| 題名: | Principal Component Analysis based on Fuzzy Objective Functions | 
| 作者: | Yang, Tai-Ning Wang, Sheng-De | 
| 關鍵字: | neural network fuzzy theory principal component extraction outlier robust statistics | 
| 期刊名/會議名稱: | 1999 NCS會議 | 
| 摘要: | In this paper, we propose a robust principal component analysis algorithm based on a fuzzy objective function. By defining a fuzzy objective function for considering the outliers in principal component analysis, we derive an on-line robust algorithm that can extract the appropriate principal components from the spoiled data set. An artificially generated data set is used to evaluate the performance of the proposed algorithm. | 
| 日期: | 2006-11-13T01:00:21Z | 
| 分類: | 1999年 NCS 全國計算機會議 | 
文件中的檔案:
| 檔案 | 描述 | 大小 | 格式 | |
|---|---|---|---|---|
| ce07ncs001999000126.pdf | 294.24 kB | Adobe PDF | 檢視/開啟 | 
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
