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Abstract

In a supply chain system, it is very important to forecast the need of the market and maintain
a reasonable inventory level to satisfy the customer demand. On the other hand, it is also very
important to keep the whole chain operated in a stable condition. However, these two aims may
conflict to each other in many cases. This is due to large demand variability in a supply chain
system, and that results in the so-called “bullwhip effect”, the distortion of demand in upstream
activities. In this study we present a predictive controller to solve this problem. In the dynamic
supply chain system, the sequences of the customer demands, order amounts, and inventory level
all belong to the numbers of time series. It is possible to translate the customer demand time series
models into a general ARIMA model. On the other hand, the inventory level of a supply chain can
be modeled using material and information balances. Based on the above two techniques, a
minimum variance control (MVC) theory can be implemented to design the ordering law which
can track the need of the market well and eliminate the bullwhip effect. To accomplish these two
needs, a predictive controller is formulated, for the first time, for the supply chain system. The
objective function is formulated to make it possible to tune the controller parameters to minimize
the excess inventory and/or the backorder. It is shown that this model based control law can solve
effectively this bullwhip phenomenon and manage a proper inventory level no matter the customer
demand model is a stationary or non-stationary model.
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1. Introduction

The purpose of this work is to formulate
a general predictive inventory level controller
for a supply chain unit such that the system
can maximize its profit from the prevention of
large excess inventory and dissatisfaction of
the customers.

A supply chain system is essentially a
dynamic balance of material and information
flow and ordering policy serves as an
inventory control system. In the past, the
design for the supply chain model is
conventionally founded on continuous time
domain. The Laplace transformation technique
is naturally used to solve the supply chain
system. Towill [1] presented a classical control
concept and adopted the Lapace operator to

analyze the performance of the inventory
management. Perea-Lopez et al.[2,3] proposed
a dynamic model to demonstrate the behaviors
of a supply chain system. Dejonckheere and
his coworkers [4,5] offered an order
replenishment rule, and then applied the
transfer functions of z-transform-inverts to
discuss the bullwhip effect phenomenon.
Meanwhile, the authors, Lin et al.[6] proposed
a discrete supply chain model to investigate its
dynamics behaviors and used the cascade
control to obtain better performances of the
system.

A special phenomenon existed in
place-order action is the so-called “bullwhip
effect”. It means that the demand information
of from the downstream node along to the
upstream node will be tremendous distorted.
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Lee at el.[7,8,9]identified five main causes of
the bullwhip: the use of demand forecasting,
batch ordering, lead time, price fluctuation,
and shortage gaming. Chen et al.[10,11]
quantified the bullwhip effect for a simple
supply chain model with the exponential
smoothing forecasting. The ordering law in
Chen’s papers is the most popular
replenishment rule, i.e. order up to level.
They demonstrated that the bullwhip effect
can be reduced by way of -centralized
customer demand information.  Recently,
Disney et al. [12] presented an analytic
solution to the bullwhip effect for a specific
ordering rule. These authors are all devoted
to achieve the identical goals i.e. to eliminate
the bullwhip effect and improve the customer
satisfaction. However, if the customer
demands are non-stationary time series, the
classical process control results sometimes to
worse performances.

Minimum variance control (MVC) has
been a mature control scheme in the area of
stochastic control. It has been widely used in
industrial applications (e.g., C. Bordons et.
al.[13]) On the other hand, it is very clear that
the customer demand can be viewed as a
stochastic process. The purpose of this work
is to implement the principal of minimum
variance control by modeling the customer
demand as a stochastic process. In this work,
we one step further, modify the objective
function of the predictive by separating the
inventory level into two parts, i.e., on the road
and on the hand. By minimizing this novel
objective function, the excess inventory and/or
backorder can be furnished.

In general, the customer demand is
stochastic ~ with  patterns. The major
contribution of this work is to implement a
general stochastic model to describe the
demand of the customer. The stochastic
model, in turn, can be implemented to
predictive the future demand. The pattern of
the demand can be further analyzed by using
frequency domain analysis. The bullwhip

effect of the unit can be analytically quantified.

