

逢甲大學學生報告 ePaper

報告題名:

金屬氧化膜熱傳導係數量測之研究 Study on the thermal conductivity measurements of metal oxide films

作者:方俊傑 系級:電機系四年甲班 學號:D9151300 開課老師:田春林 教授 課程名稱:薄膜光學 開課系所:電機所光電組 開課學年:93 學年度 第2 學期

摘要

本專題研究報告提出一種改良式的金屬氧化膜熱傳導係數之量 測方法,此方法結合自製的薄膜熱傳導量測儀及修定過的熱傳導理 論,量測薄膜熱傳導係數。量測的結果顯示,氧化矽(SiO₂)、氧化鈦 (TiO₂)、氧化鋁(Al₂O₃)、氧化鉭(Ta₂O₅)及氧化鈮(Nb₂O₅)等金屬氧化膜 的熱傳導係數,其值分別為0.45(W/mK)、0.59(W/mK)、0.38(W/mK)、 0.47(W/mK)、0.69(W/mK),最後將量測數據與相關文獻資料作比較, 其誤差值在10%以內。

本專題研究已成功地研發一套薄膜熱傳導係數量測系統,其優點 為非破壞性的量測、價格便宜、操作簡便、量測速度快。尤其是系統 改善了因接觸面不穩定所造成的誤差,進而提升了量測系統之靈敏度 與精確度,這對於金屬氧化膜熱傳導性質的研究上,是極為有用的。

關鍵字:熱傳導,金屬氧化膜,熱比較測定法

Ι

目錄

摘要	I
目錄	II
圖目錄	IV
表目錄	V
符號說明	VI
第一章 緒論	1
1-1 研究動機	1
1-2 研究目的	1
1-3 研究方法	2
1-4 論文架構	2
第二章 熱傳導基本理論	4
2-1 原理	4
2-2 熱傳導分析模式	5
第三章 熱傳導量測技術	9
3-1 文獻回顧	9
3-1-1 30法	9
3-1-2 特徵微結構法	11
3-1-3 聲光法	12

3-1-4 熱比較測定法(thermal comparator)	14
第四章 實驗設備及量測	20
4-1 蒸鍍系統	20
4-1-1 真空系統	20
4-1-2 電子槍蒸鍍系統	21
4-1-3 離子源輔助系統	21
4-1-4 監控系統	21
4-2 實驗架構	21
4-2-1 實驗量測	22
第五章 結果與討論	25
5-1 金屬氧化膜熱傳導係數量測結果	25
5-2 温度比例的影響	28
5-3 接觸面的影響	28
第六章 結論	31
參考文獻	32

圖目錄

專	題研	F究流程	3
圖	3-1	3ω法加熱器與樣本剖面圖	10
圖	3-2	30法量測熱傳導係數之系統方塊圖	11
圖	3-3	特徵微結構法系統圖	12
圖	3-4	特徵微結構法熱平衡圖	12
圖	3-5	聲光法簡易量測系統圖	13
圖	3-6	聲光法結合振幅配置法系統圖	14
圖	3-7	熱比較測定法"薄膜-介面-基板"之架構	15
圖	3-8	熱比較測定法" 感測頭-薄膜-介面-散熱器"之架構	16
圖	3-9	修正熱比較測定法架構	16
圖	4-1	離子輔助鍍膜機系統	20
圖	4-2	自製熱傳導量測儀	22
圖	5-1	金屬氧化膜熱傳導係數	27
圖	5-2	溫度比例的變化與薄膜熱傳導係數之關係	28
圖	5-3	探針頭半徑	29
圖	5-4	接觸面積半徑	29

表目錄

表 3-1	熱傳導量測方法比較表	17
表 5-1	SiO ₂ 膜熱傳導係數	26
表 5-2	TiO2膜熱傳導係數	26
表 5-3	Al ₂ O3膜熱傳導係數	26
表 5-4	Ta2O5膜熱傳導係數	27
表 5-5	Nb2O5膜熱傳導係數	27
表 5-6	金屬氧化膜熱傳導係數資料庫	30

符號說明

R	系統的熱阻抗
r	圓面積之半徑
Κ	平面熱傳導係數
R_1	探針阻抗
K _P	探針熱傳導係數
r _P	探針尾端半徑
R_2	探針尾端/膜阻抗
K _C	接觸熱傳導
t _C	接觸的膜層厚度
R ₃	薄膜阻抗
K _F	薄膜熱傳導
t _F	薄膜厚度
R_4	基板阻抗
K ₅	基板熱傳導
R ₅	散熱器阻抗
Q	熱流量
T ₁	探針溫度
T ₂	探針頭溫度
T ₅	散熱器溫度
у	温度比例
m	斜率
b	截距

第一章 緒論

1-1 研究動機

近年來,有鑒於光電產業的蓬勃發展,在製作光學元件的過程 中,最常使用的就是厚度在微奈米尺度的薄膜(thin films)。然而利用 微奈米尺度薄膜在製作光學元件的同時,所產生的熱量幾乎都是以熱 傳導的形式出現,進而造成熱膨脹及熱應力等效應的發生,而使結構 產生形變或影響原本所預期的效能,進而減少元件的壽命,因此如何 了解薄膜材料的熱傳導係數對於光學元件的製程及應用上是有其必 要性的,從一些研究顯示,塊材與薄膜的熱傳導係數是有顯著的不 同,因此如何量測出薄膜熱傳導係數,為一重要的課題。

