

逢甲大學學生報告 ePaper

報告題名:

Comparative Injury and Fatality Risk Analysis of Building Trades

作者:阮景鼎 系級:土木工程學系碩一 學號:M9907520 開課老師:林正紋 教授 課程名稱:統計學應用與實務 開課系所:土木工程學系 開課學年:99 學年度 第 一 學期

of Construction at

中文摘要

1. 目的:

建造業在美國歷來遭受了不良記錄的職業傷害像是疾病和死亡!在 2003 年勞工統計局的指出

,建築業是在所有行業擁有最高的死亡人數有1126人

。不幸的是,這個數字在過去的 10 年一直保持相對穩定.人們普遍意識到,建設 工作本質上是危險的,目前建設項目現場有高風險受傷和死亡,尤其是當業主和 承包商的安全方案是不是有效的實施

2.過程及方法

本文是在分析與比較 16 種建築行業研究報告中職業傷 害和死亡的風險.該方法是基於從(根本上的界定)風險機 率作為其頻率和嚴重程度,並利用<u>風險概念評估和排名</u> <u>各行業的術語與非致命性損傷率</u>.此研究來源是用勞工 統計局的數據!風險分析方法包括頻率和嚴重程度的考慮 與非致命性的傷害

3. 結果

該結果表明:這項研究可以

指出為什麼往往這些行業會出現如此多的傷害訴訟,此外有這些風險 排行的訊息.施工項目經理可以是先計劃還有排定安全方案,現場的 施工方式將重點放在高風險部分和減災戰略和優先次序干預方法, 包括培訓需求,個人防護,以使有效的資源分配決定。 最後再跑中文統計 2.0 軟體,證明她 DATA 的信心水準

關鍵字:

中文統計 2.0 風險評估 風險量化和風險分析 risk plane concept to evaluate rank the trades in terms of nonfatal injury rates risk quantification and risk analysis

1

目 次

- Abstract
- Introduction
- Risk Analysis Methodology and *Steps for Analysis*
- Results and Discussion
- Experience
- 使用軟體驗證
- References

Directory

- Abstract
- Introduction
- Risk Analysis Methodology and *Steps for Analysis*
- Results and Discussion
- Experience
- References

Abstract

Occupational injury and fatality risk analysis was performed on 16 building trades in the study reported herein. The approach was based on defining risk fundamentally as the product of probability frequency₁ and severity, and using the risk plane concept to evaluate and rank the trades in terms of nonfatal injury rates. Bureau of Labor Statistics data was used in the study. The risk analysis methodology

Labor Statistics data was used in the study. The risk analysis methodology included both frequency and severity considerations associated with nonfatal injuries.

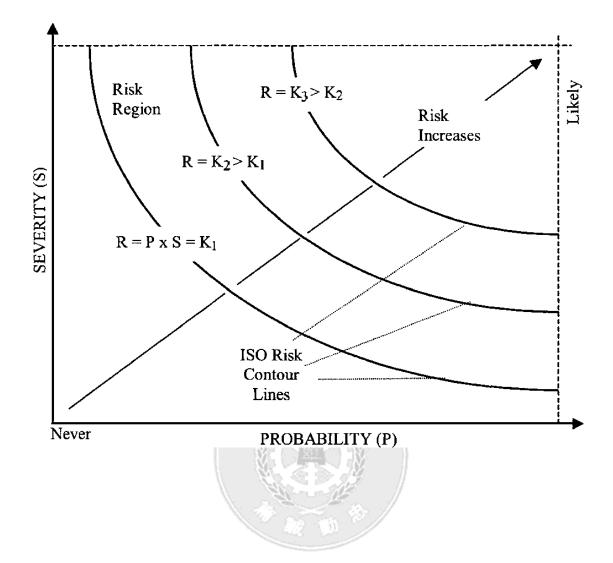
Introduction

The construction industry in the United States has historically suffered a poor record of occupational injuries, illnesses, and fatalities. The Bureau of Labor Statistics for 2003 indicate that the highest number of fatalities among all industries occurred in construction, with 1,126 that year. Unfortunately, this number has stayed relatively constant over the past decade. It is commonly recognized that construction work is inherently dangerous, and construction project sites

present a high risk of injury and fatality, especially when the owner and contractorsafety programs are not implemented effectively

Data published by the Bureau of Labor Statistics were used in these studies to evaluate the risks primarily in terms of the probability of injury and fatality.