We further implement the general minimum
variance control law, e.g., Soeterboek [14].
By tuning the parameters in the control law,
the bullwhip effect can be effectively
eliminated. The simulation results show that
not only the inventory trajectory can be
successfully tracked and hence excess
inventory and backorder is minimized, but the
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ordering bullwhip effect can be effectively
suppressed.

2. Theory

As we described in our previous paper
(Lin et al.), a discrete time supply chain unit is
proposed. Let’s separate the general inventory
control problem into the following parts.

2.1. The Balances of Material Flow and
Information Flow

Without lose any generality, for
simplicity, let’s denote a simple decentralized
supply chain system be three nodes, consisted
of a upper stream node, a target node and a
down stream node. Let /() be the inventory
level of unit, /P(z) be the inventory position
(the total amount of current inventory level
plus the material delivered on the road from
the upper streams) of the target node, Yy (?) be
the product delivered from its upper level unit
and Yp(¢) be the material delivered to its down
stream unit. Given current time 7, a time
delay of L (lead time) is assumed for all
delivery actions so that goods dispatched at
time ¢ will arrive at time t+L. However, due
to need for examination and administrative
processing, this new delivery is only available
to customer at t+L+1. We also assume that
ordering information is communicated
instantaneously. However, an order at time t
will only be processed at time t+1. Let O(z)
be the amounts of orders placed by the target
node to its upstream. In order to describe the
problem of excess inventory and backorders,
let’s separate /P(?) to two parts, namely /y(?)
and Ip(t). Then Iy(t) and Ix(t) are defined as
the inventory level on hand and on road
individually of the target unit. Hence, If we
also assume that there is always enough stock
in the upper stream, then:

K)=z"00,  10)=U.0 ()
where Ug(?) is the amount of orders from its
downstream node, i.e., customer demand. The
relation between inventory, order and demand
is given by:

)=—="o0-ve) @

M-zt
Ip(t) = — o) (€)
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2.2. Minimum Variance Control

Consider the system described in the
previous section, it is our objective to control
the inventory level. The following objective
function for a predictive controller can be set
up by separating the inventory level into two
parts, i.e. on the road and on the hand:

i= Ny
J= Z(P(z‘l)lH (t+i)— PSPy (t+1))

=my

i=ng
+ Z(P(z ) g (¢ +1)~ PSPy (t+1))
i=mp

4

ny—d

+p 2 (200)

i=1

The symbol “~” in Eq.(4) represents the
predictive estimation of the variables. Here d
is the model time delay. P(z"') is a polynomial
in z', and P, is the gain of the polynomial
P(z"). It performs a moving average of the
predicted values of the controlled variables.
SPy and SPy denote the set point of inventory
on hand and road respectively. The objective
function parameters my (or my) and ny(or ny)
are the minimum cost horizon and prediction
horizon respectively. The parameter p is the
penalty factor to suppress the aggravated
control actions. Eq.(4) consists of two
controlled variables /y and I;. Let customer
demand Ug(?) be a noise of the supply chain
system. The following equations can be
derived for the controlled variables Iy and /5.
Assume that /; can be described by a general
linear stochastic equation:

2 9Bz c(z™h
———0(t)+ ) ()
= O e

Here I is the controlled variable (CV)
and O is the manipulated variable (MV).
The term z“B(z"')/A(z""), with B(z"') and A(z")
being polynomials in =z represents an
input-output relation with a time delay d. The
term C(z"')/D(z")&@) with C(z') and D)
being polynomials in z', and &) a white noise
having mean zero, represents a disturbance to
the system.
For the other controlled variable I(?), by
comparing to Eq.(3), we have no stochastic
term in the 1@?del

Ip(t+ 1)_ EN

IH(t+1)—

o) (6)
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Since the supply chain is a simple
logistic system, for simplicity, let’s assume
that:

(1) ng=my=L+1, and np=mp=1.
()PEY)=1+piz", -1<p;=0

The optimization for J can be solved to

give the control law

PSPy (k+L+1)— ’C“ 1)

o@t) =

1+ pA+ BDE,.
VAC @)

PSPyt +1)— 5‘ 1,(1)

+

1+ pA+ BDE,

For a decentralized supply chain system,
the controlled variable is the inventory level
I(t) and the disturbance is the customer
demand U¢. By comparing the system Egs. (2)
and (3) to the general input-output relations (5)
and (6), we get