1-2 研究目的

在不斷開發新的鍍膜技術之際,期使製鍍的薄膜品質更精良可 靠,然而要評價薄膜品質的良窳,則必須仰賴精密的量測儀器與分析 技術,對於薄膜的熱傳導係數測定而言,傳統量測方法如熱比較測定 法^[1],是以熱流分析模式,量測薄膜熱傳導係數,其缺點有二:第一 是依據J.C.Lambropoulos^[2]等學者所提出的熱傳導理論,其理論誤差會 影響熱傳導係數的量測結果;第二是因溫度梯度的變化關係,產生了 溫度感測頭與樣品之間的熱阻抗,進而導致接觸面的不穩定,是造成 整個系統不穩定的最大缺點,因此如何改善其缺點,以提升量測薄膜

熱傳導係數之靈敏度與精確度,是本專題研究中最主要的研究目的。 1-3 研究方法

在本專題中金屬氧化膜製鍍的方法,係以電子鎗蒸鍍法輔以離子 助鍍技術(Ion-Assisted Deposition,簡稱IAD)為主,部份採用離子源濺 鍍技術(Ion Beam Sputtering Deposition,簡稱IBSD)製鍍五種不同的金 屬氧化膜,包括氧化矽(SiO₂)、氧化鈦(TiO₂)、氧化鋁(Al₂O₃)、氧化 鉭(Ta₂O₅)及氧化鈮(Nb₂O₅)等,然後進行金屬氧化膜熱傳導係數之量 測,其專題研究之流程,如圖1-1所示。

而本專題所提出的金屬氧化膜熱傳導係數之量測方法,是一種改 良式的熱比較測定法,主要是自製一台薄膜熱傳導量測儀,量測薄膜 熱傳導係數,其優點包括非破壞性的量測、價格便宜、操作簡便、 量測速度快、與準確度高。

1-4 論文架構

本專題主要在探討金屬氧化膜熱傳導係數量測之研究,整體架構 共計六章,茲分析如下:

第一章 闡述研究動機及研究方法,並說明整個專題研究流程。

第二章 熱傳導係數之基本理論推導。

第三章 文獻相關回顧,並對傳統量測方法和改良的新方法作一綜合

比較。

第四章 說明金屬氧化薄膜製鍍的過程中,所用的儀器設備、實驗架 構以及實驗量測的步驟。

第五章 實驗結果與討論,分別針對金屬氧化膜進行熱傳導係數量

測,並對影響薄膜熱傳導的各種因素進行實驗與討論,藉以

瞭解各種氧化膜的熱傳導係數。

第六章 針對整個量測系統的研發成果作一總結,並且提出一些改

進項目以及未來的研發方向。

圖1-1 專題研究流程

第二章 熱傳導基本理論

2-1 原理

熱傳導的發生,主要的原因是因為溫度差異的產生,使得物體內 之分子、原子或自由電子等基本粒子,引起運動,進而相接觸碰撞而 產生熱能的交換,因此不管熱傳導的介質是氣體、液體或固體,只要 有溫度差異時,能量之交換必定會持續不斷地進行,直到沒有溫度差 異為止。

熱傳導定律是在 1822 年由法國數學物理家傅利葉(J.B. Fourier) 所提出,其定律說明了在穩定狀態下(steady state,即熱傳遞不隨時間 而變化),熱由高溫藉著熱傳導方式,傳送至低溫的熱傳量,正比於 溫度差ΔT,及垂直於熱傳導方向的傳熱面積A,而反比於熱傳導所 經過的距離L,其數學式為:

其中Q:熱傳量(W)

 $K: 材料之導熱度(W/m^{\circ}C)$

A:熱傳方向之垂直截面積(m²)

 $\frac{\Delta T}{I}$: 溫度梯度

上式即為熱傳導上常用之傅利葉(J.B.Fourier)方程式。式中的負號 基於熱力學第二定律之考慮,因熱必須由高溫往低溫活動(若無外界

逢甲大學學生報告 ePaper(2005 年)

的功加入);因此當熱傳方向之距離增加時dn為正(+),而溫度變化量dT必為負(-),所以 $\frac{dT}{dn}$ 前加負號(-),是符合熱由高溫傳至低溫的基本物理原則。

2-2 熱傳導分析模式

從H.S.Carslaw和J.C.Jaeger^[3]的分析中可以發現到,半徑r的圓區 域在一個半無窮大且熱傳導係數未知的平面上,其熱阻抗為

之後,J.R.Dryden^[4]成功地擴展了H.S.Carslaw和J.C.Jaeger^[3]的分析,而研究的目的是加入了薄膜的厚度(t_F)和薄膜熱傳導係數(K_F), 其邊界條件是基板熱傳導係數(K_s)和半無窮大的固體,因此從 J.R.Dryden^[4]的研究中,得知熱阻抗可以由下列公式來計算

$$R = \frac{\pi r}{4K_F} + 2\frac{r}{K_F} \sum_{n=1}^{\infty} \theta^n I_n(\frac{t_F}{r}) \dots (2-3)$$

這裡,I_n是積分的三角函數以及Bessel函數,且有

然而當薄膜厚度 (t_F) 遠小於熱流半徑(r),且 $K_F \ll K_s$ 時,方程式(2-3)可以簡化為

因此,根據以上的分析,加上本專題所使用的改良式熱比較測定法之 實驗架構,如圖4-2所示,可以建立出整個系統的熱傳導分析模式, 進而算出薄膜熱傳導係數(K_F),其分析模式如下:

首先在每個介面之間,熱流量與溫度差成正比並且與熱阻抗成反比,因此可得

$$T_i - T_j = \Delta T_{ij} = R_i Q \dots (2-6)$$

在這裡,熱阻抗可以很方便地表示為熱傳導係數與幾何因素的乘積, 其關係式條列如下:

1. 加熱探針阻抗(區域1)

其中,K_p是探針熱傳導係數,r_p是探針頭(probe tip)半徑。這裡假設熱流量經過探針頭不會隨著半徑r_p而改變。

2. 探針頭/薄膜阻抗(區域2)

其中, K_c 是接觸熱傳導(contact conductivity) , t_c 是接觸的膜層厚度 (contact layer thickness) 。

3. 薄膜阻抗(區域3)

其中, K_F 是薄膜熱傳導(film conductivity), t_F 是薄膜厚度(film thickness)。

4. 基板阻抗(區域 4)

其中, K_s 是基板熱傳導(substrate conductivity), r_p 是探針頭半徑。這裡假設熱流量從薄膜到基板是不變的。

5. 散熱器阻抗(區域 5)

假設 $R_5 = 0$, 且 $T_4 \approx T_5$

6. 計算薄膜熱傳導K_F:

根據(2-6)式,改寫成

因此

所以我們可以寫成

根據定義

金屬氧化膜熱傳導係數量測之研究

$$\frac{(T_1 - T_5)}{(T_1 - T_2)} = 1 + 4K_P \left(\frac{t_C}{K_C \pi r_P}\right) + 4K_P \left(\frac{t_F}{K_F \pi r_P}\right) + \frac{K_P r_P}{K_S r_P} \dots \dots \dots \dots (2-14)$$

將上式整理可得

$$\frac{(T_1 - T_5)}{(T_1 - T_2)} = \left(\frac{4K_P}{K_F \pi r_P}\right)t_F + \left[1 + \left(\frac{4K_P}{K_C \pi r_p}\right)t_C + \frac{K_P r_P}{K_S r_P}\right]\dots(2-15)$$

在這裡(2-15)式是直線方程的形式:

 $y = mx + b \dots (2-16)$

為求得薄膜熱傳導係數,需要定義以下參數:

温度比例為

膜厚度為

斜率為

截距為

$$b = [1 + (\frac{4K_P}{K_C \pi r_P})t_C + \frac{K_P r_P}{K_S r_P}]....(2-20)$$

藉此可繪出溫度比例y為膜厚x的函數關係圖,再利用最小平方法 (least-squares)擬合(fit)成一直線方程式,即可求出斜率m,然後代入下 列公式,計算薄膜的熱傳導係數K_F:

$$K_F = \left(\frac{4K_P}{m\pi r_p}\right)\dots(2-21)$$

逢甲大學學生報告 ePaper(2005 年)

第三章 熱傳導量測技術

本章將歸納整理量測薄膜熱傳導的各種技術與方法,並分別探討 傳統的量測方法與改良的新方法,最後作一綜合比較。本專題中所提 出的是一種改良式的熱比較測定法,主要是自製一台便宜、簡單操作 且非破壞性的熱傳導量測儀,量測薄膜熱傳導係數,可提升操作速度 和量測精準度。

3-1 文獻回顧

在過去20年裡,量測薄膜熱傳導係數已發展了許多不同的方法, 而文獻中以下列四種方法最為普遍,茲分述如下:

3-1-1 30法

1990年D.G.Cahill^[5]使用交流法量測溫度介於 30~750K間之介電 質物體之熱傳導係數。1998年G.B.Martin^[6]等使用 3ω法應用於掃描 式熱顯微鏡,在空間解析度 30nm測定銀和鑽石膜之熱傳導係數。2001 年L.Lu^[7]等以 3ω法結合窄代偵測技術,同時量測桿狀或絲狀樣本之 比熱與熱傳導係數。2002年A.Jacquot^[8]等以 3ω法結合數位模擬,量 測薄膜熱傳導係數。2004年A.Altes^[9]等以 3ω法結合三維有限元素法 並利用掃描式熱探針顯微術作分析量測。

3ω電壓訊號檢出技術,最早見於N. O.Birge 和 S. R. Nagel^[10] 於 1987年發表之論文,利用橋式電路及鎖相放大器,成功將微小的3ω

電壓訊號自混成訊號中分離檢測出來。

而3ω法首見於 D.G. Cahill^[5] 於1990年發表的論文中,其原理敘 述如下:利用沉積於薄膜上之細長金屬線作為加熱線,提供正弦波 (sinusoidal)的電流變化,同時該金屬線亦為溫度感測線。由於金屬線 之電阻值隨著溫度升高而升高,因此當金屬線通入頻率為ω的正弦波 電流時,在金屬線上所測到的溫度會有2ω的振盪變化,在利用鎖相放 大器及惠司登電路,在金屬線兩端檢測出3ω的電壓訊號,因此被通稱 為3ω法。

2ω溫度振幅,亦即薄膜外側之溫度值,再利用H. S.Carslaw^[3]、 D. G. Cahill^[5]及S. M. Lee and D. G.Cahill^[11] 推導出薄膜內側的溫度 值,然後結合熱傳導方程式傅立葉定律(Fourier's law),便可求出薄膜 熱傳導係數。

圖 3-1 3ω 法加熱器與樣本剖面圖

圖 3-2 3ω 法量测熱傳導係數之系統方塊圖

3-1-2 特徵微結構法

1992年F.Volklein和H.Balles^[12]利用橋式的測試結構,量測掺雜 磷的多晶矽薄膜熱傳導係數。1996年M.B.Kleiner^[13]等利用夾層的方 法,量測出積體電路中介電質的熱傳導係數。2000年董建利^[14]利用 簡易的特稱微結構法,量測薄膜材料熱傳導係數。