It is important to recognize that a large volume of data is required for risk quantification and risk analysis using injury, illness, and fatality statistics for each trade.


However, very few construction firms have the quantity and quality of data needed to perform meaningful risk analysis. Although insurance companies maintain extensive records, this data is confidential and not in the public domain. Consequently, all published risk analysis work on injuries and fatalities has drawn

on the BLS data, which is easily accessible

What is evaluating risks?

Two methods have commonly been used in evaluating risks (Clemens and Simmons 1998): The risk plane, and its extension, risk assessment matrix.

Risk plane

Risk Analysis Methodology and Steps for

Analysis

Data Source

The BLS provides several different statistics that can be used to identify and rank dangerous occupations, including annual incidence and fatality rates. Incidence rate is the number of injuries and illnesses per 100 full-time workers and represents their frequency in an industry or an industry sector.

It is based on 100 full-time equivalent workers working 40 h per week for 50 weeks in a given year. Fatality rate also termed rate of fatal occupational injuries is the number of deaths per 100,000 workers and represents the annual frequency of fatalities.

Formulations for Risk Analysis

NFR = (NF / E)

 $FR = (F / E) \times 100,000$ $CLT = MDAFW \cdot HW \cdot 8$

Steps for Analysis

A two-step approach was taken to perform the risk analysis (Baradan 2004). As a first step, nonfatal injuries and fatalities were analyzed separately. The second step was based on the first, where the results for nonfatal injuries and fatalities were integrated into a combined risk analysis.

Nonfat	al injuries	Fatalities					
Risk region	Risk score	Index of relative risk	Risk score				
1	7	>1.50	7				
2	6	1.25-1.49	6				
3	5	1.00-1.24	5				
4	4	0.75-0.99	4				
5	3	0.50-0.74	3				
6	2	0.25-0.49	2				
7	1	0.01-0.24	1				

Table 1. Risk Score Criteria for Nonfatal Injuries and Fatalities

Fatalities were analyzed using the index of relative risk, which is

6

calculated by IRR =
$$FR / \left[\left(\sum_{E} F / E \right) \cdot 100,000 \right]$$

$RS_{C} = RS_{NF} + i \cdot RS_{F}$

The index of harm term, *i*, in Eq. 5 implies that the effects of nonfatal injures and fatalities on the combined additive risk score term can be uneven. It was decided to use the same *i* value to compute RS*C* in this study, although it was recognized that there may be a range of values for this coefficient. Index of harm may Vary from trade to trade, and in cases where there are high-cost disabling injuries, it can be lower than 2.

			1998-200	1 mean values		
Building trade	Abbreviation	Nonfatal injury rate	Median days away from work	Hourly wage (\$)	Cost of lost time (\$)	Fatality rate
Brickmasons, blockmasons, and stonemasons	Br	0.031	8.25	19.15	1,264	14.18
Carpenters	Ср	0.043	7.25	16.50	957	12.23
Carpet, floor, and tile installers and finishers	Cr	0.042	10.50	15.61	1,311	0
Cement masons, concrete and terrazzo finishers	Cn	0.015	9.25	14.63	1,083	0
Construction equipment operators	Op	0.003	23.50	14.22	2,673	7.55
Drywall installers	Dr	0.038	9.00	16.82	1,211	8.38
Electricians	El	0.025	8.25	19.84	1,310	17.28
Glaziers	GI	0.046	5.00	15.09	604	0
Insulation workers	In	0.043	8.25	14.44	953	10.70
Ironworkers	Ir	0.056	8.50	18.41	1,252	52.70
Painters and paperhangers	Pa	0.026	8.00	14.19	908	14.93
Plasterers and stucco masons	Pl	0.026	9.75	16.23	1,266	0
Plumbers, pipelayers, pipefitters, steamfitters	Pm	0.030	7.50	18.93	1,136	9.26
Roofers	Rf	0.052	10.25	14.69	1,205	55.30
Sheet metal workers	Sh	0.033	6.25	16.47	824	8.19
Tilesetters and marble setters	Ti	0.028	7.50	17.63	1,058	0