BizH) 1

Az A ®)
Q(Z—]) B I_Z—L

Rz A ©)

If we assume the customer demand takes the
form of a time series as

-1
Uett)= %5@) (10)
hence:
cehH__eEh
D(Z—l) - @(Z—I)Am
and the control law in Eq.(7) becomes
I jl r )

Ep A

(1)

A
PgSPR(t+1)—:(P—] -

o) =

1+ pA—-

(12)

Iy ()

E q)AHl
PSPy (t+ L+])—:"*'(P+7"”® ]

+

E, A
14+ pA——LH1
P )

Alternatively, one can also expressed the
above equation in terms of customer demand
AP,(SPy (t+ L +1)+ SPy(t +1))

o) = Ue(t
© P(z_l)(Z - z_l‘)+ pA2 c®
r+l (13)
ZL+][P+ EI‘+ICDA
+ Uel(t
POz )rpa? € ®
I 1] y ] Rl f‘"%ﬁ
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2.3. Performance Measure Criteria

In the problem of optimizing control of
inventory level, two factors directly reflect the
cost of the supply chain unit. One is the extra
inventory level; the other is the backorders

that measures the satisfaction of the customers.

In this work, given a forecast horizon 7 u
"optimal" controllers are obtained by

minimizing an average excess inventory
(AED):

AE] = J;”]H(t)dt, () =0 (1)
H

T
or/and the average backorder order (4B0):
1 H
ABO = — ‘[ I, O, T,(1)<0 (1)
H

Subject to the following "bullwhip" constraint:
0

C

MR =|—|<1 (16)

Based on the above criteria, a so-called
minimum variance controller (MVC) derived
in the next section can be tuned to different
weightings of AE] and ABO.

2.4. Bullwhip Effect

By definition, the bullwhip effect can be
measured by the ratio of order to its supplier
to the demand from its customer node as

0

Ue
In general, most supply chain researchers
usually use a forecaster to predict customer
demand. But in our paper, we use a minimum
variance predictor instead of a forecaster to
handle the customer demand. While having a
lead time L, we can set SPy(t)=Uc(t) and
SPr(ty=L xUc(t). Substitute the above two
relations into Eq.(13) and calculate the
magnitude ratio of |0| /|U (;| , thus we get

MR = (17)

0
Ue

ALP +ZL+1 P+EI,+I¢Ar+]
& c)

Pl—z"" )+ pA?

MR =

(18

Note that MR is not only a function of
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parameters setting of the controller, but a
function of time series. However, Eq. (26) is
basically a linear system; it is hence possible
to implement the frequency domain analysis to
find the MR at high frequencies if we assume
U, is a stochastic process.

2.5. The Solution of the Optimizing Control
Problem

Given the information and material
balances of a single supply chain unit in
section 2.1 and the stochastic demand model
Uc, the direct solution of Eq.(10) can be
shown in Eq.(13) with several tunable
parameters. For simplicity, we only choose
the most effective parameters p and p, in this

study. Since the performance measure of
AEI and ABO are directly related to the
objective function, we direct solve the
following optimization problem:

Min wx AEI + (1-w)x ABO

Py (19)

st.MR <1

and the order policy of Eq.(13). Note that in
the above objective function, we put a
weighting factor w into the objective function,
since for different styles of supply chain unit
may have their own consideration of the
excess inventory and backorders.

3. Other Ordering Policies

This section reviews three different
ordering policies to be compared with our
approach in the next section. Note that there
exist some other excellent different ordering
policies, but we have compared some of them
in our last work (Lin et al.)

3.1. Order up to Policy

The ordering rule in the textbook is as
follows:
O()=SP(t)-IP(t) (20)
Here SP(t) is the set point of inventory
position, /P(¢) is the inventory position.
However in many literatures this equation is
modified as the following equation to
investigate the dynamic behaviors of the
supply chain system.
O(t)=ASP(t)+ U (1) (21)
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3.2. Smoothing Order Policy (SOP)

As analyzed by J. Dejonckheere et al, the
implementation of order up to policy, the
bullwhip seems unavoidable. They hence
proposed the following general replenishment
rule:

0] =L7<,v(t>+Ti(l7(,~ O-1, 1)
" 22)
(L0 0-1,0)

Where 7, and T, are the parameters of the
ordering decision rule, (7(7 is the demand
forecast,

Ue(0) = Fr(z"Ye () (23)
where Fj(z") is a forecaster. It is easily found
that the net stock (/) plus products on order

(I) equals inventory position (/P). In case
T,=T,, then Eq.(31) will be reduced as

0 =Up(0)+ Ti((L (- 1P()  (24)
n

The readers will easily observe that the
smoothing ordering rule is a controller model
consisted of a feed-forward controller and a
proportional controller. For simplicity, if
T,=T,~=1 the smoothing law will be reduced to
the order up to policy.