特徵微結構法以1992年F.Volklein和H.Balles^[12]發表之論文最具 代表性,其量測原理敘述如下:不同材料組成的薄膜平板會有不同的 熱傳導值G_b,因此會造成不同功率以及溫度梯度的傳導效果,最後 在加熱至同溫的情況下,量測輸入不同材料的功率,經由互相比較計 算出薄膜之熱傳導係數。

圖 3-3 特徵微結構法系統圖

圖 3-4 特徵微結構法熱平衡圖

3-1-3 聲光法

1994 年M.Rohde^[15]利用聲光訊號的相位偏移,量測薄膜的熱傳 導係數。1997 年S. Govorkov^[16]等利用簡單且靈敏的儀器,量測薄膜 金屬氧化膜熱傳導係數量測之研究

熱傳導係數,如圖 3-5 所示。2001 年X.Wang^[17]等以聲光法結合振幅 配置法,量測出塊材與薄膜的熱傳導係數。

標準的聲光法架構如圖 3-6 所示,利用調整後的雷射光束直接對 裝置在聲光氣體室底部上方的樣品加熱,而在氣體室裡,溫度週期性 的改變,導致了氣體壓力週期性的改變,也因此進一步產生出聲波訊 號。藉著樣品表面的厚度,因熱膨脹緣故,而產生的物理變化,使得 氣體壓力的變化被感應出來。然後以一個麥克風感應到聲波訊號,並 且轉換到鎖相放大器,最後在一定調整範圍的頻率下,量測出聲光訊 號的振幅和相位,進一步地計算出薄膜熱傳導係數。

圖 3-5 聲光法簡易量測系統圖

圖 3-6 聲光法結合振幅配置法系統圖

3-1-4 熱比較測定法(thermal comparator)

1989年J.C. Lambropoulos^[2]等學者以J.C. Lambropoulos^[2]分析"薄 膜-介面-基板"(film-interface-substrate)模式,利用熱比較測定法,量測 薄膜熱傳導係數,如圖3-8所示。1993年C.H. Henager與 W.T.Pawlewicz^[1]採用J.C. Lambropoulos^[2]等學者的方法分析"感測頭-薄膜-介面-散熱器" (probe tip-film- substrate- heat sink) 模式,以量測 介電質薄膜熱傳導係數,如圖3-9所示。2000年袁崑益^[18]利用熱比較 測定法,量測薄膜熱傳導係數。2000年K.R. Cheruparambil^[19]等,修 正熱比較測定法,量測CVD鑽石膜熱傳導係數,如圖3-10所示。

熱比較測定法係以 1989 年J.C. Lambropoulos^[2]等學者發表之論

文最具代表性,其操作原理如圖 3-7 所示。將測試樣品放置在樣本平 臺後,一個熱電偶介面感測頭,上升去接觸測試樣品表面,而兩個接 觸面之間有一個小的力量存在,通常只有 5 到 10 克。熱流從感測頭 到達測試樣品的基板,其所需時間,標準是 10 秒,即可達到穩態的 情況。因感測頭和參考介面之間的溫度差,而產生的一個電壓,由控 制元件測得。利用一部個人電腦,偵測到幾個電壓訊號,取平均值並 儲存數據。從已知的塊材熱傳導係數,產生一條熱傳導測定曲線。然 後從未知量比較已知量,找出明顯的熱傳導係數(Kapp),再利用高傳 導材料的基板,例如:藍寶石或矽晶圓,加上數值分析模式,求得精 確的薄膜熱傳導係數。

圖3-7 熱比較測定法"薄膜-介面-基板"之架構

圖3-8 熱比較測定法"感測頭-薄膜-介面-散熱器"之架構

圖 3-9 修正熱比較測定法架構

3-1-5 綜合比較

傳統上,量測薄膜的熱傳導係數有很多種方法,包含3ω法、特 徵微結構法、聲光法,以及熱比較測定法(thermal comparator),本節 將針對各種方法的目的、精確度,以及優缺點,進行比較分析,並對 本專題研究所提出的改良式架構,作一綜合比較,藉以評估各種方法

的良窳,請參閱表3-1。

研究者	量測	實驗目的	基板尺寸	量測之	優點	缺點
	方法			精度		
J. C.	熱比較	以"薄膜-介	矽或fused	薄膜與	簡單、不	探針半
Lambropoulos	測定法	面-基板"之	silica基板	塊材熱	昂貴、快	徑不確
[2]		分析模式	直徑	傳導係	速且非	定
(1989)		,量測薄膜	38mm	數相比	破壞性	
		熱傳導係數	厚度6mm	少兩個	的量测	
				數量級		
D.G.Cahill ^[5]	300法	量测温度介	任何介電	在1000k	克服了	對黑體
(1990)	或稱交	於30~750K	質物體	時,小於	大且精	輻射是
	流法	間之介電質	1×1 cm ,	2%	確的形	不靈敏
		物體之熱傳	厚度大約		狀樣本	的
		導係數	是數毫米		之需求	
F.Volklein ^[12]	特徵微	利用橋式的	多晶矽膜	小於3%	精確且	受聲子
(1992)	結構法	測試結構,	寬度		直接量	散射的
		量測摻雜磷	200~220µ		測出 IC	影響
		的多晶矽薄	m		封裝過	
		膜熱傳導係	長度		程的多	
		數	70~80µm		晶矽膜	
C. H. Henager ^[3]	熱比較測	以"感測頭-	矽基板	薄膜與塊	簡單、不	探針頭與
(1993)	定法	薄膜-介面-散	直徑38mm	材熱傳導	昂貴、快	膜之間的
		熱器"之分析	厚度6.4mm	係數相比	速且非破	接觸阻抗
		模式,量测介		少雨個數	壞性的量	導致接觸
		電薄膜熱傳		量級	測	面的不穩
		導係數				定
M.B.Kleiner ^[13]	特徵微結	利用夾層的	懸背樑長度	20%	在積體電	積體電路
(1996)	構法	方法量测出	1100µm		路中建立	中介電值
		積體電路中			了熱傳導	之介面處
		介電值的熱			模型	阻抗極大
		傳導係數				

