France.
- Chiew, Y. M., 1992, "Scour Protection at Bridge Piers", Journal of Hydraulic Engineering, ASCE, Vol.118, No.9, September, pp.1260-1269.
- Dargahi B., 1990, "Controlling Mechanism of Local Scouring", Journal of Hydraulic Engineering, ASCE, Vol.116, No.10, pp.1197-1214.
- Dey S., 1999, "Time-variation of Scour in the Vicinity of Circular Piers", Proc Instn Civ. Engrs Wat., Marit. & Energy, Vol.136, pp67-75.
- 22. Ettema, R., 1980, "Scour at Bridge Piers", School of Engineering
Report No.216, Department of Civil Engineering, University of Auckland, Auckland, New Zealand.

- Hjorth, P., 1972, "Lokal Erosion Och Erosionsverkan Vid Avloppsledning I Kustnara omraden ", Bulletin Series B, Nr.21, Insistutionen for Vattenbyggnad, Tekniska Hogskolan, Lund, Sweden.
- Imamoto H., & Ohtoshi K., 1987, "Local Scour around a Non-uniform Circular Pier", Proc., I.A.H.R Congress, Lausanne, Switzerland, pp.304-309.
- Jain, S. C., 1981, "Maximum Clear-Water Scour around Circular Piers", Journal of Hydraulic Engineering, ASCE, Vol.107, No.5, pp.611-626.
- Jones J. S., Kilgore R. T., & Mistichelli M. P., 1992, "Effects of Footing Location on Bridge Pier," Journal of Hydraulic Engineering, ASCE, Vol.118, No.2, pp.280-290.
- 27. Laursen, E. M., 1962, "Scour at Bridge Crossings", Journal of the Hydraulic Division, ASCE, Vol.86, No.Hy2, February, pp.39-54.
- Melville, B. W. & A. J. Raudkivi, 1977, "Flow Characteristics in Local Scour at Bridge Piers,"Journal of Hydraulic Research, Vol.15, No.4, pp.373-380.
- Melville, B. W. & A. J. Sutherland, 1988, "Design Method for Local Scour at Bridge Piers", Journal of Hydraulic Engineering, ASCE, Vol.114, No.10, October, pp.1210-1226.
- Melville, B. W., 1992, "Local Scour at Bridge Abutments", Journal of the Hydraulic Division, ASCE, Vol.118, No.4, April, pp.615-631.
- Melville, B. W., & A. J. Raudkivi, 1996, "Effects of Foundation Geometry on Bridge Pier Scour", Journal of Hydraulic Engineering, pp.203-209.
- 32. Melville, B. W., 1997, "Pier and Abutment Scour: Intergrated Approach", Journal of Hydraulic Engineering, ASCE, Vol.123, No.2,

pp.125-136.

- Melville, B. W., & Chiew, Y. M., 1999, "Time scale for Local Scour at Bridge Piers", Journal of Hydraulic Engineering, ASCE, Vol.125, No.1, pp. 59-65.
- 34. Melville, B. W., & Coleman, S. E., 2000, "Bridge Scour", Water Resources Publications, LLC., Highlands Ranch, Colorado, USA.
- 35. Neill, C. R., 1973, "Guide to Bridge Hydraulics", Roads and Transp. Association of Canada, University of Toronto Press. Toronto, Canada.
- Parola, A. C., S. K. Mahavadi, B. M. Brown & A. El Khoury, 1996, "Effects of Rectangular Foundation Geometry on Local Pier Scour", Journal of Hydraulic Engineering, pp.35-40.
- Raudkivi, A. J. & R. Ettema, 1977, "Effect of Sediment Gradation on Clear Water Scour", Journal of Hydraulic Engineering, ASCE, Vol.109, No.3, pp.338-349.
- Raudkivi, A. J. & R. Ettema, 1983, "Clear-Water Scour at Cylindrical Piers", Journal of Hydraulic Engineering, ASCE, Vol.111, No.4, April, pp.713-731.
- Raudkivi, A. J., 1986, "Functional Trends of Scour at Bridge Piers", Journal of Hydraulic Engineering, ASCE, Vol.112, No.1, January, pp.1-13.
- 40. Shen, H. W., Schneider, V. R., & Karaki, S., 1969, "Local Scour around Bridge Piers", Journal of Hydraulic Engineering, ASCE, Vol.95, No.6, pp.1919-1940.