3.3 PI Control Policy

The authors (Lin et al.) proposed a PI
controller for supply chain unit since PI
controller is a traditional controller that
guarantees no off-set.

o) =K. (1 + l)(sp(t) — IP(1)) (25)
A

where K¢ is the proportional gain, and 7 is the
integral constant. Of course, when K. =1
and 1/7=0, the PI controller will be also
changed to the order up to policy.

4. Examples

A case is considered in this work to
demonstrate the capabilities of this approach
to track the change of demand and to avoid the
bullwhip effect. We compare our approach
with other popular approaches such as order
up to level, and smooth ordering rule proposed
by Dejonckeere et al. which have been shown
very effective to eliminate the bullwhip effect.
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In many real supply chain cases,customer
demands exhibit non-stationary behavior due
to many particular events such as season
changes, new designs...etc. Such system can
be also modeled by Eq.(10) by implementing

r0.
For example: r=], dD(z_l)=1—0.6z_l sand
ez hH=1.

Magnitude Ratio

Figure 2. The magnitude ratio of order to
demand using various weighting
factors 0 with the same value of
p1=-0.8

Magnitude Ratio

Figure 3. The magnitude ratio of order to
demand using various values of p;
with the same penalty factor p =2.

Similarly, the magnitude ratio of |O| /|U (;| with
the different weighting factors ( 0 =1,2,3) for
the non-stationary demand process as depicted
in Figure 2. And Figure 3 also gives frequency
domain analysis for some different values of
p1. From the above two Figures 2 and 3, we
obtain the following information: The bigger
oor smaller p; will reduce bullwhip effect.
or a MVC controller, Figure 4 give the contour
plots of both W and MR as a function of p
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other approaches as shown in Table 1.
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Figure 5. Dynamic simulation results of a
supply chain unit for a MVC using
0=0 and p;=-0.96, while w=1.0 for
a non-stationary demand process.

5. Conclusion

A very general approach for supply

’ ‘ . ’ ‘ chain ordering policy for a known demand
pattern is derived. The novel approach
includes:

(1) A general discrete model of the demand.

(2) A minimum variance ordering policy.

(3) A closed-loop frequency domain analysis
of the supply chain unit.

(4) A fine tune rule that can avoid the bullwhip
effect and minimize the excess inventory
and/or customer dissatisfaction.

The whole approach is shown to be
valid and superior to existed approaches
through real time simulations on both
osey ; ' ; . stationary and non-stationary cases.

Figure 4 Contour diagram of MR(dot lines)
and ABO (solid lines) as functions
of o and pjof a MVC, while
(a)w=1.0 (b)w=0.5 (c)w=0.0
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Tablel: Non-stationary demand

Weighting factor Control Parameters MR AEI ABO
law
Order up 2.04 14.44 4.00
to policy
W=1.0 Smoothing Tn=7.80 1.00 14.55 21.89
ordering rule Tw=4.00
Proportional Kc=0.150 1.01 19.69 17.61
Integral control T=37.5
Predictive control 0=0.00 1.00 10.77 15.76
p1=-0.96
w=0.5 Smoothing Tn=7.80 1.00 14.55 21.89
ordering rule Tw=4.00
Proportional Kc=0.146 1.00 19.92 18.09
Integral control 7=36.5
Predictive control 0=0.60 1.00 11.95 11.26
p1=-0.94
w=0.0 Smoothing Tn=7.80 1.00 14.55 21.89
ordering rule Tw=4.00
Proportional Ke=0.125 1.00 23.64 16.92
Integral control 7=25.0
Predictive control 0=1.00 1.00 12.46 991
p1=-0.93
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