| 題名: | Exact Solution of a Minimal Recurrence | 
| 作者: | Chang, Keh-Ning Tsai, Shi-Chun | 
| 關鍵字: | analysis of algorithms computational complexity | 
| 期刊名/會議名稱: | 1999 NCS會議 | 
| 摘要: | In this note we find the exact solution for the minimal recurrence Sn = min[2/1]k=1{aSn-k + bSk}, where a and b are positive integers and a ≧ b. We prove that the solution is the same as that of the recurrence relation Sn = aS[n/2]+bS[n/2]. In other words, Sn = S1+(a+b-1)S1Σn-1 i=1 a=(i) b[lg n]-z(i), where z(i) is the number of zeros in the binary representation of i. The proof follows from an interesting combinatorial property. | 
| 日期: | 2006-10-30T01:18:19Z | 
| 分類: | 1999年 NCS 全國計算機會議 | 
文件中的檔案:
| 檔案 | 描述 | 大小 | 格式 | |
|---|---|---|---|---|
| ce07ncs001999000058.pdf | 247.28 kB | Adobe PDF | 檢視/開啟 | 
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