7

Table 2. Mean Values of Nonfatal Injury and Fatality Related Data

Table 3. Trade Risk Ranking Results

		Nonfat	al injuries		Fa	ıtalities		Combine	ed results
Building trade	R	Rank	Risk region	Risk score	Index of relative risk	Rank	Risk score	Risk score	Rank
Iron workers (Ir)	65.9	1	1	7	3.78	2	7	21	1
Roofers (Rf)	63.0	2	1	7	3.97	1	7	21	1
Carpet, floor, tile installers (Cr)	55.8	3	2	6	0	12	0	6	12
Drywall installers (Dr)	45.5	4	3	5	0.6	9	3	11	8
Insulation workers (In)	41.2	5	3	5	0.88	6	4	13	5
Carpenters (Cp)	41.0	6	3	5	0.77	7	4	13	5
Brickmasons (Br)	39.2	7	4	4	1.02	5	5	14	3
Plumbers (Pm)	33.8	8	4	4	0.66	8	3	10	9
Electricians (El)	33.2	9	4	4	1.24	3	5	14	3
Plasterers and stucco masons (Pl)	32.0	10	5	3	0	12	0	3	13
Tilesetters and marble setters (Ti)	28.2	11	5	3	0	12	0	3	13
Glaziers (Gl)	27.3	12	5	3	0	12	0	3	13
Painters and paperhangers (Pa)	23.9	13	5	3	1.07	4	5	13	5
Sheet metal workers (Sh)	17.2	14	5	3	0.59	10	3	9	10
Cement masons, concrete finishers (Cn)	15.5	15	6	2	0	12	0	2	16
Construction equipment operators (Op)	7.2	16	4	1	0.54	11	3	7	11

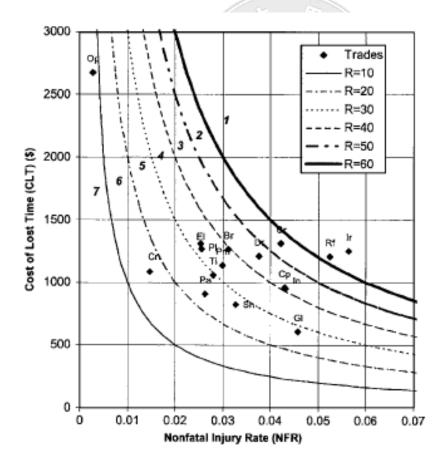
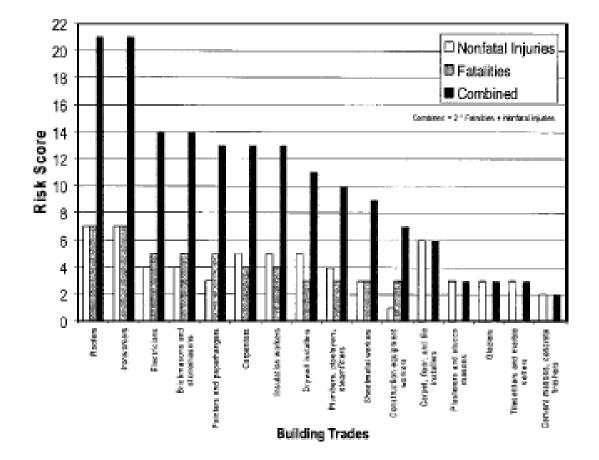