表 3-1 熱傳導量測方法比較表

表 3-1 熱傳導量測方法比較表(續)

研究者	量測	實驗目的	基板尺寸	量測之	優點	缺點
	方法			精度		
S. Govorkov	聲光法	量测次微米	矽基板厚	小於	新的、價	靈敏度
[16]	(PA)	尺度厚度範	度1.0	10%	格便宜	不足
(1997)		圍之薄膜熱	$in \times 1.0 \times$		且容易	
		傳導係數	in×0.4-m		操作的	
			m		架構	
G. B. Martin	3ω法應	以空間解析	線之鉑纖	2%	高精確	侷限於
[6]	用於掃	度為30nm	核直徑		的 300技	局部的
(1998)	描式熱	來測定出局	5µm		術和優	量測
	顯微術	部熱傳導係	1.0		等 SPM	
	(SThM)	數。			空間解	
					析度	
K. R.	熱比較	修正熱比較	銅基板厚	4%	有效地	價格昂
Cheruparambil	測定法	測定法,量	度250μm		减少了	貴
^[19] (2000)		測CVD鑽	直徑		探針頭	
		石膜熱傳導	10mm×5		與膜之	
		係數	mm		間的接	
					觸阻抗	
董建利 ^[14]	自製熱	利用簡單的	L ₁ =400µm	20%	結構簡	只能量
(2000)	特徵微	特徵微結構	L ₂ =200µm		單、製程	測低溫
	結構	及一般實驗	S=6.5µm		不困	石的熱
		常見的檢測	W=3µm		難、且容	傳導數
		儀器,來量	h=2µm		易量測	值
		測薄膜材料				
		的熱傳導係				
		數				
X.Wang ^[17]	聲光法	聲光法結合	矽基板厚	±5%	簡單且	只適合
(2001)	(PA)	振幅配置	度 0.381		非破壞	在室溫
		法,量测出	mm或 石		性的量	下研究
		塊材與薄膜	墨基板厚		測	和反射
		的熱傳導係	度3mm			造成的
		數				誤差

研究者	量測	實驗目的	基板尺寸	量測之	優點	缺點
	方法			精度		
L.Lu ^[7]	300法	結合窄帶偵	鉑絲直徑	2%-4%	可以選	受頻率
(2001)		測技術同時	20µm長		擇樣本	限制的
		量测熱容與	度8mm		的尺	影響
		桿狀或絲狀			寸,進而	
		樣本之熱傳			決定使	
		導係數			用的3ω	
					電壓	
方俊傑(2005)	改良型	自製熱傳導	矽基板	10%以	容易操	受熱對
	的熱比	量測儀量測	直徑一吋	內	作且精	流的影
	較測定	薄膜熱傳導	厚度2mm		準度高	響
	法	係數			的架構	

表 3-1 熱傳導量測方法比較表(續)

第四章 實驗設備及量測

4-1 蒸鍍系統

本專題中,製鍍薄膜所使用的系統為離子輔助鍍膜機系統如圖 4-1所示,其中包含了真空系統、電子槍蒸鍍系統、離子輔助系統及 監控系統。

光學監控

圖 4-1 離子輔助鍍膜機系統

4-1-1 真空系統

本實驗架設之真空系統,採用機械幫浦配合魯氏幫浦的輔助做粗 抽,當真空度抽至8 Pa 左右,轉換成冷凝幫浦(Polycold)做高真空的 抽取,操作真空度可於30分鐘內加熱至300℃,並達到1.33×10⁻⁴ Pa。

當真空度介於1.33×10²~1.33×10⁻¹Pa 範圍內以熱導式真空計監控真 空度,在1~1×10⁻⁶Pa 範圍內則以Ion Gauge 真空計監控之。

4-1-2 電子槍蒸鍍系統

電子槍的最大輸出功率為10KW 以上,腔體有效直徑為 1100mm,靶材至基板中心距離為935mm,以石英燈管作為加熱源, 最高可達550℃,離子源上方之氣環通氧氣,進氣量範圍為0.4~20 sccm。

4-1-3 離子源輔助系統

使用無柵極離子源(SINTECH Ion System ST-2000 型)其工作電 壓範圍為40~300V,陽極電流範圍為0.5~3A,進氣量範圍為 0~20sccm,工作氣體為氧氣。

4-1-4 監控系統

採用石英振盪器監控薄膜厚度,量測厚度誤差±0.5%,解析度

4-2 實驗架構

本專題所提出的是一種操作簡便且精準度高的實驗量測架構, 如圖 4-2 所示,包含第一部分是紅銅材料所製的加熱探針,第三部分 是待測的金屬氧化膜,第四部份是矽基板,第五部分是銅散熱器,以 及精準控制的升降台,其主要功能是讓加熱探針與待測的金屬氧化

