完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiao, Zhung-Xun
dc.contributor.authorHu, Xing-Yuan
dc.contributor.authorPeng, Wen-Chih
dc.date.accessioned2009-08-23T04:43:59Z
dc.date.accessioned2020-05-25T06:50:20Z-
dc.date.available2009-08-23T04:43:59Z
dc.date.available2020-05-25T06:50:20Z-
dc.date.issued2008-11-10T07:48:15Z
dc.date.submitted2007-01-01
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/10956-
dc.description.abstractIn reality, sequential patterns may exist in multiple sequence databases. In this paper, we explore a novel sequential pattern mining problem: mining multi-domain sequential patterns across multiple domain sequence databases. We propose two algorithms, IndividualMine and PropagatedMine, for efficiently mining multi-domain sequential patterns. In algorithm IndividualMine, sequential patterns in each domain should first be discovered and then by iteratively combining sequential patterns among domain sequence databases, multi-domain sequential patterns are generated. Algorithm PropagatedMine performs sequential pattern mining only in one domain sequence database and propagates sequential patterns mined to other domain to generate corresponding sequential patterns so as to reduce the cost of mining. A comprehensive performance study is conducted and experimental results show the scalability and the efficiency of our proposed algorithms.
dc.format.extent16p.
dc.relation.isversionofVol17
dc.relation.isversionofNo4
dc.subjectno
dc.titleMining Sequential Patterns Across Multiple Sequence Databases
分類:Journal of Computers第17卷

文件中的檔案:
檔案 描述 大小格式 
JOC_17_4_5.pdf857.18 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。