Fig. 2. Risk plane for years 1998-2001

Comparative Injury and Fatality Risk Analysis of Building Trades

Fig. 3. Risk scores of building trades

使用中文統計 2.0 分析 加入新議題

上述報告是論文內容,以下所要講的是增加

新的議題,用中文統計2.0軟體來驗證和分析,

使本論文更加完善

	第用	・ (* ・) 插入	版面配置	▮ 公式 資料	校閱 榆視		123 - Micros 益集 Acro					
		M8			10.181 1.8175	/# 3						
Å	A	B	С	D	E		F	G	Н	I	J	K
			-		_	201	-			-	107	
2	0.031	19.15										
3	0.043	16.5					24		W	= 14.371x + 15.94	16	
ŀ	0.042	15.61					22 -		y	$R^2 = 0.0108$		
5	0.015	14.63					20 -		•		8	
;	0.003	14.22		摘要輸出			÷ 18 -		40		•	
7	0.038	16.82					18 16 14 12					
8	0.025	19.84		迴歸	統計		and the second			* *	•	
9	0.046	15.09		R 的倍數	0.103729132		14 -		*	•		
0	0.043	14.44		R 平方	0.010759733		12 -					
.1	0.056	18.41		調整的 R 平方	-0.059900286		10 -					
12	0.026	14.19		標準誤	1.943081511		0	0.01	0.02 0.03	0.04 0.0	0.06	
13	0.026	16.23		觀察値個數	16				NFR			
14	0.03	18.93										
15	0.052	14.69		ANOVA								
16	0.033	16.47			自由度		SS	MS	F	顯著値		
17	0.028	17.63		迴歸	1	0.5	574923125	0.574923125	0.152274695	0.702243762		
8				殘差	14	52	.85792063	3.775565759				
19				總和	15	53	.43284375					
20												
21					係數	杉	票準誤	t 統計	P-値	下限 95%	上限 95%	
22				截距	15.94581146	1.3	328024298	12.00716846	9.2819E-09	13.09748264	18.79414029	
23				X 變數1	14.37060818	36.	.82657068	0.390223904	0.702243762	-64.61453013	93.35574648	
24												
25												
4	► ► Sh	eet1 Shee	et2 / Sheet	3/9/		_		14		III		

利用t分配檢定 H_{\circ} $\beta_{1}=0$ 的假設 $|t|=0.3902 < t_{0.025, 14}=2.145$ 所以接受 H_{\circ}

在這裡我們假設每小時工資與非致命受傷率的關係 $\widehat{\mathbb{A}}_{\mathbb{R}}: \begin{cases} H_0: \beta_1 = 0 \\ H_1: \beta_1 \neq 0 \end{cases}$

利用變異數 F 分配檢定 H_0 : $\beta_0 = 0$ 的假設: 因為 $F = 0.1523 < F_{0.05, 1, 14} = 4.60$

TT

,所以接受 H₀ ,即自變數和因變數沒有顯著關係

代表工資越高.和受傷率沒有顯著的正相關

9)	- (4 -)	÷		123 - Microsoft Exce			圖表工具					- 5
	常用	插入	版面配	置 公式	資料 校開 檢視	増益集 /	Acrobat	設計	版面配置	格式			@ -
	며	表2		• (• t	2								
	A	В	С	D	E	F		G	Н		Ι	J	K
1	FR	\$/Hr				1						÷.	
2	14.18	19.15				24	1		-				
3	12.23	16.5				22			y =	0.0144>	(+ 16.239		
4	0	15.61								$R^2 = 0.$	0167		
5	0	14.63				20	-		•				
6	7.55	14.22		摘要輸出		18 IS	•					•	
7	8.38	16.82				: 16	-	4					
8	17.28	19.84		Ĵ	迴歸統計	14	ŧ.,					•	
9	0	15.09		R 的倍數	0.12933849								
10	10.7	14.44		R 平方	0.016728445	12							
11	52.7	18.41		調整的 R 平	方 -0.053505237	10	+	1	1	1	1	· · · · ·	
12	14.93	14.19		標準誤	1.937210722		0	10	20	30	40	50 60	
13	0	16.23		觀察値個數	16					FR			
14	9.26	18.93				:				-		4	
15	55.3	14.69		ANOVA									
16	8.19	16.47			自由度	SS	1	AS .	F		顯著値		
17	0	17.63		迴歸	1	0.8938483	39 0.8	9384839	0.238182	656	0.633076521	L	
18				殘差	14	52.5389953	3.75	2785383					
19				總和	15	53.4328437	75						
20									-				
21					係數	標準誤	tá	充計	P-値		下限 95%	上限 95%	
22				截距	16.2388635	0.62043333		7342216		-13	14.90816635		
23				X 變數1	0.014372017	0.02944846		8039605			-0.048788658		
24													
25													
	A N Sh	eetl She	et? Shee	at 3 / Ø 7 /				19			ш		
計編		Contra Mile	one / onto									100%	

利用t分配檢定 H_0 $\beta_1=0$ 的假設 $|t|=0.4880 < t_{0.025, 14}=2.145$ 所以接受 H_0

在這裡我們假設每小時工資與死亡率的關係

檢定:
$$\begin{cases} H_0: \beta_1 = 0\\ H_1: \beta_1 \neq 0 \end{cases}$$

利用變異數 F分配檢定 H_0 : $\beta_0 = 0$ 的假設: 因為 $F = 0.2382 < F_{0.05, 1, 14} = 4.60$,所以接受 H_0 ,即自變數和因變數沒有顯著關係