膜,做細微的接觸,然而除了上述的架構外,還包括光學顯微鏡並以 電腦操控(電腦內安裝有影像擷取卡及影像處理分析軟體),以方便樣 品觀察、影像擷取及數據分析。

圖 4-2 自製熱傳導量測儀

4-2-1 實驗量測

根據實驗架構,其金屬氧化膜熱傳導係數之實驗量測步驟,茲分 析如下:

22

步驟一:薄膜光學常數的量測。

在研究薄膜熱傳導係數時,薄膜的厚度也是一個重要參數,而 測定薄膜厚度的方法有很多種。本實驗中膜厚的測定係以1976年 Manifacier^[20]提出的包絡法(envelope method)為基礎,此法適用於弱吸 收膜。利用光譜儀,量出薄膜的穿透率T,利用電腦程式推算出薄膜 的光學常數:即折射率n、消光係數k及膜厚。

步驟二:半徑的量測。

將利用光學顯微鏡,並接上電腦(電腦內安裝有影像擷取卡及影像 處理分析軟體),量測探針頭的半徑及接觸後的圓面積。

步驟三:加熱探針與樣品的接觸

將樣品放置在散熱器上方,並啟動加熱器加熱,使加熱探針達到 均勻的平衡態,接著加熱探針與樣品接觸,使熱能通過加熱探針到達 樣品,然後利用thermo-meter量測溫度。

步驟四:溫度梯度變化的量測。

當熱能進入具有熱阻的樣品時,控制及調整加熱器溫度,溫度計一端與探針相連結,另一端與散熱器相連結,由於熱源在上方,此時熱流將會由上往下傳遞,因此加熱探針至散熱器之間,會形成溫度梯度的變化。

步驟五:求出薄膜的熱傳導係數。

結合上述各個步驟所量測的參數,代入(2-21)式,即可求出金屬 氧化薄膜的熱傳導係數(k),然後重複多次上述實驗,用統計分析方法 求出準確度較高的金屬氧化薄膜熱傳導係數。

步驟六:整理實驗數據及電腦繪圖分析。

整理實驗數據,並進行數據分析以及繪圖整理。

第五章 結果與討論

本專題研究為探討金屬氧化膜的熱傳導特性,以電子鎗蒸鍍法輔 以離子助鍍技術(Ion-Assisted Deposition,簡稱IAD)製鍍金屬氧化膜樣 品,分別針對各個樣品進行熱傳導量測實驗,並探討量測時外在的影 響因素,藉此量測出精確值較高的熱傳導係數,並建立金屬氧化膜熱 傳導係數的資料庫。

5-1 金屬氧化膜熱傳導係數量測結果

本專題研究針對氧化矽(SiO₂)、氧化鈦(TiO₂)、氧化鋁(Al₂O₃)、 氧化鋁(Ta₂O₅)及氧化鈮(Nb₂O₅)等金屬氧化膜,進行熱傳導係數之量 測實驗,在量測條件不變的情況下,分別針對每組樣品進行5次量測, 量測所得數據經由平均計算之後顯示(表5-1至表5-5),可得到氧化矽 (SiO₂)、氧化鈦(TiO₂)、氧化鋁(Al₂O₃)、氧化鋁(Ta₂O₅)及氧化鈮(Nb₂O₅) 等金屬氧化膜的熱傳導係數,其值分別為0.45(W/mK)、0.59(W/mK)、 0.38(W/mK)、0.57(W/mK)、0.69(W/mK),接著整理其量測數據,如 圖5-1所示,最後與文獻中的數據,如表5-6所示,作分析比較,發現 所量測的薄膜熱傳導係數值,其誤差在10%以內。

探針溫度 T ₁ (K)	探針頭溫 度T ₂ (K)	散熱器溫 度T ₅ (K)	薄膜厚度 (nm)	温度比例	斜率 m (1/nm)	薄膜熱傳 導係數K _F (W/mK)	K _F 之平均 值(W/mK)
353.1	338.9	302.1	300	3.591549	0.011972	0.461495	
349.5	332.5	301.9	300	2.8	0.009333	0.591958	
349.3	337.3	302.2	300	3.925	0.013083	0.422288	0.450954
349.7	339.4	302.2	300	4.61165	0.015372	0.359412	
349.5	337.5	302.1	300	3.95	0.013167	0.419616	

表 5-1 SiO2膜熱傳導係數

表 5-2 TiO2膜熱傳導係數

探針溫度 T ₁ (K)	探針頭溫 度T ₂ (K)	散熱器溫 度T ₅ (K)	薄膜厚度 (nm)	温度比例	斜率 m (1/nm)	薄膜熱傳 導係數K _F (W/mK)	K _F 之平均 值 (W/mK)
351.7	334.5	302.3	300	2.872093	0.009574	0.577099	
358	334.5	302.3	300	2.370213	0.007901	0.699297	
353.6	335	302.3	300	2.758065	0.009194	0.600958	0.591979
350	337	302.5	300	3.653846	0.012179	0.453627	
356	335.7	302.5	300	2.635468	0.008785	0.628914	

表 5-3 Al₂O3膜熱傳導係數

探針溫度 T ₁ (K)	探針頭溫 度T ₂ (K)	散熱器溫 度T5(K)	薄膜厚度 (nm)	温度比例	斜率 m (1/nm)	薄膜熱傳 導係數K _F (W/mK)	K _F 之平均 值 (W/mK)
353	340.7	302.4	300	4.113821	0.013713	0.402906	
353.8	339.8	302.3	300	3.678571	0.012262	0.450578	
352	342.4	302.3	300	5.177083	0.017257	0.320158	0.378359
352.5	340.2	302.3	300	4.081301	0.013604	0.406116	
351.6	342.3	302.2	300	5.311828	0.017706	0.312036	