代表工資越高.和死亡率沒有顯著的正相關

8	1 .	• (° •)	Ŧ			123 - Micro	soft Excel				- 0	>
9	常用	插入	版面配置	公式 資料	校閱 檢視	増益集 Acr	obat				0 - 🖷	
	I	.14	-	(fx								
1	A	В	С	D	E	F	G	Н	Ι	J	K	
1	FR .	\$/Hr										
2	14.18	19.15										
3	12.23	16.5				24						
4	0	15.61					y = 0.1084x + 1	5.615				
5	0	14.63				22	R ² = 0.1298	3				
6	7.55	14.22				20				•		
7	8.38	16.82				-H_ 18 •						
8	17.28	19.84		摘要輸出		S 16 €		+	•			
9	0	15.09				14						
10	10.7	14.44		迴歸	流計							
11	14.93	14.19	1	R 的倍數	0.360316398	12 -						
12	0	16.23		R 平方	0.129827906	10 +						
13	9.26	18.93		調整的 R 平方	0.057313565	0	5	10	15	20		
14	8.19	16.47		標準誤	1.835876985			FR				
15	0	17.63		觀察値個數	14							
16												
17				ANOVA								
18					自由度	SS	MS	F	顯著値			
19				迴歸	1	6.034361213	6.034361213	1.790375591	0.205684127			
20				殘差	12	40.44533164	3.370444304					
21				總和	13	46.47969286						
22												
23					係數	標準誤	t 糸充言十	P-値	下限 95%	上限 95%		
24				截距	15.61534717	0.770768865	20.25944209	1.19987E-10	13.93598609	17.29470826		
25				X 變數1	0.108423949	0.081031364	1.338049174	0.205684127	-0.068128225	0.284976123		
	► ► She	et1 Shee	et2 Sheet3				14	1			Þ	П
就緒	Dire	inter a price					N.	1		100% (=)	0	5

利用t分配檢定 H_0 , $\beta_1=0$ 的假設 $|I|=1.3380 < t_{0.025, 12}=2.179$,所以接受 H_0 在這裡我們假設每小時工資與死亡率的關係(因上張圖有兩筆,離散値 出現,所以我們刪除離散値.再做一次分析) 檢定: $\begin{cases} H_0: \beta_1=0\\ H_1: \beta_1\neq 0 \end{cases}$

利用變異數 F 分配檢定 H_0 : $\beta_0 = 0$ 的假設: 因為 F = 1.7903 < $F_{0.05, 1, 12} = 4.75$,所以接受 H_0 ,即自變數和因變數沒有顯著關係,代表工資越高.和死 亡率沒有顯著的正相關,就算刪除離散值也是如此

	常用	插入	版面目	配置 公式 資料	校開 檢視	増益集 Ad	crobat				🥑 -	-
	(221		• (*) fx								
1	A	В	С	D	E	F	G	Н	Ι	J	K	Τ
1	NFR	CLT										
2	0.031	1264				3000 -						
3	0.043	957					•					
4	0.042	1311				2500 -		y=-18	3250x + 1801			
5	0.015	1083				2000 -		R	2 = 0.315			
6	0.003	2673		摘要輸出		6						
7	0.038	1211				S 1500						
8	0.025	1310		迴歸網	流計	1000 -	•			• •		
9	0.046	604		R 的倍數	0.561287234			* *				
10	0.043	953		R 平方	0.31504336	500 -						
11	0.056	1252		調整的 R 平方	0.266117885	0 -						
12	0.026	908		標準誤	379.468416		0.01	0.02 0.03	0.04 0.0	0.06		
13	0.026	1266		觀察値個數	16		0.01		0.04			
14	0.03	1136						NFR				
15	0.052	1205		ANOVA								
16	0.033	824			自由度	SS	MS	F	顯著値			
17	0.028	1058		迴歸	1	927228.0352	927228.0352	6.439249981	0.023681281			
18				殘差	14	2015947.902	143996.2787					
19				總和	15	2943175.938						
20												
21]	係數	標準誤	t 統計	P-値	下限 95%	上限 95%		
22				- - 截距	1800.954067	259.3526179	6.944036583	6.82798E-06	1244.698026	2357.210108		
23				X 變數1	-18250.02806	7191.937323	-2.537567729	0.023681281	-33675.19945	-2824.85668		
24												T
25												