探針溫度 T ₁ (K)	探針頭溫 度T ₂ (K)	散熱器溫 度T ₅ (K)	薄膜厚度 (nm)	温度比例	斜率 m (1/nm)	薄膜熱傳 導係數K _F (W/mK)	K _F 之平均 值 (W/mK)
353.5	340.3	304.8	300	3.689394	0.012298	0.449256	
351.1	338.3	305.3	300	3.578125	0.011927	0.463226	
359.3	338.5	305.3	300	2.596154	0.008654	0.638438	0.574637
355.2	335.9	305.4	300	2.580311	0.008601	0.642358	
354.6	334.5	305.6	300	2.437811	0.008126	0.679906	

表 5-4 Ta2O5 膜熱傳導係數

表 5-5 Nb2O5 膜熱傳導係數

探針溫度 T ₁ (K)	探針頭溫 度T ₂ (K)	散熱器溫 度T ₅ (K)	薄膜厚度 (nm)	温度比例	斜率 m (1/nm)	薄膜熱傳 導係數K _F (W/mK)	K _F 之平均 值(W/mK)
349.4	331.4	302.1	300	2.627778	0.008759	0.630754	
357.7	332.4	301.9	300	2.205534	0.007352	0.751511	
356.3	332.3	302.2	300	2.254167	0.007514	0.735297	0.686809
357.9	335.9	302.1	300	2.536364	0.008455	0.653488	
358.9	336.3	302.4	300	2.5	0.008333	0.662993	

圖 5-1 金屬氧化膜的熱傳導係數

5-2 温度比例的影響

從表5-1至表5-5中,發現,雖然氧化鈦(TiO₂)、氧化鉭(Ta₂O₅)及 氧化鈮(Nb₂O₅)等薄膜之熱傳導係數比氧化矽(SiO₂)、氧化鋁(Al₂O₃)薄 膜高,然而其溫度比例卻比較低,因此可知,溫度比例與薄膜熱傳導 係數之關係成反比,如圖5-2所示。

圖 5-2 溫度比例的變化與薄膜熱傳導係數之關係

5-3 接觸面的影響

對於C.H.Henager^[1]等人所建立的熱比較測定法架構而言,其穩態 溫度差的建立,是在接觸樣品後兩秒,然後利用電腦資料讀取系統, 所得到的溫度差,需要幾秒的時間,因此在標準的情況下,一筆穩態 溫度差資料的取得,需要七到十秒的時間。

然而在此情況下,因為溫度梯度的變化關係,產生了溫度感測頭 與樣品之間的熱阻抗,進而導致接觸面的不穩定,接著影響薄膜熱傳

金屬氧化膜熱傳導係數量測之研究

導係數的結果,因此為了改善其缺點,本專題利用自製的一台熱傳導 量測儀,經過多次反覆不停的實驗後發現到,在八秒時,溫度差的變 化,已達穩態的情況,然後利用光學顯微鏡量測接觸面積並與探針頭 半徑作比較,發現其誤差已降低至7%左右,如圖5-3及圖5-4所示。

圖5-3 探針頭半徑

圖 5-4 接觸面積半徑

		1		1
材料	SiO ₂	TiO ₂	Al ₂ O ₃	Ta ₂ O ₅
作者與	$K_{\rm F}(W/mK)$	$K_{\rm F}({\rm W/mK})$	$K_{\rm F}(W/mK)$	$K_{\rm F}(W/mK)$
量測方法				
改良式熱比較測定	0.45 ^(a)	0.59 ^(a)	0.38 ^(a)	0.57^(a)
法(Thermal				
comparator)				
C.H.Henager ^[1]	0.12 ^(c)		0.12 ^(c)	0.12 ^(c)
熱比較測定法				
(Thermal				
comparator)				
J.C.Lambropoulos ^[2]	0.45-0.61 ^(b)	0.59 ^(b)	0.72 ^(b)	
熱比較測定法	$0.41.1.05^{(d)}$	0.49 ^(d)		
(Thermal	0.41-1.05	0.48		
comparator)				
袁崑益 ^[18]	0.13 ^(b)	0.44 ^(b)		0.363-
熱比較測定法				0.382 ^(b)
(Thermal				
comparator)				
S.Govorkov ^[16]	0.618 ^(b)	\mathbf{N}		
(聲光法)				
Z.L.Wu ^[21]	/	0.25 ^(b)		
(Photothermal)		0.45 ^(e)		
D.Ristau ^[22]	0.1 ^(b)	0.018 ^(b)		0.026 ^(b)
ISLC				
H.Guenther ^[23]	0.17-0.28 ^(b)		0.025-0.036 ^(b)	
⁽ Microdifferential				
Calorimetry)				

表5-6 金屬氧化膜熱傳導係數資料庫

附註: 製鍍方式

- (a) 離子源助鍍 (b) 電子槍蒸鍍 (c) 射頻濺鍍
- (d) 離子源濺鍍 (e) 離子披覆反應蒸鍍

第六章 結論

為研究金屬氧化薄膜之熱傳導特性,本專題研究報告中,提出 一種改良式的熱比較測定法,利用自製的熱傳導量測儀,結合修定過 的熱傳導理論,成功地量測出氧化矽(SiO₂)、氧化鈦(TiO₂)、氧化鋁 (Al₂O₃)、氧化鉭(Ta₂O₅)及氧化鈮(Nb₂O₅)等金屬氧化薄膜的熱傳導係 數,不僅靈敏度與精確度明顯的提升,而且還有效地改善了接觸面的 不穩定。

就目前的情況而言,整個實驗有兩個較難控制的因素,第一是熱 對流的影響,因本專題所使用是均勻熱平衡態的加熱探針,而非傳統 熱比較測定法架構,量測溫度用的探針;第二是熱傳導基本理論的推 導,由於本實驗的理論基礎是採用J.R.Dryden^[4]的理論模式,與本實 驗架構比較起來,還是有些微的誤差,因此,為了使整個實驗架構更 完善,本專題研究未來將進一步地改善其舊有的缺點,而發展出完美 的熱傳導量測儀,並且將繼續朝多層膜的方向前進,期許能使金屬氧 化膜的熱傳導性質更完善。

參考文獻

- [1]. C. H. Henager and W. T. Pawlewicz" Thermal conductivities of thin sputtered optical films" Applied optics, Vol. 32, pp.91-100, 1993.
- [2]. J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, and S. D. Jacobs, "Thermal conductivity of dielectric thin films" Journal of applied physics, Vol.66, pp.4230-4242,1989.
- [3].H.S.Carslaw and J.C.Jaeger "Conduction of heat in solids" Oxford U.press,New York, pp.214-216,1947.
- [4]. J.R.Dryden "Effect of a surface coating on the constriction resistance of a spot on an infinite half-plane" Transactions of the ASME,Vol.105,pp.408-410,1983.
- [5]. D.G.Cahill "Thermal conductivity measurement from 30 to 750 K. The 3ω method "Review of Scientific Instruments, Vol.61, pp.802-808,1990.
- [6]. G. B. Martin, A.Altes, R. Heiderhoff and L.J.Balk "Quantitative thermal conductivity measurements with nanometre resolution" Journal of Physics D:Applied physics, Vol.32, pp.13-17, 1998.
- [7]. L. Lu, W. Yi and D. L. Zhang "3ω method for specific heat and thermal conductivity measurements" Review of scientific instruments, Vol.72, pp.2996-3003, 2001.
- [8].A. Jacquot, B. Lenoir, A. Dauscher, M. Stolzer and J. Meusel "Numerical simulation of the 3w method for measuringthe thermal conductivity" Journal of applied physics, Vol. 91, pp.4733-4738 ,2002.
- [9]. A .Altes, R.Heiderhoff and L.J.Balk "Quantitative dynamic near-field microscopy of thermal conductivity", Journal of Physics D :Applied physics, Vol. 37, pp.952-963, 2004.
- [10].N.O.Birge, S.R.Nagel "Wide-frequency specific heat spectrometer" Review of scientific instruments, Vol.58, pp.1464-1470, 1987.

金屬氧化膜熱傳導係數量測之研究

- [11]. S.M.Lee, D.G.Cahill "Heat transport in thin dielectric films" Journal of Applied Physics ,Vol. 81, pp.2590-2595,1997.
- [12]F.Volklein, H.Balles "A microstructure for measurement of thermal conductivity of polysilicon thin films" Journal of microelectromechanical systems, Vol.1, pp.193-196, 1992.
- [13].M.B.Kleiner, S.A.Kuhn, W.Weber "Thermal conductivity measurements of thin silicon dioxide films in integrated circuits" IEEE Transactions On Electron Devices, Vol.43, pp.1602-1609,1996.
- [14].董建立"量測薄膜材料熱傳導係數之簡易方法的研究"國立中興

大學精密工程研究所,2000年.

- [15].M.Rohde "Photoacoustic Characterization of thermal transport properties in thin films and microstructures," <u>Thin solid films,</u> <u>Vol.238, pp.199-206,1994</u>.
- [16]. S. Govorkov, W. Ruderman, M.W.Horn, R.B.Goodman and M.Rothschild, "A new method for measuring thermal conductivity", Review of scientific instruments, Vol. 68, pp.3828-3834, 1997.
- [17].X.Wang, H.<u>Hu</u>, and X.<u>Xu</u>"Photo-acoustic measurement of thermal conductivity of thin films and bulk materials" Journal of heat transfer, Vol.123, pp.138-144, 2001.
- [18]袁崑益"光學薄膜熱傳導特性量測之研究"國立中央大學碩士論

文,2000.

- [19] K. R. Cheruparambil, B. Farouk1, J. E. Yehoda, N. A. Macken "Thermal conductivity measurement of cvd diamond films using a modified thermal comparator method" Journal of heat transfer, Vol. 122, pp.808-816, 2000.
- [20] J. C. Manifacier, J. Gasiot and J. P. Fillard,"A simple method for thedetermination of the optical constants n, k and the thickness of a weekly absorbing thin film" Journl of Physics E, Vol.9, pp.

金屬氧化膜熱傳導係數量測之研究

1002-1004, 1976.

- [21] Z.L.Wu, M.Reichling, X.Q.Hu, K.Balasubranian, and K.H. Guenther "Absorption and thermal conductivity of oxide thin films measured by photothermal displacement and reflection" Applied optics., Vol. 32,pp.5660-5665,1993.
- [22]. D. Ristau and J. Ebert , "Development of a thermographic laser calorimeter" Applied Optics. ,Vol.25 No.24,pp.4571-4578,1986.
- [23]H.Guenther and J. K. Mciver "The role of thermal conductivity in the pulsed laser damage sensitivity of optical thin films "Thin solid films, Vol. 163, pp. 203-214,1988.