利用t分配檢定 H_{\circ} $\beta_{1}=0$ 的假設 $|t|=2.537>t_{0.025, 14}=2.145$,所以拒絕 H_{\circ}

N N I

最後我們在這張圖示用了因爲受傷關係而失去時間成本的關係做了

比較 檢定:
$$\begin{cases} H_0: \beta_1 = 0 \\ H_1: \beta_1 \neq 0 \end{cases}$$

利用變異數 F 分配檢定 H_0 $\beta_0 = 0$ 的假設:

因為 $F = 6.392 < F_{0.05, 1, 14} = 4.60$

,即自變數和因變數有顯著關係,所以此圖形代表的是拒絕相。

有顯著的負相關

中文總結

因爲在社會上有各式各樣的行業,存在各種的死亡機率和受傷機率,但

以土木建築等較低階的產業來看,他們擁有的是低工資但往往擁有的 是高受傷率和高死亡率,且工資差異並沒多大。但反過來看電子.機械 等高科技產業,雖然工作時數可能會偏高.但他們並不存在如此高的死 亡及受傷風險。可能有部分的原因是安全措施並不完善且確實,這是 我們未來可以加強及改善的目標。

參考文獻

- Baradan, S. 2004. "Comparative injury risk analysis of building trades."
- Ph.D. dissertation, Wayne State Univ., Detroit.
- Brauer, R. L. 1994. "Risk management and assessment." Safety and
- *health for engineers*, Van Nostrand Reinhold, New York, 527 543.
- Bureau of Labor Statistics. 2001. "BLS statistics on worker safety and
- health." Bureau of Labor Statistics BLS http://bls.gov/bls/
- safety.htm May 25, 2005.
- Clemens, P. L., and Simmons, R. J. 1998. "Risk assessment matrix."
- System safety and risk management: A guide for engineering educators,
- Dept. of Health and Human Services/Centers for Disease Control
- and Prevention/The National Institute for Occupational Safety and
- Health, Cincinnati, II-1 12.
- Cox, S., and Tait, R. 1998. "Risk assessment in occupational safety and
- health." Safety, reliability and risk management: An integrated approach,
- 2nd Ed., London, 221 234.
- Garner, C. A. 2004. "Construction safety program essentials." *Construction*
- *safety management and engineering*, American Society of
- Safety Engineers, Des Plaines, Ill., 24 40.
- Hinze, J. 1997. "The true costs of construction worker injuries." Construction
- *safety*, Prentice-Hall, Columbus, Ohio, 50 70.
- Hinze, J., and Applegate, L. L. 1991. "Costs of construction injuries." J.
- Constr. Eng. Manage., 1173, 537 550.
- Levitt, R. E., and Samelson, N. M. 1987. "Putting accident costs up
- front." *Construction safety management*, McGraw-Hill, New York,
- 17 28.
- Liebing, R. 2001. "The players in construction." The construction
- *industry—Processes, players, and practices*, Prentice-Hall, Upper
- Saddle River N.J., 10 25.
- National Institute for Occupational Safety and Health NIOSH. 1999.
- "High risk small business industries: A combined risk index." *Identifying*
- high-risk small business industries—The basis for preventing
- occupational injury, illness and fatality, NIOSH Special Hazard Review,
- Department of Health and Human Services/Centers for Disease
- Control and Prevention, 74 79.
- Quality Management and Quality Assurance Military Standard. 1984.
- "System safety program requirements." *MIL-STD-882B*.

- Robinson, M. R. 1979. "Accident cost accounting as a means of improving
- construction safety." Technical Rep. No. 242, Dept. of Civil
- Engineering, Stanford Univ., Palo Alto, Calif.
- Solomon, K. A., and Abraham, S. C. 1980. "The index of harm: A
- useful measure for comparing occupational risk across industries."
- *Health Phys.*, 383, 375 391.
- Toscano, G. A. 1997. "Dangerous jobs." Compensation and Working
- *Conditions (CWC) Online*, 22, 57 60.
- University of Bath. 2003. "Integrated Risk Control Website."
- http://www.bath.ac.uk/dacs/risk Aug. 31, 2004
 中文統計 2.0

